xref: /netbsd-src/sys/kern/kern_time.c (revision 4472dbe5e3bd91ef2540bada7a7ca7384627ff9b)
1 /*	$NetBSD: kern_time.c,v 1.47 2000/05/31 05:02:34 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Christopher G. Demetriou.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1982, 1986, 1989, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
72  */
73 
74 #include "fs_nfs.h"
75 #include "opt_nfsserver.h"
76 
77 #include <sys/param.h>
78 #include <sys/resourcevar.h>
79 #include <sys/kernel.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/vnode.h>
83 #include <sys/signalvar.h>
84 #include <sys/syslog.h>
85 
86 #include <sys/mount.h>
87 #include <sys/syscallargs.h>
88 
89 #include <vm/vm.h>
90 #include <uvm/uvm_extern.h>
91 
92 #if defined(NFS) || defined(NFSSERVER)
93 #include <nfs/rpcv2.h>
94 #include <nfs/nfsproto.h>
95 #include <nfs/nfs_var.h>
96 #endif
97 
98 #include <machine/cpu.h>
99 
100 /*
101  * Time of day and interval timer support.
102  *
103  * These routines provide the kernel entry points to get and set
104  * the time-of-day and per-process interval timers.  Subroutines
105  * here provide support for adding and subtracting timeval structures
106  * and decrementing interval timers, optionally reloading the interval
107  * timers when they expire.
108  */
109 
110 /* This function is used by clock_settime and settimeofday */
111 int
112 settime(tv)
113 	struct timeval *tv;
114 {
115 	struct timeval delta;
116 	struct cpu_info *ci;
117 	int s;
118 
119 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
120 	s = splclock();
121 	timersub(tv, &time, &delta);
122 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
123 		return (EPERM);
124 #ifdef notyet
125 	if ((delta.tv_sec < 86400) && securelevel > 0)
126 		return (EPERM);
127 #endif
128 	time = *tv;
129 	(void) spllowersoftclock();
130 	timeradd(&boottime, &delta, &boottime);
131 	/*
132 	 * XXXSMP
133 	 * This is wrong.  We should traverse a list of all
134 	 * CPUs and add the delta to the runtime of those
135 	 * CPUs which have a process on them.
136 	 */
137 	ci = curcpu();
138 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
139 	    &ci->ci_schedstate.spc_runtime);
140 #	if defined(NFS) || defined(NFSSERVER)
141 		nqnfs_lease_updatetime(delta.tv_sec);
142 #	endif
143 	splx(s);
144 	resettodr();
145 	return (0);
146 }
147 
148 /* ARGSUSED */
149 int
150 sys_clock_gettime(p, v, retval)
151 	struct proc *p;
152 	void *v;
153 	register_t *retval;
154 {
155 	struct sys_clock_gettime_args /* {
156 		syscallarg(clockid_t) clock_id;
157 		syscallarg(struct timespec *) tp;
158 	} */ *uap = v;
159 	clockid_t clock_id;
160 	struct timeval atv;
161 	struct timespec ats;
162 
163 	clock_id = SCARG(uap, clock_id);
164 	if (clock_id != CLOCK_REALTIME)
165 		return (EINVAL);
166 
167 	microtime(&atv);
168 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
169 
170 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
171 }
172 
173 /* ARGSUSED */
174 int
175 sys_clock_settime(p, v, retval)
176 	struct proc *p;
177 	void *v;
178 	register_t *retval;
179 {
180 	struct sys_clock_settime_args /* {
181 		syscallarg(clockid_t) clock_id;
182 		syscallarg(const struct timespec *) tp;
183 	} */ *uap = v;
184 	clockid_t clock_id;
185 	struct timeval atv;
186 	struct timespec ats;
187 	int error;
188 
189 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
190 		return (error);
191 
192 	clock_id = SCARG(uap, clock_id);
193 	if (clock_id != CLOCK_REALTIME)
194 		return (EINVAL);
195 
196 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
197 		return (error);
198 
199 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
200 	if ((error = settime(&atv)))
201 		return (error);
202 
203 	return 0;
204 }
205 
206 int
207 sys_clock_getres(p, v, retval)
208 	struct proc *p;
209 	void *v;
210 	register_t *retval;
211 {
212 	struct sys_clock_getres_args /* {
213 		syscallarg(clockid_t) clock_id;
214 		syscallarg(struct timespec *) tp;
215 	} */ *uap = v;
216 	clockid_t clock_id;
217 	struct timespec ts;
218 	int error = 0;
219 
220 	clock_id = SCARG(uap, clock_id);
221 	if (clock_id != CLOCK_REALTIME)
222 		return (EINVAL);
223 
224 	if (SCARG(uap, tp)) {
225 		ts.tv_sec = 0;
226 		ts.tv_nsec = 1000000000 / hz;
227 
228 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
229 	}
230 
231 	return error;
232 }
233 
234 /* ARGSUSED */
