1 /* $NetBSD: kern_time.c,v 1.163 2009/12/10 12:39:12 drochner Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Christopher G. Demetriou, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.163 2009/12/10 12:39:12 drochner Exp $"); 65 66 #include <sys/param.h> 67 #include <sys/resourcevar.h> 68 #include <sys/kernel.h> 69 #include <sys/systm.h> 70 #include <sys/proc.h> 71 #include <sys/vnode.h> 72 #include <sys/signalvar.h> 73 #include <sys/syslog.h> 74 #include <sys/timetc.h> 75 #include <sys/timex.h> 76 #include <sys/kauth.h> 77 #include <sys/mount.h> 78 #include <sys/sa.h> 79 #include <sys/savar.h> 80 #include <sys/syscallargs.h> 81 #include <sys/cpu.h> 82 83 #include <uvm/uvm_extern.h> 84 85 #include "opt_sa.h" 86 87 static void timer_intr(void *); 88 static void itimerfire(struct ptimer *); 89 static void itimerfree(struct ptimers *, int); 90 91 kmutex_t timer_lock; 92 93 static void *timer_sih; 94 static TAILQ_HEAD(, ptimer) timer_queue; 95 96 struct pool ptimer_pool, ptimers_pool; 97 98 /* 99 * Initialize timekeeping. 100 */ 101 void 102 time_init(void) 103 { 104 105 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl", 106 &pool_allocator_nointr, IPL_NONE); 107 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl", 108 &pool_allocator_nointr, IPL_NONE); 109 } 110 111 void 112 time_init2(void) 113 { 114 115 TAILQ_INIT(&timer_queue); 116 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED); 117 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, 118 timer_intr, NULL); 119 } 120 121 /* Time of day and interval timer support. 122 * 123 * These routines provide the kernel entry points to get and set 124 * the time-of-day and per-process interval timers. Subroutines 125 * here provide support for adding and subtracting timeval structures 126 * and decrementing interval timers, optionally reloading the interval 127 * timers when they expire. 128 */ 129 130 /* This function is used by clock_settime and settimeofday */ 131 static int 132 settime1(struct proc *p, const struct timespec *ts, bool check_kauth) 133 { 134 struct timespec delta, now; 135 int s; 136 137 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */ 138 s = splclock(); 139 nanotime(&now); 140 timespecsub(ts, &now, &delta); 141 142 if (check_kauth && kauth_authorize_system(kauth_cred_get(), 143 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts), 144 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) { 145 splx(s); 146 return (EPERM); 147 } 148 149 #ifdef notyet 150 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */ 151 splx(s); 152 return (EPERM); 153 } 154 #endif 155 156 tc_setclock(ts); 157 158 timespecadd(&boottime, &delta, &boottime); 159 160 resettodr(); 161 splx(s); 162 163 return (0); 164 } 165 166 int 167 settime(struct proc *p, struct timespec *ts) 168 { 169 return (settime1(p, ts, true)); 170 } 171 172 /* ARGSUSED */ 173 int 174 sys___clock_gettime50(struct lwp *l, 175 const struct sys___clock_gettime50_args *uap, register_t *retval) 176 { 177 /* { 178 syscallarg(clockid_t) clock_id; 179 syscallarg(struct timespec *) tp; 180 } */ 181 clockid_t clock_id; 182 struct timespec ats; 183 184 clock_id = SCARG(uap, clock_id); 185 switch (clock_id) { 186 case CLOCK_REALTIME: 187 nanotime(&ats); 188 break; 189 case CLOCK_MONOTONIC: 190 nanouptime(&ats); 191 break; 192 default: 193 return (EINVAL); 194 } 195 196 return copyout(&ats, SCARG(uap, tp), sizeof(ats)); 197 } 198 199 /* ARGSUSED */ 200 int 201 sys___clock_settime50(struct lwp *l, 202 const struct sys___clock_settime50_args *uap, register_t *retval) 203 { 204 /* { 205 syscallarg(clockid_t) clock_id; 206 syscallarg(const struct timespec *) tp; 207 } */ 208 int error; 209 struct timespec ats; 210 211 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0) 212 return error; 213 214 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true); 215 } 216 217 218 int 219 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp, 220 bool check_kauth) 221 { 222 int error; 223 224 switch (clock_id) { 225 case CLOCK_REALTIME: 226 if ((error = settime1(p, tp, check_kauth)) != 0) 227 return (error); 228 break; 229 case CLOCK_MONOTONIC: 230 return (EINVAL); /* read-only clock */ 231 default: 232 return (EINVAL); 233 } 234 235 return 0; 236 } 237 238 int 239 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap, 240 register_t *retval) 241 { 242 /* { 243 syscallarg(clockid_t) clock_id; 244 syscallarg(struct timespec *) tp; 245 } */ 246 clockid_t clock_id; 247 struct timespec ts; 248 int error = 0; 249 250 clock_id = SCARG(uap, clock_id); 251 switch (clock_id) { 252 case CLOCK_REALTIME: 253 case CLOCK_MONOTONIC: 