xref: /netbsd-src/sys/kern/kern_time.c (revision 404ee5b9334f618040b6cdef96a0ff35a6fc4636)
1 /*	$NetBSD: kern_time.c,v 1.201 2019/10/05 12:57:40 kamil Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Christopher G. Demetriou, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
61  */
62 
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.201 2019/10/05 12:57:40 kamil Exp $");
65 
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80 
81 static void	timer_intr(void *);
82 static void	itimerfire(struct ptimer *);
83 static void	itimerfree(struct ptimers *, int);
84 
85 kmutex_t	timer_lock;
86 
87 static void	*timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89 
90 struct pool ptimer_pool, ptimers_pool;
91 
92 #define	CLOCK_VIRTUAL_P(clockid)	\
93 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94 
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99 
100 #define	DELAYTIMER_MAX	32
101 
102 /*
103  * Initialize timekeeping.
104  */
105 void
106 time_init(void)
107 {
108 
109 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110 	    &pool_allocator_nointr, IPL_NONE);
111 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112 	    &pool_allocator_nointr, IPL_NONE);
113 }
114 
115 void
116 time_init2(void)
117 {
118 
119 	TAILQ_INIT(&timer_queue);
120 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 	    timer_intr, NULL);
123 }
124 
125 /* Time of day and interval timer support.
126  *
127  * These routines provide the kernel entry points to get and set
128  * the time-of-day and per-process interval timers.  Subroutines
129  * here provide support for adding and subtracting timeval structures
130  * and decrementing interval timers, optionally reloading the interval
131  * timers when they expire.
132  */
133 
134 /* This function is used by clock_settime and settimeofday */
135 static int
136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137 {
138 	struct timespec delta, now;
139 	int s;
140 
141 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
142 	s = splclock();
143 	nanotime(&now);
144 	timespecsub(ts, &now, &delta);
145 
146 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
147 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
148 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
149 		splx(s);
150 		return (EPERM);
151 	}
152 
153 #ifdef notyet
154 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
155 		splx(s);
156 		return (EPERM);
157 	}
158 #endif
159 
160 	tc_setclock(ts);
161 
162 	timespecadd(&boottime, &delta, &boottime);
163 
164 	resettodr();
165 	splx(s);
166 
167 	return (0);
168 }
169 
170 int
171 settime(struct proc *p, struct timespec *ts)
172 {
173 	return (settime1(p, ts, true));
174 }
175 
176 /* ARGSUSED */
177 int
178 sys___clock_gettime50(struct lwp *l,
179     const struct sys___clock_gettime50_args *uap, register_t *retval)
180 {
181 	/* {
182 		syscallarg(clockid_t) clock_id;
183 		syscallarg(struct timespec *) tp;
184 	} */
185 	int error;
186 	struct timespec ats;
187 
188 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
189 	if (error != 0)
190 		return error;
191 
192 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
193 }
194 
195 /* ARGSUSED */
196 int
197 sys___clock_settime50(struct lwp *l,
198     const struct sys___clock_settime50_args *uap, register_t *retval)
199 {
200 	/* {
201 		syscallarg(clockid_t) clock_id;
202 		syscallarg(const struct timespec *) tp;
203 	} */
204 	int error;
205 	struct timespec ats;
206 
207 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
208 		return error;
209 
210 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
211 }
212 
213 
214 int
215 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
216     bool check_kauth)
217 {
218 	int error;
219 
220 	if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
221 		return EINVAL;
222 
223 	switch (clock_id) {
224 	case CLOCK_REALTIME:
225 		if ((error = settime1(p, tp, check_kauth)) != 0)
226 			return (error);
227 		break;
228 	case CLOCK_MONOTONIC:
229 		return (EINVAL);	/* read-only clock */
230 	default:
231 		return (EINVAL);
232 	}
233 
234 	return 0;
235 }
236 
237 int
238 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
239     register_t *retval)
240 {
241 	/* {
242 		syscallarg(clockid_t) clock_id;
243 		syscallarg(struct timespec *) tp;
244 	} */
245 	struct timespec ts;
246 	int error;
247 
248 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
249 		return error;
250 
251 	if (SCARG(uap, tp))
252 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
253 
254 	return error;
255 }
256 
257 int
258 clock_getres1(clockid_t clock_id, struct timespec *ts)
259 {
260 
261 	switch (clock_id) {
262 	case CLOCK_REALTIME:
263 	case CLOCK_MONOTONIC:
264 		ts->tv_sec = 0;
265 		if (tc_getfrequency() > 1000000000)
266 			ts->tv_nsec = 1;
267 		else
268 			ts->tv_nsec = 1000000000 / tc_getfrequency();
269 		break;
270 	default:
271 		return EINVAL;
272 	}
273 
274 	return 0;
275 }
276 
277 /* ARGSUSED */
278 int
279 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
280     register_t *retval)
281 {
282 	/* {
283 		syscallarg(struct timespec *) rqtp;
284 		syscallarg(struct timespec *) rmtp;
285 	} */
286 	struct timespec rmt, rqt;
287 	int error, error1;
288 
289 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
290 	if (error)
291 		return (error);
292 
293 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
294 	    SCARG(uap, rmtp) ? &rmt : NULL);
295 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
296 		return error;
297 
298 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
299 	return error1 ? error1 : error;
300 }
301 
302 /* ARGSUSED */
303 int
304 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
305     register_t *retval)
306 {
307 	/* {
308 		syscallarg(clockid_t) clock_id;
309 		syscallarg(int) flags;
310 		syscallarg(struct timespec *) rqtp;
311 		syscallarg(struct timespec *) rmtp;
312 	} */
313 	struct timespec rmt, rqt;
314 	int error, error1;
315 
316 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
317 	if (error)
318 		goto out;
319 
320 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
321 	    SCARG(uap, rmtp) ? &rmt : NULL);
