xref: /netbsd-src/sys/kern/kern_time.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /*	$NetBSD: kern_time.c,v 1.174 2012/03/22 17:46:07 dholland Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Christopher G. Demetriou, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
61  */
62 
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.174 2012/03/22 17:46:07 dholland Exp $");
65 
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80 
81 static void	timer_intr(void *);
82 static void	itimerfire(struct ptimer *);
83 static void	itimerfree(struct ptimers *, int);
84 
85 kmutex_t	timer_lock;
86 
87 static void	*timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89 
90 struct pool ptimer_pool, ptimers_pool;
91 
92 #define	CLOCK_VIRTUAL_P(clockid)	\
93 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94 
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99 
100 /*
101  * Initialize timekeeping.
102  */
103 void
104 time_init(void)
105 {
106 
107 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108 	    &pool_allocator_nointr, IPL_NONE);
109 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110 	    &pool_allocator_nointr, IPL_NONE);
111 }
112 
113 void
114 time_init2(void)
115 {
116 
117 	TAILQ_INIT(&timer_queue);
118 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120 	    timer_intr, NULL);
121 }
122 
123 /* Time of day and interval timer support.
124  *
125  * These routines provide the kernel entry points to get and set
126  * the time-of-day and per-process interval timers.  Subroutines
127  * here provide support for adding and subtracting timeval structures
128  * and decrementing interval timers, optionally reloading the interval
129  * timers when they expire.
130  */
131 
132 /* This function is used by clock_settime and settimeofday */
133 static int
134 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135 {
136 	struct timespec delta, now;
137 	int s;
138 
139 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 	s = splclock();
141 	nanotime(&now);
142 	timespecsub(ts, &now, &delta);
143 
144 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 		splx(s);
148 		return (EPERM);
149 	}
150 
151 #ifdef notyet
152 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 		splx(s);
154 		return (EPERM);
155 	}
156 #endif
157 
158 	tc_setclock(ts);
159 
160 	timespecadd(&boottime, &delta, &boottime);
161 
162 	resettodr();
163 	splx(s);
164 
165 	return (0);
166 }
167 
168 int
169 settime(struct proc *p, struct timespec *ts)
170 {
171 	return (settime1(p, ts, true));
172 }
173 
174 /* ARGSUSED */
175 int
176 sys___clock_gettime50(struct lwp *l,
177     const struct sys___clock_gettime50_args *uap, register_t *retval)
178 {
179 	/* {
180 		syscallarg(clockid_t) clock_id;
181 		syscallarg(struct timespec *) tp;
182 	} */
183 	int error;
184 	struct timespec ats;
185 
186 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
187 	if (error != 0)
188 		return error;
189 
190 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191 }
192 
193 int
194 clock_gettime1(clockid_t clock_id, struct timespec *ts)
195 {
196 
197 	switch (clock_id) {
198 	case CLOCK_REALTIME:
199 		nanotime(ts);
200 		break;
201 	case CLOCK_MONOTONIC:
202 		nanouptime(ts);
203 		break;
204 	default:
205 		return EINVAL;
206 	}
207 
208 	return 0;
209 }
210 
211 /* ARGSUSED */
212 int
213 sys___clock_settime50(struct lwp *l,
214     const struct sys___clock_settime50_args *uap, register_t *retval)
215 {
216 	/* {
217 		syscallarg(clockid_t) clock_id;
218 		syscallarg(const struct timespec *) tp;
219 	} */
220 	int error;
221 	struct timespec ats;
222 
223 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
224 		return error;
225 
226 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
227 }
228 
229 
230 int
231 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
232     bool check_kauth)
233 {
234 	int error;
235 
236 	switch (clock_id) {
237 	case CLOCK_REALTIME:
238 		if ((error = settime1(p, tp, check_kauth)) != 0)
239 			return (error);
240 		break;
241 	case CLOCK_MONOTONIC:
242 		return (EINVAL);	/* read-only clock */
243 	default:
244 		return (EINVAL);
245 	}
246 
247 	return 0;
248 }
249 
250 int
251 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
252     register_t *retval)
253 {
254 	/* {
255 		syscallarg(clockid_t) clock_id;
256 		syscallarg(struct timespec *) tp;
257 	} */
258 	struct timespec ts;
259 	int error = 0;
260 
261 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
262 		return error;
263 
264 	if (SCARG(uap, tp))
265 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
266 
267 	return error;
268 }
269 
270 int
271 clock_getres1(clockid_t clock_id, struct timespec *ts)
272 {
273 
274 	switch (clock_id) {
275 	case CLOCK_REALTIME:
276 	case CLOCK_MONOTONIC:
277 		ts->tv_sec = 0;
278 		if (tc_getfrequency() > 1000000000)
279 			ts->tv_nsec = 1;
280 		else
281 			ts->tv_nsec = 1000000000 / tc_getfrequency();
282 		break;
283 	default:
284 		return EINVAL;
285 	}
286 
287 	return 0;
288 }
289 
290 /* ARGSUSED */
291 int
292 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
293     register_t *retval)
294 {
295 	/* {
296 		syscallarg(struct timespec *) rqtp;