235 int
236 sys_nanosleep(p, v, retval)
237 	struct proc *p;
238 	void *v;
239 	register_t *retval;
240 {
241 	static int nanowait;
242 	struct sys_nanosleep_args/* {
243 		syscallarg(struct timespec *) rqtp;
244 		syscallarg(struct timespec *) rmtp;
245 	} */ *uap = v;
246 	struct timespec rqt;
247 	struct timespec rmt;
248 	struct timeval atv, utv;
249 	int error, s, timo;
250 
251 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
252 		       sizeof(struct timespec));
253 	if (error)
254 		return (error);
255 
256 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
257 	if (itimerfix(&atv))
258 		return (EINVAL);
259 
260 	s = splclock();
261 	timeradd(&atv,&time,&atv);
262 	timo = hzto(&atv);
263 	/*
264 	 * Avoid inadvertantly sleeping forever
265 	 */
266 	if (timo == 0)
267 		timo = 1;
268 	splx(s);
269 
270 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
271 	if (error == ERESTART)
272 		error = EINTR;
273 	if (error == EWOULDBLOCK)
274 		error = 0;
275 
276 	if (SCARG(uap, rmtp)) {
277 		int error;
278 
279 		s = splclock();
280 		utv = time;
281 		splx(s);
282 
283 		timersub(&atv, &utv, &utv);
284 		if (utv.tv_sec < 0)
285 			timerclear(&utv);
286 
287 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
288 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
289 			sizeof(rmt));
290 		if (error)
291 			return (error);
292 	}
293 
294 	return error;
295 }
296 
297 /* ARGSUSED */
298 int
299 sys_gettimeofday(p, v, retval)
300 	struct proc *p;
301 	void *v;
302 	register_t *retval;
303 {
304 	struct sys_gettimeofday_args /* {
305 		syscallarg(struct timeval *) tp;
306 		syscallarg(struct timezone *) tzp;
307 	} */ *uap = v;
308 	struct timeval atv;
309 	int error = 0;
310 	struct timezone tzfake;
311 
312 	if (SCARG(uap, tp)) {
313 		microtime(&atv);
314 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
315 		if (error)
316 			return (error);
317 	}
318 	if (SCARG(uap, tzp)) {
319 		/*
320 		 * NetBSD has no kernel notion of time zone, so we just
321 		 * fake up a timezone struct and return it if demanded.
322 		 */
323 		tzfake.tz_minuteswest = 0;
324 		tzfake.tz_dsttime = 0;
325 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
326 	}
327 	return (error);
328 }
329 
330 /* ARGSUSED */
331 int
332 sys_settimeofday(p, v, retval)
333 	struct proc *p;
334 	void *v;
335 	register_t *retval;
336 {
337 	struct sys_settimeofday_args /* {
338 		syscallarg(const struct timeval *) tv;
339 		syscallarg(const struct timezone *) tzp;
340 	} */ *uap = v;
341 	struct timeval atv;
342 	struct timezone atz;
343 	int error;
344 
345 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
346 		return (error);
347 	/* Verify all parameters before changing time. */
348 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
349 	    &atv, sizeof(atv))))
350 		return (error);
351 	/* XXX since we don't use tz, probably no point in doing copyin. */
352 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
353 	    &atz, sizeof(atz))))
354 		return (error);
355 	if (SCARG(uap, tv))
356 		if ((error = settime(&atv)))
357 			return (error);
358 	/*
359 	 * NetBSD has no kernel notion of time zone, and only an
360 	 * obsolete program would try to set it, so we log a warning.
361 	 */
362 	if (SCARG(uap, tzp))
363 		log(LOG_WARNING, "pid %d attempted to set the "
364 		    "(obsolete) kernel time zone\n", p->p_pid);
365 	return (0);
366 }
367 
368 int	tickdelta;			/* current clock skew, us. per tick */
369 long	timedelta;			/* unapplied time correction, us. */
370 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
371 
372 /* ARGSUSED */
373 int
374 sys_adjtime(p, v, retval)
375 	struct proc *p;
376 	void *v;
377 	register_t *retval;
378 {
379 	struct sys_adjtime_args /* {
380 		syscallarg(const struct timeval *) delta;
381 		syscallarg(struct timeval *) olddelta;
382 	} */ *uap = v;
383 	struct timeval atv;
384 	long ndelta, ntickdelta, odelta;
385 	int s, error;
386 
387 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
388 		return (error);
389 
390 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
391 	if (error)
392 		return (error);
393 	if (SCARG(uap, olddelta) != NULL &&
394 	    uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
395 	     B_WRITE) == FALSE)
396 		return (EFAULT);
397 
398 	/*
399 	 * Compute the total correction and the rate at which to apply it.