322 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
323 		goto out;
324 
325 	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
326 	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
327 		error = error1;
328 out:
329 	*retval = error;
330 	return 0;
331 }
332 
333 int
334 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
335     struct timespec *rmt)
336 {
337 	struct timespec rmtstart;
338 	int error, timo;
339 
340 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
341 		if (error == ETIMEDOUT) {
342 			error = 0;
343 			if (rmt != NULL)
344 				rmt->tv_sec = rmt->tv_nsec = 0;
345 		}
346 		return error;
347 	}
348 
349 	/*
350 	 * Avoid inadvertently sleeping forever
351 	 */
352 	if (timo == 0)
353 		timo = 1;
354 again:
355 	error = kpause("nanoslp", true, timo, NULL);
356 	if (error == EWOULDBLOCK)
357 		error = 0;
358 	if (rmt != NULL || error == 0) {
359 		struct timespec rmtend;
360 		struct timespec t0;
361 		struct timespec *t;
362 
363 		(void)clock_gettime1(clock_id, &rmtend);
364 		t = (rmt != NULL) ? rmt : &t0;
365 		if (flags & TIMER_ABSTIME) {
366 			timespecsub(rqt, &rmtend, t);
367 		} else {
368 			timespecsub(&rmtend, &rmtstart, t);
369 			timespecsub(rqt, t, t);
370 		}
371 		if (t->tv_sec < 0)
372 			timespecclear(t);
373 		if (error == 0) {
374 			timo = tstohz(t);
375 			if (timo > 0)
376 				goto again;
377 		}
378 	}
379 
380 	if (error == ERESTART)
381 		error = EINTR;
382 
383 	return error;
384 }
385 
386 int
387 sys_clock_getcpuclockid2(struct lwp *l,
388     const struct sys_clock_getcpuclockid2_args *uap,
389     register_t *retval)
390 {
391 	/* {
392 		syscallarg(idtype_t idtype;
393 		syscallarg(id_t id);
394 		syscallarg(clockid_t *)clock_id;
395 	} */
396 	pid_t pid;
397 	lwpid_t lid;
398 	clockid_t clock_id;
399 	id_t id = SCARG(uap, id);
400 
401 	switch (SCARG(uap, idtype)) {
402 	case P_PID:
403 		pid = id == 0 ? l->l_proc->p_pid : id;
404 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
405 		break;
406 	case P_LWPID:
407 		lid = id == 0 ? l->l_lid : id;
408 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
409 		break;
410 	default:
411 		return EINVAL;
412 	}
413 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
414 }
415 
416 /* ARGSUSED */
417 int
418 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
419     register_t *retval)
420 {
421 	/* {
422 		syscallarg(struct timeval *) tp;
423 		syscallarg(void *) tzp;		really "struct timezone *";
424 	} */
425 	struct timeval atv;
426 	int error = 0;
427 	struct timezone tzfake;
428 
429 	if (SCARG(uap, tp)) {
430 		memset(&atv, 0, sizeof(atv));
431 		microtime(&atv);
432 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
433 		if (error)
434 			return (error);
435 	}
436 	if (SCARG(uap, tzp)) {
437 		/*
438 		 * NetBSD has no kernel notion of time zone, so we just
439 		 * fake up a timezone struct and return it if demanded.
440 		 */
441 		tzfake.tz_minuteswest = 0;
442 		tzfake.tz_dsttime = 0;
443 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
444 	}
445 	return (error);
446 }
447 
448 /* ARGSUSED */
449 int
450 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
451     register_t *retval)
452 {
453 	/* {
454 		syscallarg(const struct timeval *) tv;
455 		syscallarg(const void *) tzp; really "const struct timezone *";
456 	} */
457 
458 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
459 }
460 
461 int
462 settimeofday1(const struct timeval *utv, bool userspace,
463     const void *utzp, struct lwp *l, bool check_kauth)
464 {
465 	struct timeval atv;
466 	struct timespec ts;
467 	int error;
468 
469 	/* Verify all parameters before changing time. */
470 
471 	/*
472 	 * NetBSD has no kernel notion of time zone, and only an
473 	 * obsolete program would try to set it, so we log a warning.
474 	 */
475 	if (utzp)
476 		log(LOG_WARNING, "pid %d attempted to set the "
477 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
478 
479 	if (utv == NULL)
480 		return 0;
481 
482 	if (userspace) {
483 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
484 			return error;
485 		utv = &atv;
486 	}
487 
488 	if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
489 		return EINVAL;
490 
491 	TIMEVAL_TO_TIMESPEC(utv, &ts);
492 	return settime1(l->l_proc, &ts, check_kauth);
493 }
494 
495 int	time_adjusted;			/* set if an adjustment is made */
496 
497 /* ARGSUSED */
498 int
499 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
500     register_t *retval)
501 {
502 	/* {
503 		syscallarg(const struct timeval *) delta;
504 		syscallarg(struct timeval *) olddelta;
505 	} */
506 	int error;
507 	struct timeval atv, oldatv;
508 
509 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
510 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
511 		return error;
512 
513 	if (SCARG(uap, delta)) {
514 		error = copyin(SCARG(uap, delta), &atv,
515 		    sizeof(*SCARG(uap, delta)));
516 		if (error)
517 			return (error);
518 	}
519 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
520 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
521 	if (SCARG(uap, olddelta))
522 		error = copyout(&oldatv, SCARG(uap, olddelta),
523 		    sizeof(*SCARG(uap, olddelta)));
524 	return error;
525 }
526 
527 void
528 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
529 {
530 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
531 
532 	if (olddelta) {
533 		memset(olddelta, 0, sizeof(*olddelta));
534 		mutex_spin_enter(&timecounter_lock);
535 		olddelta->tv_sec = time_adjtime / 1000000;
536 		olddelta->tv_usec = time_adjtime % 1000000;
537 		if (olddelta->tv_usec < 0) {
538 			olddelta->tv_usec += 1000000;
539 			olddelta->tv_sec--;
540 		}
541 		mutex_spin_exit(&timecounter_lock);
542 	}
543 
544 	if (delta) {
545 		mutex_spin_enter(&timecounter_lock);
546 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
547 
548 		if (time_adjtime) {
549 			/* We need to save the system time during shutdown */
550 			time_adjusted |= 1;
551 		}
552 		mutex_spin_exit(&timecounter_lock);
553 	}
554 }
555 
556 /*
557  * Interval timer support. Both the BSD getitimer() family and the POSIX
558  * timer_*() family of routines are supported.