297 		syscallarg(struct timespec *) rmtp;
298 	} */
299 	struct timespec rmt, rqt;
300 	int error, error1;
301 
302 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
303 	if (error)
304 		return (error);
305 
306 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
307 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
308 		return error;
309 
310 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
311 	return error1 ? error1 : error;
312 }
313 
314 int
315 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
316 {
317 	struct timespec rmtstart;
318 	int error, timo;
319 
320 	if ((error = itimespecfix(rqt)) != 0)
321 		return error;
322 
323 	timo = tstohz(rqt);
324 	/*
325 	 * Avoid inadvertantly sleeping forever
326 	 */
327 	if (timo == 0)
328 		timo = 1;
329 	getnanouptime(&rmtstart);
330 again:
331 	error = kpause("nanoslp", true, timo, NULL);
332 	if (rmt != NULL || error == 0) {
333 		struct timespec rmtend;
334 		struct timespec t0;
335 		struct timespec *t;
336 
337 		getnanouptime(&rmtend);
338 		t = (rmt != NULL) ? rmt : &t0;
339 		timespecsub(&rmtend, &rmtstart, t);
340 		timespecsub(rqt, t, t);
341 		if (t->tv_sec < 0)
342 			timespecclear(t);
343 		if (error == 0) {
344 			timo = tstohz(t);
345 			if (timo > 0)
346 				goto again;
347 		}
348 	}
349 
350 	if (error == ERESTART)
351 		error = EINTR;
352 	if (error == EWOULDBLOCK)
353 		error = 0;
354 
355 	return error;
356 }
357 
358 /* ARGSUSED */
359 int
360 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
361     register_t *retval)
362 {
363 	/* {
364 		syscallarg(struct timeval *) tp;
365 		syscallarg(void *) tzp;		really "struct timezone *";
366 	} */
367 	struct timeval atv;
368 	int error = 0;
369 	struct timezone tzfake;
370 
371 	if (SCARG(uap, tp)) {
372 		microtime(&atv);
373 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
374 		if (error)
375 			return (error);
376 	}
377 	if (SCARG(uap, tzp)) {
378 		/*
379 		 * NetBSD has no kernel notion of time zone, so we just
380 		 * fake up a timezone struct and return it if demanded.
381 		 */
382 		tzfake.tz_minuteswest = 0;
383 		tzfake.tz_dsttime = 0;
384 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
385 	}
386 	return (error);
387 }
388 
389 /* ARGSUSED */
390 int
391 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
392     register_t *retval)
393 {
394 	/* {
395 		syscallarg(const struct timeval *) tv;
396 		syscallarg(const void *) tzp; really "const struct timezone *";
397 	} */
398 
399 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
400 }
401 
402 int
403 settimeofday1(const struct timeval *utv, bool userspace,
404     const void *utzp, struct lwp *l, bool check_kauth)
405 {
406 	struct timeval atv;
407 	struct timespec ts;
408 	int error;
409 
410 	/* Verify all parameters before changing time. */
411 
412 	/*
413 	 * NetBSD has no kernel notion of time zone, and only an
414 	 * obsolete program would try to set it, so we log a warning.
415 	 */
416 	if (utzp)
417 		log(LOG_WARNING, "pid %d attempted to set the "
418 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
419 
420 	if (utv == NULL)
421 		return 0;
422 
423 	if (userspace) {
424 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
425 			return error;
426 		utv = &atv;
427 	}
428 
429 	TIMEVAL_TO_TIMESPEC(utv, &ts);
430 	return settime1(l->l_proc, &ts, check_kauth);
431 }
432 
433 int	time_adjusted;			/* set if an adjustment is made */
434 
435 /* ARGSUSED */
436 int
437 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
438     register_t *retval)
439 {
440 	/* {
441 		syscallarg(const struct timeval *) delta;
442 		syscallarg(struct timeval *) olddelta;
443 	} */
444 	int error = 0;
445 	struct timeval atv, oldatv;
446 
447 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
448 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
449 		return error;
450 
451 	if (SCARG(uap, delta)) {
452 		error = copyin(SCARG(uap, delta), &atv,
453 		    sizeof(*SCARG(uap, delta)));
454 		if (error)
455 			return (error);
456 	}
457 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
458 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
459 	if (SCARG(uap, olddelta))
460 		error = copyout(&oldatv, SCARG(uap, olddelta),
461 		    sizeof(*SCARG(uap, olddelta)));
462 	return error;
463 }
464 
465 void
466 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
467 {
468 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
469 
470 	if (olddelta) {
471 		mutex_spin_enter(&timecounter_lock);
472 		olddelta->tv_sec = time_adjtime / 1000000;
473 		olddelta->tv_usec = time_adjtime % 1000000;
474 		if (olddelta->tv_usec < 0) {
475 			olddelta->tv_usec += 1000000;
476 			olddelta->tv_sec--;
477 		}
478 		mutex_spin_exit(&timecounter_lock);
479 	}
480 
481 	if (delta) {
482 		mutex_spin_enter(&timecounter_lock);
483 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
484 
485 		if (time_adjtime) {
486 			/* We need to save the system time during shutdown */
487 			time_adjusted |= 1;
488 		}
489 		mutex_spin_exit(&timecounter_lock);
490 	}
491 }
492 
493 /*
494  * Interval timer support. Both the BSD getitimer() family and the POSIX
495  * timer_*() family of routines are supported.