254 ts.tv_sec = 0; 255 if (tc_getfrequency() > 1000000000) 256 ts.tv_nsec = 1; 257 else 258 ts.tv_nsec = 1000000000 / tc_getfrequency(); 259 break; 260 default: 261 return (EINVAL); 262 } 263 264 if (SCARG(uap, tp)) 265 error = copyout(&ts, SCARG(uap, tp), sizeof(ts)); 266 267 return error; 268 } 269 270 /* ARGSUSED */ 271 int 272 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap, 273 register_t *retval) 274 { 275 /* { 276 syscallarg(struct timespec *) rqtp; 277 syscallarg(struct timespec *) rmtp; 278 } */ 279 struct timespec rmt, rqt; 280 int error, error1; 281 282 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec)); 283 if (error) 284 return (error); 285 286 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL); 287 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR)) 288 return error; 289 290 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt)); 291 return error1 ? error1 : error; 292 } 293 294 int 295 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt) 296 { 297 struct timespec rmtstart; 298 int error, timo; 299 300 if ((error = itimespecfix(rqt)) != 0) 301 return error; 302 303 timo = tstohz(rqt); 304 /* 305 * Avoid inadvertantly sleeping forever 306 */ 307 if (timo == 0) 308 timo = 1; 309 getnanouptime(&rmtstart); 310 again: 311 error = kpause("nanoslp", true, timo, NULL); 312 if (rmt != NULL || error == 0) { 313 struct timespec rmtend; 314 struct timespec t0; 315 struct timespec *t; 316 317 getnanouptime(&rmtend); 318 t = (rmt != NULL) ? rmt : &t0; 319 timespecsub(&rmtend, &rmtstart, t); 320 timespecsub(rqt, t, t); 321 if (t->tv_sec < 0) 322 timespecclear(t); 323 if (error == 0) { 324 timo = tstohz(t); 325 if (timo > 0) 326 goto again; 327 } 328 } 329 330 if (error == ERESTART) 331 error = EINTR; 332 if (error == EWOULDBLOCK) 333 error = 0; 334 335 return error; 336 } 337 338 /* ARGSUSED */ 339 int 340 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap, 341 register_t *retval) 342 { 343 /* { 344 syscallarg(struct timeval *) tp; 345 syscallarg(void *) tzp; really "struct timezone *"; 346 } */ 347 struct timeval atv; 348 int error = 0; 349 struct timezone tzfake; 350 351 if (SCARG(uap, tp)) { 352 microtime(&atv); 353 error = copyout(&atv, SCARG(uap, tp), sizeof(atv)); 354 if (error) 355 return (error); 356 } 357 if (SCARG(uap, tzp)) { 358 /* 359 * NetBSD has no kernel notion of time zone, so we just 360 * fake up a timezone struct and return it if demanded. 361 */ 362 tzfake.tz_minuteswest = 0; 363 tzfake.tz_dsttime = 0; 364 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake)); 365 } 366 return (error); 367 } 368 369 /* ARGSUSED */ 370 int 371 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap, 372 register_t *retval) 373 { 374 /* { 375 syscallarg(const struct timeval *) tv; 376 syscallarg(const void *) tzp; really "const struct timezone *"; 377 } */ 378 379 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true); 380 } 381 382 int 383 settimeofday1(const struct timeval *utv, bool userspace, 384 const void *utzp, struct lwp *l, bool check_kauth) 385 { 386 struct timeval atv; 387 struct timespec ts; 388 int error; 389 390 /* Verify all parameters before changing time. */ 391 392 /* 393 * NetBSD has no kernel notion of time zone, and only an 394 * obsolete program would try to set it, so we log a warning. 395 */ 396 if (utzp) 397 log(LOG_WARNING, "pid %d attempted to set the " 398 "(obsolete) kernel time zone\n", l->l_proc->p_pid); 399 400 if (utv == NULL) 401 return 0; 402 403 if (userspace) { 404 if ((error = copyin(utv, &atv, sizeof(atv))) != 0) 405 return error; 406 utv = &atv; 407 } 408 409 TIMEVAL_TO_TIMESPEC(utv, &ts); 410 return settime1(l->l_proc, &ts, check_kauth); 411 } 412 413 int time_adjusted; /* set if an adjustment is made */ 414 415 /* ARGSUSED */ 416 int 417 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap, 418 register_t *retval) 419 { 420 /* { 421 syscallarg(const struct timeval *) delta; 422 syscallarg(struct timeval *) olddelta; 423 } */ 424 int error = 0; 425 struct timeval atv, oldatv; 426 427 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME, 428 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0) 429 return error; 430 431 if (SCARG(uap, delta)) { 432 error = copyin(SCARG(uap, delta), &atv, 433 sizeof(*SCARG(uap, delta))); 434 if (error) 435 return (error); 436 } 437 adjtime1(SCARG(uap, delta) ? &atv : NULL, 438 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc); 439 if (SCARG(uap, olddelta)) 440 error = copyout(&oldatv, SCARG(uap, olddelta), 441 sizeof(*SCARG(uap, olddelta))); 442 return error; 443 } 444 445 void 446 