559  *
560  * All timers are kept in an array pointed to by p_timers, which is
561  * allocated on demand - many processes don't use timers at all. The
562  * first four elements in this array are reserved for the BSD timers:
563  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
564  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
565  * allocated by the timer_create() syscall.
566  *
567  * Realtime timers are kept in the ptimer structure as an absolute
568  * time; virtual time timers are kept as a linked list of deltas.
569  * Virtual time timers are processed in the hardclock() routine of
570  * kern_clock.c.  The real time timer is processed by a callout
571  * routine, called from the softclock() routine.  Since a callout may
572  * be delayed in real time due to interrupt processing in the system,
573  * it is possible for the real time timeout routine (realtimeexpire,
574  * given below), to be delayed in real time past when it is supposed
575  * to occur.  It does not suffice, therefore, to reload the real timer
576  * .it_value from the real time timers .it_interval.  Rather, we
577  * compute the next time in absolute time the timer should go off.  */
578 
579 /* Allocate a POSIX realtime timer. */
580 int
581 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
582     register_t *retval)
583 {
584 	/* {
585 		syscallarg(clockid_t) clock_id;
586 		syscallarg(struct sigevent *) evp;
587 		syscallarg(timer_t *) timerid;
588 	} */
589 
590 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
591 	    SCARG(uap, evp), copyin, l);
592 }
593 
594 int
595 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
596     copyin_t fetch_event, struct lwp *l)
597 {
598 	int error;
599 	timer_t timerid;
600 	struct ptimers *pts;
601 	struct ptimer *pt;
602 	struct proc *p;
603 
604 	p = l->l_proc;
605 
606 	if ((u_int)id > CLOCK_MONOTONIC)
607 		return (EINVAL);
608 
609 	if ((pts = p->p_timers) == NULL)
610 		pts = timers_alloc(p);
611 
612 	pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
613 	if (evp != NULL) {
614 		if (((error =
615 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
616 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
617 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
618 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
619 			 (pt->pt_ev.sigev_signo <= 0 ||
620 			  pt->pt_ev.sigev_signo >= NSIG))) {
621 			pool_put(&ptimer_pool, pt);
622 			return (error ? error : EINVAL);
623 		}
624 	}
625 
626 	/* Find a free timer slot, skipping those reserved for setitimer(). */
627 	mutex_spin_enter(&timer_lock);
628 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
629 		if (pts->pts_timers[timerid] == NULL)
630 			break;
631 	if (timerid == TIMER_MAX) {
632 		mutex_spin_exit(&timer_lock);
633 		pool_put(&ptimer_pool, pt);
634 		return EAGAIN;
635 	}
636 	if (evp == NULL) {
637 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
638 		switch (id) {
639 		case CLOCK_REALTIME:
640 		case CLOCK_MONOTONIC:
641 			pt->pt_ev.sigev_signo = SIGALRM;
642 			break;
643 		case CLOCK_VIRTUAL:
644 			pt->pt_ev.sigev_signo = SIGVTALRM;
645 			break;
646 		case CLOCK_PROF:
647 			pt->pt_ev.sigev_signo = SIGPROF;
648 			break;
649 		}
650 		pt->pt_ev.sigev_value.sival_int = timerid;
651 	}
652 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
653 	pt->pt_info.ksi_errno = 0;
654 	pt->pt_info.ksi_code = 0;
655 	pt->pt_info.ksi_pid = p->p_pid;
656 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
657 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
658 	pt->pt_type = id;
659 	pt->pt_proc = p;
660 	pt->pt_overruns = 0;
661 	pt->pt_poverruns = 0;
662 	pt->pt_entry = timerid;
663 	pt->pt_queued = false;
664 	timespecclear(&pt->pt_time.it_value);
665 	if (!CLOCK_VIRTUAL_P(id))
666 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
667 	else
668 		pt->pt_active = 0;
669 
670 	pts->pts_timers[timerid] = pt;
671 	mutex_spin_exit(&timer_lock);
672 
673 	return copyout(&timerid, tid, sizeof(timerid));
674 }
675 
676 /* Delete a POSIX realtime timer */
677 int
678 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
679     register_t *retval)
680 {
681 	/* {
682 		syscallarg(timer_t) timerid;
683 	} */
684 	struct proc *p = l->l_proc;
685 	timer_t timerid;
686 	struct ptimers *pts;
687 	struct ptimer *pt, *ptn;
688 
689 	timerid = SCARG(uap, timerid);
690 	pts = p->p_timers;
691 
692 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
693 		return (EINVAL);
694 
695 	mutex_spin_enter(&timer_lock);
696 	if ((pt = pts->pts_timers[timerid]) == NULL) {
697 		mutex_spin_exit(&timer_lock);
698 		return (EINVAL);
699 	}
700 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
701 		if (pt->pt_active) {
702 			ptn = LIST_NEXT(pt, pt_list);
703 			LIST_REMOVE(pt, pt_list);
704 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
705 				timespecadd(&pt->pt_time.it_value,
706 				    &ptn->pt_time.it_value,
707 				    &ptn->pt_time.it_value);
708 			pt->pt_active = 0;
709 		}
710 	}
711 
712 	/* Free the timer and release the lock.  */
713 	itimerfree(pts, timerid);
714 
715 	return (0);
716 }
717 
718 /*
719  * Set up the given timer. The value in pt->pt_time.it_value is taken
720  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
721  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
722  *
723  * If the callout had already fired but not yet run, fails with
724  * ERESTART -- caller must restart from the top to look up a timer.