496  *
497  * All timers are kept in an array pointed to by p_timers, which is
498  * allocated on demand - many processes don't use timers at all. The
499  * first three elements in this array are reserved for the BSD timers:
500  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
501  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
502  * allocated by the timer_create() syscall.
503  *
504  * Realtime timers are kept in the ptimer structure as an absolute
505  * time; virtual time timers are kept as a linked list of deltas.
506  * Virtual time timers are processed in the hardclock() routine of
507  * kern_clock.c.  The real time timer is processed by a callout
508  * routine, called from the softclock() routine.  Since a callout may
509  * be delayed in real time due to interrupt processing in the system,
510  * it is possible for the real time timeout routine (realtimeexpire,
511  * given below), to be delayed in real time past when it is supposed
512  * to occur.  It does not suffice, therefore, to reload the real timer
513  * .it_value from the real time timers .it_interval.  Rather, we
514  * compute the next time in absolute time the timer should go off.  */
515 
516 /* Allocate a POSIX realtime timer. */
517 int
518 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
519     register_t *retval)
520 {
521 	/* {
522 		syscallarg(clockid_t) clock_id;
523 		syscallarg(struct sigevent *) evp;
524 		syscallarg(timer_t *) timerid;
525 	} */
526 
527 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
528 	    SCARG(uap, evp), copyin, l);
529 }
530 
531 int
532 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
533     copyin_t fetch_event, struct lwp *l)
534 {
535 	int error;
536 	timer_t timerid;
537 	struct ptimers *pts;
538 	struct ptimer *pt;
539 	struct proc *p;
540 
541 	p = l->l_proc;
542 
543 	if ((u_int)id > CLOCK_MONOTONIC)
544 		return (EINVAL);
545 
546 	if ((pts = p->p_timers) == NULL)
547 		pts = timers_alloc(p);
548 
549 	pt = pool_get(&ptimer_pool, PR_WAITOK);
550 	if (evp != NULL) {
551 		if (((error =
552 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
553 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
554 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
555 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
556 			 (pt->pt_ev.sigev_signo <= 0 ||
557 			  pt->pt_ev.sigev_signo >= NSIG))) {
558 			pool_put(&ptimer_pool, pt);
559 			return (error ? error : EINVAL);
560 		}
561 	}
562 
563 	/* Find a free timer slot, skipping those reserved for setitimer(). */
564 	mutex_spin_enter(&timer_lock);
565 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
566 		if (pts->pts_timers[timerid] == NULL)
567 			break;
568 	if (timerid == TIMER_MAX) {
569 		mutex_spin_exit(&timer_lock);
570 		pool_put(&ptimer_pool, pt);
571 		return EAGAIN;
572 	}
573 	if (evp == NULL) {
574 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
575 		switch (id) {
576 		case CLOCK_REALTIME:
577 		case CLOCK_MONOTONIC:
578 			pt->pt_ev.sigev_signo = SIGALRM;
579 			break;
580 		case CLOCK_VIRTUAL:
581 			pt->pt_ev.sigev_signo = SIGVTALRM;
582 			break;
583 		case CLOCK_PROF:
584 			pt->pt_ev.sigev_signo = SIGPROF;
585 			break;
586 		}
587 		pt->pt_ev.sigev_value.sival_int = timerid;
588 	}
589 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
590 	pt->pt_info.ksi_errno = 0;
591 	pt->pt_info.ksi_code = 0;
592 	pt->pt_info.ksi_pid = p->p_pid;
593 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
594 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
595 	pt->pt_type = id;
596 	pt->pt_proc = p;
597 	pt->pt_overruns = 0;
598 	pt->pt_poverruns = 0;
599 	pt->pt_entry = timerid;
600 	pt->pt_queued = false;
601 	timespecclear(&pt->pt_time.it_value);
602 	if (!CLOCK_VIRTUAL_P(id))
603 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
604 	else
605 		pt->pt_active = 0;
606 
607 	pts->pts_timers[timerid] = pt;
608 	mutex_spin_exit(&timer_lock);
609 
610 	return copyout(&timerid, tid, sizeof(timerid));
611 }
612 
613 /* Delete a POSIX realtime timer */
614 int
615 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
616     register_t *retval)
617 {
618 	/* {
619 		syscallarg(timer_t) timerid;
620 	} */
621 	struct proc *p = l->l_proc;
622 	timer_t timerid;
623 	struct ptimers *pts;
624 	struct ptimer *pt, *ptn;
625 
626 	timerid = SCARG(uap, timerid);
627 	pts = p->p_timers;
628 
629 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
630 		return (EINVAL);
631 
632 	mutex_spin_enter(&timer_lock);
633 	if ((pt = pts->pts_timers[timerid]) == NULL) {
634 		mutex_spin_exit(&timer_lock);
635 		return (EINVAL);
636 	}
637 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
638 		if (pt->pt_active) {
639 			ptn = LIST_NEXT(pt, pt_list);
640 			LIST_REMOVE(pt, pt_list);
641 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
642 				timespecadd(&pt->pt_time.it_value,
643 				    &ptn->pt_time.it_value,
644 				    &ptn->pt_time.it_value);
645 			pt->pt_active = 0;
646 		}
647 	}
648 	itimerfree(pts, timerid);
649 
650 	return (0);
651 }
652 
653 /*
654  * Set up the given timer. The value in pt->pt_time.it_value is taken
655  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
656  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
657  */
658 void
659 timer_settime(struct ptimer *pt)
660 {
661 	struct ptimer *ptn, *pptn;
662 	struct ptlist *ptl;
663 
664 	KASSERT(mutex_owned(&timer_lock));
665 
666 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
667 		callout_halt(&pt->pt_ch, &timer_lock);
668 		if (timespecisset(&pt->pt_time.it_value)) {
669 			/*
670 			 * Don't need to check tshzto() return value, here.