400 	 * Round the adjustment down to a whole multiple of the per-tick
401 	 * delta, so that after some number of incremental changes in
402 	 * hardclock(), tickdelta will become zero, lest the correction
403 	 * overshoot and start taking us away from the desired final time.
404 	 */
405 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
406 	if (ndelta > bigadj || ndelta < -bigadj)
407 		ntickdelta = 10 * tickadj;
408 	else
409 		ntickdelta = tickadj;
410 	if (ndelta % ntickdelta)
411 		ndelta = ndelta / ntickdelta * ntickdelta;
412 
413 	/*
414 	 * To make hardclock()'s job easier, make the per-tick delta negative
415 	 * if we want time to run slower; then hardclock can simply compute
416 	 * tick + tickdelta, and subtract tickdelta from timedelta.
417 	 */
418 	if (ndelta < 0)
419 		ntickdelta = -ntickdelta;
420 	s = splclock();
421 	odelta = timedelta;
422 	timedelta = ndelta;
423 	tickdelta = ntickdelta;
424 	splx(s);
425 
426 	if (SCARG(uap, olddelta)) {
427 		atv.tv_sec = odelta / 1000000;
428 		atv.tv_usec = odelta % 1000000;
429 		(void) copyout(&atv, SCARG(uap, olddelta),
430 		    sizeof(struct timeval));
431 	}
432 	return (0);
433 }
434 
435 /*
436  * Get value of an interval timer.  The process virtual and
437  * profiling virtual time timers are kept in the p_stats area, since
438  * they can be swapped out.  These are kept internally in the
439  * way they are specified externally: in time until they expire.
440  *
441  * The real time interval timer is kept in the process table slot
442  * for the process, and its value (it_value) is kept as an
443  * absolute time rather than as a delta, so that it is easy to keep
444  * periodic real-time signals from drifting.
445  *
446  * Virtual time timers are processed in the hardclock() routine of
447  * kern_clock.c.  The real time timer is processed by a timeout
448  * routine, called from the softclock() routine.  Since a callout
449  * may be delayed in real time due to interrupt processing in the system,
450  * it is possible for the real time timeout routine (realitexpire, given below),
451  * to be delayed in real time past when it is supposed to occur.  It
452  * does not suffice, therefore, to reload the real timer .it_value from the
453  * real time timers .it_interval.  Rather, we compute the next time in
454  * absolute time the timer should go off.
455  */
456 /* ARGSUSED */
457 int
458 sys_getitimer(p, v, retval)
459 	struct proc *p;
460 	void *v;
461 	register_t *retval;
462 {
463 	struct sys_getitimer_args /* {
464 		syscallarg(int) which;
465 		syscallarg(struct itimerval *) itv;
466 	} */ *uap = v;
467 	int which = SCARG(uap, which);
468 	struct itimerval aitv;
469 	int s;
470 
471 	if ((u_int)which > ITIMER_PROF)
472 		return (EINVAL);
473 	s = splclock();
474 	if (which == ITIMER_REAL) {
475 		/*
476 		 * Convert from absolute to relative time in .it_value
477 		 * part of real time timer.  If time for real time timer
478 		 * has passed return 0, else return difference between
479 		 * current time and time for the timer to go off.
480 		 */
481 		aitv = p->p_realtimer;
482 		if (timerisset(&aitv.it_value)) {
483 			if (timercmp(&aitv.it_value, &time, <))
484 				timerclear(&aitv.it_value);
485 			else
486 				timersub(&aitv.it_value, &time, &aitv.it_value);
487 		}
488 	} else
489 		aitv = p->p_stats->p_timer[which];
490 	splx(s);
491 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
492 }
493 
494 /* ARGSUSED */
495 int
496 sys_setitimer(p, v, retval)
497 	struct proc *p;
498 	void *v;
499 	register_t *retval;
500 {
501 	struct sys_setitimer_args /* {
502 		syscallarg(int) which;
503 		syscallarg(const struct itimerval *) itv;
504 		syscallarg(struct itimerval *) oitv;
505 	} */ *uap = v;
506 	int which = SCARG(uap, which);
507 	struct sys_getitimer_args getargs;
508 	struct itimerval aitv;
509 	const struct itimerval *itvp;
510 	int s, error;
511 
512 	if ((u_int)which > ITIMER_PROF)
513 		return (EINVAL);
514 	itvp = SCARG(uap, itv);
515 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
516 		return (error);
517 	if (SCARG(uap, oitv) != NULL) {
518 		SCARG(&getargs, which) = which;
519 		SCARG(&getargs, itv) = SCARG(uap, oitv);
520 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
521 			return (error);
522 	}
523 	if (itvp == 0)
524 		return (0);
525 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
526 		return (EINVAL);
527 	s = splclock();
528 	if (which == ITIMER_REAL) {
529 		callout_stop(&p->p_realit_ch);
530 		if (timerisset(&aitv.it_value)) {
531 			timeradd(&aitv.it_value, &time, &aitv.it_value);
532 			callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
533 			    realitexpire, p);
534 		}
535 		p->p_realtimer = aitv;
536 	} else
537 		p->p_stats->p_timer[which] = aitv;
538 	splx(s);
539 	return (0);
540 }
541 
542 /*
543  * Real interval timer expired:
544  * send process whose timer expired an alarm signal.