725  */
726 int
727 timer_settime(struct ptimer *pt)
728 {
729 	struct ptimer *ptn, *pptn;
730 	struct ptlist *ptl;
731 
732 	KASSERT(mutex_owned(&timer_lock));
733 
734 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
735 		/*
736 		 * Try to stop the callout.  However, if it had already
737 		 * fired, we have to drop the lock to wait for it, so
738 		 * the world may have changed and pt may not be there
739 		 * any more.  In that case, tell the caller to start
740 		 * over from the top.
741 		 */
742 		if (callout_halt(&pt->pt_ch, &timer_lock))
743 			return ERESTART;
744 
745 		/* Now we can touch pt and start it up again.  */
746 		if (timespecisset(&pt->pt_time.it_value)) {
747 			/*
748 			 * Don't need to check tshzto() return value, here.
749 			 * callout_reset() does it for us.
750 			 */
751 			callout_reset(&pt->pt_ch,
752 			    pt->pt_type == CLOCK_MONOTONIC ?
753 			    tshztoup(&pt->pt_time.it_value) :
754 			    tshzto(&pt->pt_time.it_value),
755 			    realtimerexpire, pt);
756 		}
757 	} else {
758 		if (pt->pt_active) {
759 			ptn = LIST_NEXT(pt, pt_list);
760 			LIST_REMOVE(pt, pt_list);
761 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
762 				timespecadd(&pt->pt_time.it_value,
763 				    &ptn->pt_time.it_value,
764 				    &ptn->pt_time.it_value);
765 		}
766 		if (timespecisset(&pt->pt_time.it_value)) {
767 			if (pt->pt_type == CLOCK_VIRTUAL)
768 				ptl = &pt->pt_proc->p_timers->pts_virtual;
769 			else
770 				ptl = &pt->pt_proc->p_timers->pts_prof;
771 
772 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
773 			     ptn && timespeccmp(&pt->pt_time.it_value,
774 				 &ptn->pt_time.it_value, >);
775 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
776 				timespecsub(&pt->pt_time.it_value,
777 				    &ptn->pt_time.it_value,
778 				    &pt->pt_time.it_value);
779 
780 			if (pptn)
781 				LIST_INSERT_AFTER(pptn, pt, pt_list);
782 			else
783 				LIST_INSERT_HEAD(ptl, pt, pt_list);
784 
785 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
786 				timespecsub(&ptn->pt_time.it_value,
787 				    &pt->pt_time.it_value,
788 				    &ptn->pt_time.it_value);
789 
790 			pt->pt_active = 1;
791 		} else
792 			pt->pt_active = 0;
793 	}
794 
795 	/* Success!  */
796 	return 0;
797 }
798 
799 void
800 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
801 {
802 	struct timespec now;
803 	struct ptimer *ptn;
804 
805 	KASSERT(mutex_owned(&timer_lock));
806 
807 	*aits = pt->pt_time;
808 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
809 		/*
810 		 * Convert from absolute to relative time in .it_value
811 		 * part of real time timer.  If time for real time
812 		 * timer has passed return 0, else return difference
813 		 * between current time and time for the timer to go
814 		 * off.
815 		 */
816 		if (timespecisset(&aits->it_value)) {
817 			if (pt->pt_type == CLOCK_REALTIME) {
818 				getnanotime(&now);
819 			} else { /* CLOCK_MONOTONIC */
820 				getnanouptime(&now);
821 			}
822 			if (timespeccmp(&aits->it_value, &now, <))
823 				timespecclear(&aits->it_value);
824 			else
825 				timespecsub(&aits->it_value, &now,
826 				    &aits->it_value);
827 		}
828 	} else if (pt->pt_active) {
829 		if (pt->pt_type == CLOCK_VIRTUAL)
830 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
831 		else
832 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
833 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
834 			timespecadd(&aits->it_value,
835 			    &ptn->pt_time.it_value, &aits->it_value);
836 		KASSERT(ptn != NULL); /* pt should be findable on the list */
837 	} else
838 		timespecclear(&aits->it_value);
839 }
840 
841 
842 
843 /* Set and arm a POSIX realtime timer */
844 int
845 sys___timer_settime50(struct lwp *l,
846     const struct sys___timer_settime50_args *uap,
847     register_t *retval)
848 {
849 	/* {
850 		syscallarg(timer_t) timerid;
851 		syscallarg(int) flags;
852 		syscallarg(const struct itimerspec *) value;
853 		syscallarg(struct itimerspec *) ovalue;
854 	} */
855 	int error;
856 	struct itimerspec value, ovalue, *ovp = NULL;
857 
858 	if ((error = copyin(SCARG(uap, value), &value,
859 	    sizeof(struct itimerspec))) != 0)
860 		return (error);
861 
862 	if (SCARG(uap, ovalue))
863 		ovp = &ovalue;
864 
865 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
866 	    SCARG(uap, flags), l->l_proc)) != 0)
867 		return error;
868 
869 	if (ovp)
870 		return copyout(&ovalue, SCARG(uap, ovalue),
871 		    sizeof(struct itimerspec));
872 	return 0;
873 }
874 
875 int
876 dotimer_settime(int timerid, struct itimerspec *value,
877     struct itimerspec *ovalue, int flags, struct proc *p)
878 {
879 	struct timespec now;
880 	struct itimerspec val, oval;
881 	struct ptimers *pts;
882 	struct ptimer *pt;
883 	int error;
884 
885 	pts = p->p_timers;
886 
887 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
888 		return EINVAL;
889 	val = *value;
890 	if ((error = itimespecfix(&val.it_value)) != 0 ||
891 	    (error = itimespecfix(&val.it_interval)) != 0)
892 		return error;
893 
894 	mutex_spin_enter(&timer_lock);
895 restart:
896 	if ((pt = pts->pts_timers[timerid]) == NULL) {
897 		mutex_spin_exit(&timer_lock);
898 		return EINVAL;
899 	}
900 
901 	oval = pt->pt_time;
902 	pt->pt_time = val;
903 
904 	/*
905 	 * If we've been passed a relative time for a realtime timer,
906 	 * convert it to absolute; if an absolute time for a virtual
907 	 * timer, convert it to relative and make sure we don't set it
908 	 * to zero, which would cancel the timer, or let it go
909 	 * negative, which would confuse the comparison tests.