671 			 * callout_reset() does it for us.
672 			 */
673 			callout_reset(&pt->pt_ch,
674 			    pt->pt_type == CLOCK_MONOTONIC ?
675 			    tshztoup(&pt->pt_time.it_value) :
676 			    tshzto(&pt->pt_time.it_value),
677 			    realtimerexpire, pt);
678 		}
679 	} else {
680 		if (pt->pt_active) {
681 			ptn = LIST_NEXT(pt, pt_list);
682 			LIST_REMOVE(pt, pt_list);
683 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
684 				timespecadd(&pt->pt_time.it_value,
685 				    &ptn->pt_time.it_value,
686 				    &ptn->pt_time.it_value);
687 		}
688 		if (timespecisset(&pt->pt_time.it_value)) {
689 			if (pt->pt_type == CLOCK_VIRTUAL)
690 				ptl = &pt->pt_proc->p_timers->pts_virtual;
691 			else
692 				ptl = &pt->pt_proc->p_timers->pts_prof;
693 
694 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
695 			     ptn && timespeccmp(&pt->pt_time.it_value,
696 				 &ptn->pt_time.it_value, >);
697 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
698 				timespecsub(&pt->pt_time.it_value,
699 				    &ptn->pt_time.it_value,
700 				    &pt->pt_time.it_value);
701 
702 			if (pptn)
703 				LIST_INSERT_AFTER(pptn, pt, pt_list);
704 			else
705 				LIST_INSERT_HEAD(ptl, pt, pt_list);
706 
707 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
708 				timespecsub(&ptn->pt_time.it_value,
709 				    &pt->pt_time.it_value,
710 				    &ptn->pt_time.it_value);
711 
712 			pt->pt_active = 1;
713 		} else
714 			pt->pt_active = 0;
715 	}
716 }
717 
718 void
719 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
720 {
721 	struct timespec now;
722 	struct ptimer *ptn;
723 
724 	KASSERT(mutex_owned(&timer_lock));
725 
726 	*aits = pt->pt_time;
727 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
728 		/*
729 		 * Convert from absolute to relative time in .it_value
730 		 * part of real time timer.  If time for real time
731 		 * timer has passed return 0, else return difference
732 		 * between current time and time for the timer to go
733 		 * off.
734 		 */
735 		if (timespecisset(&aits->it_value)) {
736 			if (pt->pt_type == CLOCK_REALTIME) {
737 				getnanotime(&now);
738 			} else { /* CLOCK_MONOTONIC */
739 				getnanouptime(&now);
740 			}
741 			if (timespeccmp(&aits->it_value, &now, <))
742 				timespecclear(&aits->it_value);
743 			else
744 				timespecsub(&aits->it_value, &now,
745 				    &aits->it_value);
746 		}
747 	} else if (pt->pt_active) {
748 		if (pt->pt_type == CLOCK_VIRTUAL)
749 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
750 		else
751 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
752 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
753 			timespecadd(&aits->it_value,
754 			    &ptn->pt_time.it_value, &aits->it_value);
755 		KASSERT(ptn != NULL); /* pt should be findable on the list */
756 	} else
757 		timespecclear(&aits->it_value);
758 }
759 
760 
761 
762 /* Set and arm a POSIX realtime timer */
763 int
764 sys___timer_settime50(struct lwp *l,
765     const struct sys___timer_settime50_args *uap,
766     register_t *retval)
767 {
768 	/* {
769 		syscallarg(timer_t) timerid;
770 		syscallarg(int) flags;
771 		syscallarg(const struct itimerspec *) value;
772 		syscallarg(struct itimerspec *) ovalue;
773 	} */
774 	int error;
775 	struct itimerspec value, ovalue, *ovp = NULL;
776 
777 	if ((error = copyin(SCARG(uap, value), &value,
778 	    sizeof(struct itimerspec))) != 0)
779 		return (error);
780 
781 	if (SCARG(uap, ovalue))
782 		ovp = &ovalue;
783 
784 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
785 	    SCARG(uap, flags), l->l_proc)) != 0)
786 		return error;
787 
788 	if (ovp)
789 		return copyout(&ovalue, SCARG(uap, ovalue),
790 		    sizeof(struct itimerspec));
791 	return 0;
792 }
793 
794 int
795 dotimer_settime(int timerid, struct itimerspec *value,
796     struct itimerspec *ovalue, int flags, struct proc *p)
797 {
798 	struct timespec now;
799 	struct itimerspec val, oval;
800 	struct ptimers *pts;
801 	struct ptimer *pt;
802 	int error;
803 
804 	pts = p->p_timers;
805 
806 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
807 		return EINVAL;
808 	val = *value;
809 	if ((error = itimespecfix(&val.it_value)) != 0 ||
810 	    (error = itimespecfix(&val.it_interval)) != 0)
811 		return error;
812 
813 	mutex_spin_enter(&timer_lock);
814 	if ((pt = pts->pts_timers[timerid]) == NULL) {
815 		mutex_spin_exit(&timer_lock);
816 		return EINVAL;
817 	}
818 
819 	oval = pt->pt_time;
820 	pt->pt_time = val;
821 
822 	/*
823 	 * If we've been passed a relative time for a realtime timer,
824 	 * convert it to absolute; if an absolute time for a virtual
825 	 * timer, convert it to relative and make sure we don't set it
826 	 * to zero, which would cancel the timer, or let it go
827 	 * negative, which would confuse the comparison tests.