545  * If time is not set up to reload, then just return.
546  * Else compute next time timer should go off which is > current time.
547  * This is where delay in processing this timeout causes multiple
548  * SIGALRM calls to be compressed into one.
549  */
550 void
551 realitexpire(arg)
552 	void *arg;
553 {
554 	struct proc *p;
555 	int s;
556 
557 	p = (struct proc *)arg;
558 	psignal(p, SIGALRM);
559 	if (!timerisset(&p->p_realtimer.it_interval)) {
560 		timerclear(&p->p_realtimer.it_value);
561 		return;
562 	}
563 	for (;;) {
564 		s = splclock();
565 		timeradd(&p->p_realtimer.it_value,
566 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
567 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
568 			callout_reset(&p->p_realit_ch,
569 			    hzto(&p->p_realtimer.it_value), realitexpire, p);
570 			splx(s);
571 			return;
572 		}
573 		splx(s);
574 	}
575 }
576 
577 /*
578  * Check that a proposed value to load into the .it_value or
579  * .it_interval part of an interval timer is acceptable, and
580  * fix it to have at least minimal value (i.e. if it is less
581  * than the resolution of the clock, round it up.)
582  */
583 int
584 itimerfix(tv)
585 	struct timeval *tv;
586 {
587 
588 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
589 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
590 		return (EINVAL);
591 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
592 		tv->tv_usec = tick;
593 	return (0);
594 }
595 
596 /*
597  * Decrement an interval timer by a specified number
598  * of microseconds, which must be less than a second,
599  * i.e. < 1000000.  If the timer expires, then reload
600  * it.  In this case, carry over (usec - old value) to
601  * reduce the value reloaded into the timer so that
602  * the timer does not drift.  This routine assumes
603  * that it is called in a context where the timers
604  * on which it is operating cannot change in value.
605  */
606 int
607 itimerdecr(itp, usec)
608 	struct itimerval *itp;
609 	int usec;
610 {
611 
612 	if (itp->it_value.tv_usec < usec) {
613 		if (itp->it_value.tv_sec == 0) {
614 			/* expired, and already in next interval */
615 			usec -= itp->it_value.tv_usec;
616 			goto expire;
617 		}
618 		itp->it_value.tv_usec += 1000000;
619 		itp->it_value.tv_sec--;
620 	}
621 	itp->it_value.tv_usec -= usec;
622 	usec = 0;
623 	if (timerisset(&itp->it_value))
624 		return (1);
625 	/* expired, exactly at end of interval */
626 expire:
627 	if (timerisset(&itp->it_interval)) {
628 		itp->it_value = itp->it_interval;
629 		itp->it_value.tv_usec -= usec;
630 		if (itp->it_value.tv_usec < 0) {
631 			itp->it_value.tv_usec += 1000000;
632 			itp->it_value.tv_sec--;
633 		}
634 	} else
635 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
636 	return (0);
637 }
638 
639 /*
640  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
641  * for usage and rationale.
642  */
643 int
644 ratecheck(lasttime, mininterval)
645 	struct timeval *lasttime;
646 	const struct timeval *mininterval;
647 {
648 	struct timeval delta;
649 	int s, rv = 0;
650 
651 	s = splclock();
652 	timersub(&mono_time, lasttime, &delta);
653 
654 	/*
655 	 * check for 0,0 is so that the message will be seen at least once,
656 	 * even if interval is huge.
657 	 */
658 	if (timercmp(&delta, mininterval, >=) ||
659 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
660 		*lasttime = mono_time;
661 		rv = 1;
662 	}
663 	splx(s);
664 
665 	return (rv);
666 }
667