910 	 */
911 	if (timespecisset(&pt->pt_time.it_value)) {
912 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
913 			if ((flags & TIMER_ABSTIME) == 0) {
914 				if (pt->pt_type == CLOCK_REALTIME) {
915 					getnanotime(&now);
916 				} else { /* CLOCK_MONOTONIC */
917 					getnanouptime(&now);
918 				}
919 				timespecadd(&pt->pt_time.it_value, &now,
920 				    &pt->pt_time.it_value);
921 			}
922 		} else {
923 			if ((flags & TIMER_ABSTIME) != 0) {
924 				getnanotime(&now);
925 				timespecsub(&pt->pt_time.it_value, &now,
926 				    &pt->pt_time.it_value);
927 				if (!timespecisset(&pt->pt_time.it_value) ||
928 				    pt->pt_time.it_value.tv_sec < 0) {
929 					pt->pt_time.it_value.tv_sec = 0;
930 					pt->pt_time.it_value.tv_nsec = 1;
931 				}
932 			}
933 		}
934 	}
935 
936 	error = timer_settime(pt);
937 	if (error == ERESTART) {
938 		KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
939 		goto restart;
940 	}
941 	KASSERT(error == 0);
942 	mutex_spin_exit(&timer_lock);
943 
944 	if (ovalue)
945 		*ovalue = oval;
946 
947 	return (0);
948 }
949 
950 /* Return the time remaining until a POSIX timer fires. */
951 int
952 sys___timer_gettime50(struct lwp *l,
953     const struct sys___timer_gettime50_args *uap, register_t *retval)
954 {
955 	/* {
956 		syscallarg(timer_t) timerid;
957 		syscallarg(struct itimerspec *) value;
958 	} */
959 	struct itimerspec its;
960 	int error;
961 
962 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
963 	    &its)) != 0)
964 		return error;
965 
966 	return copyout(&its, SCARG(uap, value), sizeof(its));
967 }
968 
969 int
970 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
971 {
972 	struct ptimer *pt;
973 	struct ptimers *pts;
974 
975 	pts = p->p_timers;
976 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
977 		return (EINVAL);
978 	mutex_spin_enter(&timer_lock);
979 	if ((pt = pts->pts_timers[timerid]) == NULL) {
980 		mutex_spin_exit(&timer_lock);
981 		return (EINVAL);
982 	}
983 	timer_gettime(pt, its);
984 	mutex_spin_exit(&timer_lock);
985 
986 	return 0;
987 }
988 
989 /*
990  * Return the count of the number of times a periodic timer expired
991  * while a notification was already pending. The counter is reset when
992  * a timer expires and a notification can be posted.
993  */
994 int
995 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
996     register_t *retval)
997 {
998 	/* {
999 		syscallarg(timer_t) timerid;
1000 	} */
1001 	struct proc *p = l->l_proc;
1002 	struct ptimers *pts;
1003 	int timerid;
1004 	struct ptimer *pt;
1005 
1006 	timerid = SCARG(uap, timerid);
1007 
1008 	pts = p->p_timers;
1009 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1010 		return (EINVAL);
1011 	mutex_spin_enter(&timer_lock);
1012 	if ((pt = pts->pts_timers[timerid]) == NULL) {
1013 		mutex_spin_exit(&timer_lock);
1014 		return (EINVAL);
1015 	}
1016 	*retval = pt->pt_poverruns;
1017 	if (*retval >= DELAYTIMER_MAX)
1018 		*retval = DELAYTIMER_MAX;
1019 	mutex_spin_exit(&timer_lock);
1020 
1021 	return (0);
1022 }
1023 
1024 /*
1025  * Real interval timer expired:
1026  * send process whose timer expired an alarm signal.
1027  * If time is not set up to reload, then just return.
1028  * Else compute next time timer should go off which is > current time.
1029  * This is where delay in processing this timeout causes multiple
1030  * SIGALRM calls to be compressed into one.