828 	 */
829 	if (timespecisset(&pt->pt_time.it_value)) {
830 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
831 			if ((flags & TIMER_ABSTIME) == 0) {
832 				if (pt->pt_type == CLOCK_REALTIME) {
833 					getnanotime(&now);
834 				} else { /* CLOCK_MONOTONIC */
835 					getnanouptime(&now);
836 				}
837 				timespecadd(&pt->pt_time.it_value, &now,
838 				    &pt->pt_time.it_value);
839 			}
840 		} else {
841 			if ((flags & TIMER_ABSTIME) != 0) {
842 				getnanotime(&now);
843 				timespecsub(&pt->pt_time.it_value, &now,
844 				    &pt->pt_time.it_value);
845 				if (!timespecisset(&pt->pt_time.it_value) ||
846 				    pt->pt_time.it_value.tv_sec < 0) {
847 					pt->pt_time.it_value.tv_sec = 0;
848 					pt->pt_time.it_value.tv_nsec = 1;
849 				}
850 			}
851 		}
852 	}
853 
854 	timer_settime(pt);
855 	mutex_spin_exit(&timer_lock);
856 
857 	if (ovalue)
858 		*ovalue = oval;
859 
860 	return (0);
861 }
862 
863 /* Return the time remaining until a POSIX timer fires. */
864 int
865 sys___timer_gettime50(struct lwp *l,
866     const struct sys___timer_gettime50_args *uap, register_t *retval)
867 {
868 	/* {
869 		syscallarg(timer_t) timerid;
870 		syscallarg(struct itimerspec *) value;
871 	} */
872 	struct itimerspec its;
873 	int error;
874 
875 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
876 	    &its)) != 0)
877 		return error;
878 
879 	return copyout(&its, SCARG(uap, value), sizeof(its));
880 }
881 
882 int
883 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
884 {
885 	struct ptimer *pt;
886 	struct ptimers *pts;
887 
888 	pts = p->p_timers;
889 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
890 		return (EINVAL);
891 	mutex_spin_enter(&timer_lock);
892 	if ((pt = pts->pts_timers[timerid]) == NULL) {
893 		mutex_spin_exit(&timer_lock);
894 		return (EINVAL);
895 	}
896 	timer_gettime(pt, its);
897 	mutex_spin_exit(&timer_lock);
898 
899 	return 0;
900 }
901 
902 /*
903  * Return the count of the number of times a periodic timer expired
904  * while a notification was already pending. The counter is reset when
905  * a timer expires and a notification can be posted.
906  */
907 int
908 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
909     register_t *retval)
910 {
911 	/* {
912 		syscallarg(timer_t) timerid;
913 	} */
914 	struct proc *p = l->l_proc;
915 	struct ptimers *pts;
916 	int timerid;
917 	struct ptimer *pt;
918 
919 	timerid = SCARG(uap, timerid);
920 
921 	pts = p->p_timers;
922 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
923 		return (EINVAL);
924 	mutex_spin_enter(&timer_lock);
925 	if ((pt = pts->pts_timers[timerid]) == NULL) {
926 		mutex_spin_exit(&timer_lock);
927 		return (EINVAL);
928 	}
929 	*retval = pt->pt_poverruns;
930 	mutex_spin_exit(&timer_lock);
931 
932 	return (0);
933 }
934 
935 /*
936  * Real interval timer expired:
937  * send process whose timer expired an alarm signal.
938  * If time is not set up to reload, then just return.
939  * Else compute next time timer should go off which is > current time.
940  * This is where delay in processing this timeout causes multiple
941  * SIGALRM calls to be compressed into one.
942  */
943 void
944 realtimerexpire(void *arg)
945 {
946 	uint64_t last_val, next_val, interval, now_ns;
947 	struct timespec now, next;
948 	struct ptimer *pt;
949 	int backwards;
950 
951 	pt = arg;
952 
953 	mutex_spin_enter(&timer_lock);
954 	itimerfire(pt);
955 
956 	if (!timespecisset(&pt->pt_time.it_interval)) {
957 		timespecclear(&pt->pt_time.it_value);
958 		mutex_spin_exit(&timer_lock);
959 		return;
960 	}
961 
962 	if (pt->pt_type == CLOCK_MONOTONIC) {
963 		getnanouptime(&now);
964 	} else {
965 		getnanotime(&now);
966 	}
967 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
968 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
969 	/* Handle the easy case of non-overflown timers first. */
970 	if (!backwards && timespeccmp(&next, &now, >)) {
971 		pt->pt_time.it_value = next;
972 	} else {
973 		now_ns = timespec2ns(&now);
974 		last_val = timespec2ns(&pt->pt_time.it_value);
975 		interval = timespec2ns(&pt->pt_time.it_interval);
976 
977 		next_val = now_ns +
978 		    (now_ns - last_val + interval - 1) % interval;
979 
980 		if (backwards)
981 			next_val += interval;
982 		else
983 			pt->pt_overruns += (now_ns - last_val) / interval;
984 
985 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
986 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
987 	}
988 
989 	/*
990 	 * Don't need to check tshzto() return value, here.
991 	 * callout_reset() does it for us.
992 	 */
993 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
994 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
995 	    realtimerexpire, pt);
996 	mutex_spin_exit(&timer_lock);
997 }
998 
999 /* BSD routine to get the value of an interval timer. */
1000 /* ARGSUSED */
1001 int
1002 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1003     register_t *retval)
1004 {
1005 	/* {
1006 		syscallarg(int) which;
1007 		syscallarg(struct itimerval *) itv;
1008 	} */
1009 	struct proc *p = l->l_proc;
1010 	struct itimerval aitv;
1011 	int error;
1012 
1013 	error = dogetitimer(p, SCARG(uap, which), &aitv);
1014 	if (error)
1015 		return error;
1016 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1017 }
1018 
1019 int
1020 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1021 {
1022 	struct ptimers *pts;
1023 	struct ptimer *pt;
1024 	struct itimerspec its;
1025 
1026 	if ((u_int)which > ITIMER_MONOTONIC)
1027 		return (EINVAL);
1028 
1029 	mutex_spin_enter(&timer_lock);
1030 	pts = p->p_timers;
1031 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1032 		timerclear(&itvp->it_value);
1033 		timerclear(&itvp->it_interval);
1034 	} else {
1035 		timer_gettime(pt, &its);
1036 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1037 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1038 	}
1039 	mutex_spin_exit(&timer_lock);
1040 
1041 	return 0;
1042 }
1043 
1044 /* BSD routine to set/arm an interval timer. */
1045 /* ARGSUSED */
1046 int
1047 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1048     register_t *retval)
1049 {
1050 	/* {
1051 		syscallarg(int) which;
1052 		syscallarg(const struct itimerval *) itv;
1053 		syscallarg(struct itimerval *) oitv;
1054 	} */
1055 	struct proc *p = l->l_proc;
1056 	int which = SCARG(uap, which);
1057 	struct sys___getitimer50_args getargs;
1058 	const struct itimerval *itvp;
1059 	struct itimerval aitv;
1060 	int error;
1061 
1062 	if ((u_int)which > ITIMER_MONOTONIC)
1063 		return (EINVAL);
1064 	itvp = SCARG(uap, itv);
1065 	if (itvp &&
1066 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1067 		return (error);
1068 	if (SCARG(uap, oitv) != NULL) {
1069 		SCARG(&getargs, which) = which;
1070 		SCARG(&getargs, itv) = SCARG(uap, oitv);
1071 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1072 			return (error);
1073 	}
1074 	if (itvp == 0)
1075 		return (0);
1076 
1077 	return dosetitimer(p, which, &aitv);
1078 }
1079 
1080 int
1081 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1082 {
1083 	struct timespec now;
1084 	struct ptimers *pts;
1085 	struct ptimer *pt, *spare;
1086 
1087 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
1088 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1089 		return (EINVAL);
1090 
1091 	/*
1092 	 * Don't bother allocating data structures if the process just
1093 	 * wants to clear the timer.