1031  */
1032 void
1033 realtimerexpire(void *arg)
1034 {
1035 	uint64_t last_val, next_val, interval, now_ns;
1036 	struct timespec now, next;
1037 	struct ptimer *pt;
1038 	int backwards;
1039 
1040 	pt = arg;
1041 
1042 	mutex_spin_enter(&timer_lock);
1043 	itimerfire(pt);
1044 
1045 	if (!timespecisset(&pt->pt_time.it_interval)) {
1046 		timespecclear(&pt->pt_time.it_value);
1047 		mutex_spin_exit(&timer_lock);
1048 		return;
1049 	}
1050 
1051 	if (pt->pt_type == CLOCK_MONOTONIC) {
1052 		getnanouptime(&now);
1053 	} else {
1054 		getnanotime(&now);
1055 	}
1056 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1057 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1058 	/* Handle the easy case of non-overflown timers first. */
1059 	if (!backwards && timespeccmp(&next, &now, >)) {
1060 		pt->pt_time.it_value = next;
1061 	} else {
1062 		now_ns = timespec2ns(&now);
1063 		last_val = timespec2ns(&pt->pt_time.it_value);
1064 		interval = timespec2ns(&pt->pt_time.it_interval);
1065 
1066 		next_val = now_ns +
1067 		    (now_ns - last_val + interval - 1) % interval;
1068 
1069 		if (backwards)
1070 			next_val += interval;
1071 		else
1072 			pt->pt_overruns += (now_ns - last_val) / interval;
1073 
1074 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1075 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1076 	}
1077 
1078 	/*
1079 	 * Reset the callout, if it's not going away.
1080 	 *
1081 	 * Don't need to check tshzto() return value, here.
1082 	 * callout_reset() does it for us.
1083 	 */
1084 	if (!pt->pt_dying)
1085 		callout_reset(&pt->pt_ch,
1086 		    (pt->pt_type == CLOCK_MONOTONIC
1087 			? tshztoup(&pt->pt_time.it_value)
1088 			: tshzto(&pt->pt_time.it_value)),
1089 		    realtimerexpire, pt);
1090 	mutex_spin_exit(&timer_lock);
1091 }
1092 
1093 /* BSD routine to get the value of an interval timer. */
1094 /* ARGSUSED */
1095 int
1096 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1097     register_t *retval)
1098 {
1099 	/* {
1100 		syscallarg(int) which;
1101 		syscallarg(struct itimerval *) itv;
1102 	} */
1103 	struct proc *p = l->l_proc;
1104 	struct itimerval aitv;
1105 	int error;
1106 
1107 	memset(&aitv, 0, sizeof(aitv));
1108 	error = dogetitimer(p, SCARG(uap, which), &aitv);
1109 	if (error)
1110 		return error;
1111 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1112 }
1113 
1114 int
1115 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1116 {
1117 	struct ptimers *pts;
1118 	struct ptimer *pt;
1119 	struct itimerspec its;
1120 
1121 	if ((u_int)which > ITIMER_MONOTONIC)
1122 		return (EINVAL);
1123 
1124 	mutex_spin_enter(&timer_lock);
1125 	pts = p->p_timers;
1126 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1127 		timerclear(&itvp->it_value);
1128 		timerclear(&itvp->it_interval);
1129 	} else {
1130 		timer_gettime(pt, &its);
1131 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1132 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1133 	}
1134 	mutex_spin_exit(&timer_lock);
1135 
1136 	return 0;
1137 }
1138 
1139 /* BSD routine to set/arm an interval timer. */
1140 /* ARGSUSED */
1141 int
1142 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1143     register_t *retval)
1144 {
1145 	/* {
1146 		syscallarg(int) which;
1147 		syscallarg(const struct itimerval *) itv;
1148 		syscallarg(struct itimerval *) oitv;
1149 	} */
1150 	struct proc *p = l->l_proc;
1151 	int which = SCARG(uap, which);
1152 	struct sys___getitimer50_args getargs;
1153 	const struct itimerval *itvp;
1154 	struct itimerval aitv;
1155 	int error;
1156 
1157 	if ((u_int)which > ITIMER_MONOTONIC)
1158 		return (EINVAL);
1159 	itvp = SCARG(uap, itv);
1160 	if (itvp &&
1161 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1162 		return (error);
1163 	if (SCARG(uap, oitv) != NULL) {
1164 		SCARG(&getargs, which) = which;
1165 		SCARG(&getargs, itv) = SCARG(uap, oitv);
1166 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1167 			return (error);
1168 	}
1169 	if (itvp == 0)
1170 		return (0);
1171 
1172 	return dosetitimer(p, which, &aitv);
1173 }
1174 
1175 int
1176 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1177 {
1178 	struct timespec now;
1179 	struct ptimers *pts;
1180 	struct ptimer *pt, *spare;
1181 	int error;
1182 
1183 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
1184 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1185 		return (EINVAL);
1186 
1187 	/*
1188 	 * Don't bother allocating data structures if the process just
1189 	 * wants to clear the timer.
1190 	 */
1191 	spare = NULL;
1192 	pts = p->p_timers;
1193  retry:
1194 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1195 	    pts->pts_timers[which] == NULL))
1196 		return (0);
1197 	if (pts == NULL)
1198 		pts = timers_alloc(p);
1199 	mutex_spin_enter(&timer_lock);
1200 restart:
1201 	pt = pts->pts_timers[which];
1202 	if (pt == NULL) {
1203 		if (spare == NULL) {
1204 			mutex_spin_exit(&timer_lock);
1205 			spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
1206 			goto retry;
1207 		}
1208 		pt = spare;
1209 		spare = NULL;
1210 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1211 		pt->pt_ev.sigev_value.sival_int = which;
1212 		pt->pt_overruns = 0;
1213 		pt->pt_proc = p;
1214 		pt->pt_type = which;
1215 		pt->pt_entry = which;
1216 		pt->pt_queued = false;
1217 		if (!CLOCK_VIRTUAL_P(which))
1218 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1219 		else
1220 			pt->pt_active = 0;
1221 
1222 		switch (which) {
1223 		case ITIMER_REAL:
1224 		case ITIMER_MONOTONIC:
1225 			pt->pt_ev.sigev_signo = SIGALRM;
1226 			break;
1227 		case ITIMER_VIRTUAL:
1228 			pt->pt_ev.sigev_signo = SIGVTALRM;
1229 			break;
1230 		case ITIMER_PROF:
1231 			pt->pt_ev.sigev_signo = SIGPROF;
1232 			break;
1233 		}
1234 		pts->pts_timers[which] = pt;
1235 	}
1236 
1237 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1238 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1239 
1240 	if (timespecisset(&pt->pt_time.it_value)) {
1241 		/* Convert to absolute time */
1242 		/* XXX need to wrap in splclock for timecounters case? */
1243 		switch (which) {
1244 		case ITIMER_REAL:
1245 			getnanotime(&now);
1246 			timespecadd(&pt->pt_time.it_value, &now,
1247 			    &pt->pt_time.it_value);
1248 			break;
1249 		case ITIMER_MONOTONIC:
1250 			getnanouptime(&now);
1251 			timespecadd(&pt->pt_time.it_value, &now,
1252 			    &pt->pt_time.it_value);
1253 			break;
1254 		default:
1255 			break;
1256 		}
1257 	}
1258 	error = timer_settime(pt);
1259 	if (error == ERESTART) {
1260 		KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
1261 		goto restart;
1262 	}
1263 	KASSERT(error == 0);
1264 	mutex_spin_exit(&timer_lock);
1265 	if (spare != NULL)
1266 		pool_put(&ptimer_pool, spare);
1267 
1268 	return (0);
1269 }
1270 
1271 /* Utility routines to manage the array of pointers to timers. */
1272 struct ptimers *
1273 timers_alloc(struct proc *p)
1274 {
1275 	struct ptimers *pts;
1276 	int i;
1277 
1278 	pts = pool_get(&ptimers_pool, PR_WAITOK);
1279 	LIST_INIT(&pts->pts_virtual);
1280 	LIST_INIT(&pts->pts_prof);
1281 	for (i = 0; i < TIMER_MAX; i++)
1282 		pts->pts_timers[i] = NULL;
1283 	mutex_spin_enter(&timer_lock);
1284 	if (p->p_timers == NULL) {
1285 		p->p_timers = pts;
1286 		mutex_spin_exit(&timer_lock);
1287 		return pts;
1288 	}
1289 	mutex_spin_exit(&timer_lock);
1290 	pool_put(&ptimers_pool, pts);
1291 	return p->p_timers;
1292 }
1293 
1294 /*
1295  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1296  * then clean up all timers and free all the data structures. If
1297  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1298  * by timer_create(), not the BSD setitimer() timers, and only free the
1299  * structure if none of those remain.
1300  */
1301 void
1302 timers_free(struct proc *p, int which)
1303 {
1304 	struct ptimers *pts;
1305 	struct ptimer *ptn;
1306 	struct timespec ts;
1307 	int i;
1308 
1309 	if (p->p_timers == NULL)
1310 		return;
1311 
1312 	pts = p->p_timers;
1313 	mutex_spin_enter(&timer_lock);
1314 	if (which == TIMERS_ALL) {
1315 		p->p_timers = NULL;
1316 		i = 0;
1317 	} else {
1318 		timespecclear(&ts);
1319 		for (ptn = LIST_FIRST(&pts->pts_virtual);
1320 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1321 		     ptn = LIST_NEXT(ptn, pt_list)) {
1322 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1323 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1324 		}
1325 		LIST_FIRST(&pts->pts_virtual) = NULL;
1326 		if (ptn) {
1327 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1328 			timespecadd(&ts, &ptn->pt_time.it_value,
1329 			    &ptn->pt_time.it_value);
1330 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1331 		}
1332 		timespecclear(&ts);
1333 		for (ptn = LIST_FIRST(&pts->pts_prof);
1334 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1335 		     ptn = LIST_NEXT(ptn, pt_list)) {
1336 			KASSERT(ptn->pt_type == CLOCK_PROF);
1337 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1338 		}
1339 		LIST_FIRST(&pts->pts_prof) = NULL;
1340 		if (ptn) {
1341 			KASSERT(ptn->pt_type == CLOCK_PROF);
1342 			timespecadd(&ts, &ptn->pt_time.it_value,
1343 			    &ptn->pt_time.it_value);
1344 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1345 		}
1346 		i = TIMER_MIN;
1347 	}
1348 	for ( ; i < TIMER_MAX; i++) {
1349 		if (pts->pts_timers[i] != NULL) {
1350 			/* Free the timer and release the lock.  */
1351 			itimerfree(pts, i);
1352 			/* Reacquire the lock for the next one.  */
1353 			mutex_spin_enter(&timer_lock);
1354 		}
1355 	}
1356 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1357 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1358 		p->p_timers = NULL;
1359 		mutex_spin_exit(&timer_lock);
1360 		pool_put(&ptimers_pool, pts);
1361 	} else
1362 		mutex_spin_exit(&timer_lock);
1363 }
1364 
1365 static void
1366 itimerfree(struct ptimers *pts, int index)
1367 {
1368 	struct ptimer *pt;
1369 
1370 	KASSERT(mutex_owned(&timer_lock));
1371 
1372 	pt = pts->pts_timers[index];
1373 
1374 	/*
1375 	 * Prevent new references, and notify the callout not to
1376 	 * restart itself.
1377 	 */
1378 	pts->pts_timers[index] = NULL;
1379 	pt->pt_dying = true;
1380 
1381 	/*
1382 	 * For non-virtual timers, stop the callout, or wait for it to
1383 	 * run if it has already fired.  It cannot restart again after
1384 	 * this point: the callout won't restart itself when dying, no
1385 	 * other users holding the lock can restart it, and any other
1386 	 * users waiting for callout_halt concurrently (timer_settime)
1387 	 * will restart from the top.