1094 	 */
1095 	spare = NULL;
1096 	pts = p->p_timers;
1097  retry:
1098 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1099 	    pts->pts_timers[which] == NULL))
1100 		return (0);
1101 	if (pts == NULL)
1102 		pts = timers_alloc(p);
1103 	mutex_spin_enter(&timer_lock);
1104 	pt = pts->pts_timers[which];
1105 	if (pt == NULL) {
1106 		if (spare == NULL) {
1107 			mutex_spin_exit(&timer_lock);
1108 			spare = pool_get(&ptimer_pool, PR_WAITOK);
1109 			goto retry;
1110 		}
1111 		pt = spare;
1112 		spare = NULL;
1113 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1114 		pt->pt_ev.sigev_value.sival_int = which;
1115 		pt->pt_overruns = 0;
1116 		pt->pt_proc = p;
1117 		pt->pt_type = which;
1118 		pt->pt_entry = which;
1119 		pt->pt_queued = false;
1120 		if (pt->pt_type == CLOCK_REALTIME)
1121 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1122 		else
1123 			pt->pt_active = 0;
1124 
1125 		switch (which) {
1126 		case ITIMER_REAL:
1127 		case ITIMER_MONOTONIC:
1128 			pt->pt_ev.sigev_signo = SIGALRM;
1129 			break;
1130 		case ITIMER_VIRTUAL:
1131 			pt->pt_ev.sigev_signo = SIGVTALRM;
1132 			break;
1133 		case ITIMER_PROF:
1134 			pt->pt_ev.sigev_signo = SIGPROF;
1135 			break;
1136 		}
1137 		pts->pts_timers[which] = pt;
1138 	}
1139 
1140 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1141 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1142 
1143 	if (timespecisset(&pt->pt_time.it_value)) {
1144 		/* Convert to absolute time */
1145 		/* XXX need to wrap in splclock for timecounters case? */
1146 		switch (which) {
1147 		case ITIMER_REAL:
1148 			getnanotime(&now);
1149 			timespecadd(&pt->pt_time.it_value, &now,
1150 			    &pt->pt_time.it_value);
1151 			break;
1152 		case ITIMER_MONOTONIC:
1153 			getnanouptime(&now);
1154 			timespecadd(&pt->pt_time.it_value, &now,
1155 			    &pt->pt_time.it_value);
1156 			break;
1157 		default:
1158 			break;
1159 		}
1160 	}
1161 	timer_settime(pt);
1162 	mutex_spin_exit(&timer_lock);
1163 	if (spare != NULL)
1164 		pool_put(&ptimer_pool, spare);
1165 
1166 	return (0);
1167 }
1168 
1169 /* Utility routines to manage the array of pointers to timers. */
1170 struct ptimers *
1171 timers_alloc(struct proc *p)
1172 {
1173 	struct ptimers *pts;
1174 	int i;
1175 
1176 	pts = pool_get(&ptimers_pool, PR_WAITOK);
1177 	LIST_INIT(&pts->pts_virtual);
1178 	LIST_INIT(&pts->pts_prof);
1179 	for (i = 0; i < TIMER_MAX; i++)
1180 		pts->pts_timers[i] = NULL;
1181 	pts->pts_fired = 0;
1182 	mutex_spin_enter(&timer_lock);
1183 	if (p->p_timers == NULL) {
1184 		p->p_timers = pts;
1185 		mutex_spin_exit(&timer_lock);
1186 		return pts;
1187 	}
1188 	mutex_spin_exit(&timer_lock);
1189 	pool_put(&ptimers_pool, pts);
1190 	return p->p_timers;
1191 }
1192 
1193 /*
1194  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1195  * then clean up all timers and free all the data structures. If
1196  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1197  * by timer_create(), not the BSD setitimer() timers, and only free the
1198  * structure if none of those remain.
1199  */
1200 void
1201 timers_free(struct proc *p, int which)
1202 {
1203 	struct ptimers *pts;
1204 	struct ptimer *ptn;
1205 	struct timespec ts;
1206 	int i;
1207 
1208 	if (p->p_timers == NULL)
1209 		return;
1210 
1211 	pts = p->p_timers;
1212 	mutex_spin_enter(&timer_lock);
1213 	if (which == TIMERS_ALL) {
1214 		p->p_timers = NULL;
1215 		i = 0;
1216 	} else {
1217 		timespecclear(&ts);
1218 		for (ptn = LIST_FIRST(&pts->pts_virtual);
1219 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1220 		     ptn = LIST_NEXT(ptn, pt_list)) {
1221 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1222 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1223 		}
1224 		LIST_FIRST(&pts->pts_virtual) = NULL;
1225 		if (ptn) {
1226 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1227 			timespecadd(&ts, &ptn->pt_time.it_value,
1228 			    &ptn->pt_time.it_value);
1229 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1230 		}
1231 		timespecclear(&ts);
1232 		for (ptn = LIST_FIRST(&pts->pts_prof);
1233 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1234 		     ptn = LIST_NEXT(ptn, pt_list)) {
1235 			KASSERT(ptn->pt_type == CLOCK_PROF);
1236 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1237 		}
1238 		LIST_FIRST(&pts->pts_prof) = NULL;
1239 		if (ptn) {
1240 			KASSERT(ptn->pt_type == CLOCK_PROF);
1241 			timespecadd(&ts, &ptn->pt_time.it_value,
1242 			    &ptn->pt_time.it_value);
1243 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1244 		}
1245 		i = 3;
1246 	}
1247 	for ( ; i < TIMER_MAX; i++) {
1248 		if (pts->pts_timers[i] != NULL) {
1249 			itimerfree(pts, i);
1250 			mutex_spin_enter(&timer_lock);
1251 		}
1252 	}
1253 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1254 	    pts->pts_timers[2] == NULL) {
1255 		p->p_timers = NULL;
1256 		mutex_spin_exit(&timer_lock);
1257 		pool_put(&ptimers_pool, pts);
1258 	} else
1259 		mutex_spin_exit(&timer_lock);
1260 }
1261 
1262 static void
1263 itimerfree(struct ptimers *pts, int index)
1264 {
1265 	struct ptimer *pt;
1266 
1267 	KASSERT(mutex_owned(&timer_lock));
1268 
1269 	pt = pts->pts_timers[index];
1270 	pts->pts_timers[index] = NULL;
1271 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1272 		callout_halt(&pt->pt_ch, &timer_lock);
1273 	if (pt->pt_queued)
1274 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1275 	mutex_spin_exit(&timer_lock);
1276 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1277 		callout_destroy(&pt->pt_ch);
1278 	pool_put(&ptimer_pool, pt);
1279 }
1280 
1281 /*
1282  * Decrement an interval timer by a specified number
1283  * of nanoseconds, which must be less than a second,
1284  * i.e. < 1000000000.  If the timer expires, then reload
1285  * it.  In this case, carry over (nsec - old value) to
1286  * reduce the value reloaded into the timer so that
1287  * the timer does not drift.  This routine assumes
1288  * that it is called in a context where the timers
1289  * on which it is operating cannot change in value.