1388 	 */
1389 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1390 		callout_halt(&pt->pt_ch, &timer_lock);
1391 
1392 	/* Remove it from the queue to be signalled.  */
1393 	if (pt->pt_queued)
1394 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1395 
1396 	/* All done with the global state.  */
1397 	mutex_spin_exit(&timer_lock);
1398 
1399 	/* Destroy the callout, if needed, and free the ptimer.  */
1400 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1401 		callout_destroy(&pt->pt_ch);
1402 	pool_put(&ptimer_pool, pt);
1403 }
1404 
1405 /*
1406  * Decrement an interval timer by a specified number
1407  * of nanoseconds, which must be less than a second,
1408  * i.e. < 1000000000.  If the timer expires, then reload
1409  * it.  In this case, carry over (nsec - old value) to
1410  * reduce the value reloaded into the timer so that
1411  * the timer does not drift.  This routine assumes
1412  * that it is called in a context where the timers
1413  * on which it is operating cannot change in value.
1414  */
1415 static int
1416 itimerdecr(struct ptimer *pt, int nsec)
1417 {
1418 	struct itimerspec *itp;
1419 	int error __diagused;
1420 
1421 	KASSERT(mutex_owned(&timer_lock));
1422 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1423 
1424 	itp = &pt->pt_time;
1425 	if (itp->it_value.tv_nsec < nsec) {
1426 		if (itp->it_value.tv_sec == 0) {
1427 			/* expired, and already in next interval */
1428 			nsec -= itp->it_value.tv_nsec;
1429 			goto expire;
1430 		}
1431 		itp->it_value.tv_nsec += 1000000000;
1432 		itp->it_value.tv_sec--;
1433 	}
1434 	itp->it_value.tv_nsec -= nsec;
1435 	nsec = 0;
1436 	if (timespecisset(&itp->it_value))
1437 		return (1);
1438 	/* expired, exactly at end of interval */
1439 expire:
1440 	if (timespecisset(&itp->it_interval)) {
1441 		itp->it_value = itp->it_interval;
1442 		itp->it_value.tv_nsec -= nsec;
1443 		if (itp->it_value.tv_nsec < 0) {
1444 			itp->it_value.tv_nsec += 1000000000;
1445 			itp->it_value.tv_sec--;
1446 		}
1447 		error = timer_settime(pt);
1448 		KASSERT(error == 0); /* virtual, never fails */
1449 	} else
1450 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
1451 	return (0);
1452 }
1453 
1454 static void
1455 itimerfire(struct ptimer *pt)
1456 {
1457 
1458 	KASSERT(mutex_owned(&timer_lock));
1459 
1460 	/*
1461 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1462 	 * XXX Relying on the clock interrupt is stupid.
1463 	 */
1464 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1465 		return;
1466 	}
1467 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1468 	pt->pt_queued = true;
1469 	softint_schedule(timer_sih);
1470 }
1471 
1472 void
1473 timer_tick(lwp_t *l, bool user)
1474 {
1475 	struct ptimers *pts;
1476 	struct ptimer *pt;
1477 	proc_t *p;
1478 
1479 	p = l->l_proc;
1480 	if (p->p_timers == NULL)
1481 		return;
1482 
1483 	mutex_spin_enter(&timer_lock);
1484 	if ((pts = l->l_proc->p_timers) != NULL) {
1485 		/*
1486 		 * Run current process's virtual and profile time, as needed.
1487 		 */
1488 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1489 			if (itimerdecr(pt, tick * 1000) == 0)
1490 				itimerfire(pt);
1491 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1492 			if (itimerdecr(pt, tick * 1000) == 0)
1493 				itimerfire(pt);
1494 	}
1495 	mutex_spin_exit(&timer_lock);
1496 }
1497 
1498 static void
1499 timer_intr(void *cookie)
1500 {
1501 	ksiginfo_t ksi;
1502 	struct ptimer *pt;
1503 	proc_t *p;
1504 
1505 	mutex_enter(proc_lock);
1506 	mutex_spin_enter(&timer_lock);
1507 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1508 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1509 		KASSERT(pt->pt_queued);
1510 		pt->pt_queued = false;
1511 
1512 		if (pt->pt_proc->p_timers == NULL) {
1513 			/* Process is dying. */
1514 			continue;
1515 		}
1516 		p = pt->pt_proc;
1517 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1518 			continue;
1519 		}
1520 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1521 			pt->pt_overruns++;
1522 			continue;
1523 		}
1524 
1525 		KSI_INIT(&ksi);
1526 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1527 		ksi.ksi_code = SI_TIMER;
1528 		ksi.ksi_value = pt->pt_ev.sigev_value;
1529 		pt->pt_poverruns = pt->pt_overruns;
1530 		pt->pt_overruns = 0;
1531 		mutex_spin_exit(&timer_lock);
1532 		kpsignal(p, &ksi, NULL);
1533 		mutex_spin_enter(&timer_lock);
1534 	}
1535 	mutex_spin_exit(&timer_lock);
1536 	mutex_exit(proc_lock);
1537 }
1538 
1539 /*
1540  * Check if the time will wrap if set to ts.
1541  *
1542  * ts - timespec describing the new time
1543  * delta - the delta between the current time and ts
1544  */
1545 bool
1546 time_wraps(struct timespec *ts, struct timespec *delta)
1547 {
1548 
1549 	/*
1550 	 * Don't allow the time to be set forward so far it
1551 	 * will wrap and become negative, thus allowing an
1552 	 * attacker to bypass the next check below.  The
1553 	 * cutoff is 1 year before rollover occurs, so even
1554 	 * if the attacker uses adjtime(2) to move the time
1555 	 * past the cutoff, it will take a very long time
1556 	 * to get to the wrap point.
1557 	 */
1558 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1559 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
1560 		return true;
1561 
1562 	return false;
1563 }
1564