1290  */
1291 static int
1292 itimerdecr(struct ptimer *pt, int nsec)
1293 {
1294 	struct itimerspec *itp;
1295 
1296 	KASSERT(mutex_owned(&timer_lock));
1297 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1298 
1299 	itp = &pt->pt_time;
1300 	if (itp->it_value.tv_nsec < nsec) {
1301 		if (itp->it_value.tv_sec == 0) {
1302 			/* expired, and already in next interval */
1303 			nsec -= itp->it_value.tv_nsec;
1304 			goto expire;
1305 		}
1306 		itp->it_value.tv_nsec += 1000000000;
1307 		itp->it_value.tv_sec--;
1308 	}
1309 	itp->it_value.tv_nsec -= nsec;
1310 	nsec = 0;
1311 	if (timespecisset(&itp->it_value))
1312 		return (1);
1313 	/* expired, exactly at end of interval */
1314 expire:
1315 	if (timespecisset(&itp->it_interval)) {
1316 		itp->it_value = itp->it_interval;
1317 		itp->it_value.tv_nsec -= nsec;
1318 		if (itp->it_value.tv_nsec < 0) {
1319 			itp->it_value.tv_nsec += 1000000000;
1320 			itp->it_value.tv_sec--;
1321 		}
1322 		timer_settime(pt);
1323 	} else
1324 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
1325 	return (0);
1326 }
1327 
1328 static void
1329 itimerfire(struct ptimer *pt)
1330 {
1331 
1332 	KASSERT(mutex_owned(&timer_lock));
1333 
1334 	/*
1335 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1336 	 * XXX Relying on the clock interrupt is stupid.
1337 	 */
1338 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1339 		return;
1340 	}
1341 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1342 	pt->pt_queued = true;
1343 	softint_schedule(timer_sih);
1344 }
1345 
1346 void
1347 timer_tick(lwp_t *l, bool user)
1348 {
1349 	struct ptimers *pts;
1350 	struct ptimer *pt;
1351 	proc_t *p;
1352 
1353 	p = l->l_proc;
1354 	if (p->p_timers == NULL)
1355 		return;
1356 
1357 	mutex_spin_enter(&timer_lock);
1358 	if ((pts = l->l_proc->p_timers) != NULL) {
1359 		/*
1360 		 * Run current process's virtual and profile time, as needed.
1361 		 */
1362 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1363 			if (itimerdecr(pt, tick * 1000) == 0)
1364 				itimerfire(pt);
1365 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1366 			if (itimerdecr(pt, tick * 1000) == 0)
1367 				itimerfire(pt);
1368 	}
1369 	mutex_spin_exit(&timer_lock);
1370 }
1371 
1372 static void
1373 timer_intr(void *cookie)
1374 {
1375 	ksiginfo_t ksi;
1376 	struct ptimer *pt;
1377 	proc_t *p;
1378 
1379 	mutex_enter(proc_lock);
1380 	mutex_spin_enter(&timer_lock);
1381 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1382 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1383 		KASSERT(pt->pt_queued);
1384 		pt->pt_queued = false;
1385 
1386 		if (pt->pt_proc->p_timers == NULL) {
1387 			/* Process is dying. */
1388 			continue;
1389 		}
1390 		p = pt->pt_proc;
1391 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1392 			continue;
1393 		}
1394 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1395 			pt->pt_overruns++;
1396 			continue;
1397 		}
1398 
1399 		KSI_INIT(&ksi);
1400 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1401 		ksi.ksi_code = SI_TIMER;
1402 		ksi.ksi_value = pt->pt_ev.sigev_value;
1403 		pt->pt_poverruns = pt->pt_overruns;
1404 		pt->pt_overruns = 0;
1405 		mutex_spin_exit(&timer_lock);
1406 		kpsignal(p, &ksi, NULL);
1407 		mutex_spin_enter(&timer_lock);
1408 	}
1409 	mutex_spin_exit(&timer_lock);
1410 	mutex_exit(proc_lock);
1411 }
1412 
1413 /*
1414  * Check if the time will wrap if set to ts.
1415  *
1416  * ts - timespec describing the new time
1417  * delta - the delta between the current time and ts
1418  */
1419 bool
1420 time_wraps(struct timespec *ts, struct timespec *delta)
1421 {
1422 
1423 	/*
1424 	 * Don't allow the time to be set forward so far it
1425 	 * will wrap and become negative, thus allowing an
1426 	 * attacker to bypass the next check below.  The
1427 	 * cutoff is 1 year before rollover occurs, so even
1428 	 * if the attacker uses adjtime(2) to move the time
1429 	 * past the cutoff, it will take a very long time
1430 	 * to get to the wrap point.
1431 	 */
1432 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1433 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
1434 		return true;
1435 
1436 	return false;
1437 }
1438