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p) 447 { 448 extern int64_t time_adjtime; /* in kern_ntptime.c */ 449 450 if (olddelta) { 451 mutex_spin_enter(&timecounter_lock); 452 olddelta->tv_sec = time_adjtime / 1000000; 453 olddelta->tv_usec = time_adjtime % 1000000; 454 if (olddelta->tv_usec < 0) { 455 olddelta->tv_usec += 1000000; 456 olddelta->tv_sec--; 457 } 458 mutex_spin_exit(&timecounter_lock); 459 } 460 461 if (delta) { 462 mutex_spin_enter(&timecounter_lock); 463 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec; 464 465 if (time_adjtime) { 466 /* We need to save the system time during shutdown */ 467 time_adjusted |= 1; 468 } 469 mutex_spin_exit(&timecounter_lock); 470 } 471 } 472 473 /* 474 * Interval timer support. Both the BSD getitimer() family and the POSIX 475 * timer_*() family of routines are supported. 476 * 477 * All timers are kept in an array pointed to by p_timers, which is 478 * allocated on demand - many processes don't use timers at all. The 479 * first three elements in this array are reserved for the BSD timers: 480 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element 481 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create() 482 * syscall. 483 * 484 * Realtime timers are kept in the ptimer structure as an absolute 485 * time; virtual time timers are kept as a linked list of deltas. 486 * Virtual time timers are processed in the hardclock() routine of 487 * kern_clock.c. The real time timer is processed by a callout 488 * routine, called from the softclock() routine. Since a callout may 489 * be delayed in real time due to interrupt processing in the system, 490 * it is possible for the real time timeout routine (realtimeexpire, 491 * given below), to be delayed in real time past when it is supposed 492 * to occur. It does not suffice, therefore, to reload the real timer 493 * .it_value from the real time timers .it_interval. Rather, we 494 * compute the next time in absolute time the timer should go off. */ 495 496 /* Allocate a POSIX realtime timer. */ 497 int 498 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap, 499 register_t *retval) 500 { 501 /* { 502 syscallarg(clockid_t) clock_id; 503 syscallarg(struct sigevent *) evp; 504 syscallarg(timer_t *) timerid; 505 } */ 506 507 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id), 508 SCARG(uap, evp), copyin, l); 509 } 510 511 int 512 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp, 513 copyin_t fetch_event, struct lwp *l) 514 { 515 int error; 516 timer_t timerid; 517 struct ptimers *pts; 518 struct ptimer *pt; 519 struct proc *p; 520 521 p = l->l_proc; 522 523 if (id < CLOCK_REALTIME || id > CLOCK_PROF) 524 return (EINVAL); 525 526 if ((pts = p->p_timers) == NULL) 527 pts = timers_alloc(p); 528 529 pt = pool_get(&ptimer_pool, PR_WAITOK); 530 if (evp != NULL) { 531 if (((error = 532 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) || 533 ((pt->pt_ev.sigev_notify < SIGEV_NONE) || 534 (pt->pt_ev.sigev_notify > SIGEV_SA)) || 535 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL && 536 (pt->pt_ev.sigev_signo <= 0 || 537 pt->pt_ev.sigev_signo >= NSIG))) { 538 pool_put(&ptimer_pool, pt); 539 return (error ? error : EINVAL); 540 } 541 } 542 543 /* Find a free timer slot, skipping those reserved for setitimer(). */ 544 mutex_spin_enter(&timer_lock); 545 for (timerid = 3; timerid < TIMER_MAX; timerid++) 546 if (pts->pts_timers[timerid] == NULL) 547 break; 548 if (timerid == TIMER_MAX) { 549 mutex_spin_exit(&timer_lock); 550 pool_put(&ptimer_pool, pt); 551 return EAGAIN; 552 } 553 if (evp == NULL) { 554 pt->pt_ev.sigev_notify = SIGEV_SIGNAL; 555 switch (id) { 556 case CLOCK_REALTIME: 557 pt->pt_ev.sigev_signo = SIGALRM; 558 break; 559 case CLOCK_VIRTUAL: 560 pt->pt_ev.sigev_signo = SIGVTALRM; 561 break; 562 case CLOCK_PROF: 563 pt->pt_ev.sigev_signo = SIGPROF; 564 break; 565 } 566 pt->pt_ev.sigev_value.sival_int = timerid; 567 } 568 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo; 569 pt->pt_info.ksi_errno = 0; 570 pt->pt_info.ksi_code = 0; 571 pt->pt_info.ksi_pid = p->p_pid; 572 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred); 573 pt->pt_info.ksi_value = pt->pt_ev.sigev_value; 574 pt->pt_type = id; 575 pt->pt_proc = p; 576 pt->pt_overruns = 0; 577 pt->pt_poverruns = 0; 578 pt->pt_entry = timerid; 579 pt->pt_queued = false; 580 timespecclear(&pt->pt_time.it_value); 581 if (id == CLOCK_REALTIME) 582 callout_init(&pt->pt_ch, 0); 583 else 584 pt->pt_active = 0; 585 586 pts->pts_timers[timerid] = pt; 587 mutex_spin_exit(&timer_lock); 588 589 return copyout(&timerid, tid, sizeof(timerid)); 590 } 591 592 /* Delete a POSIX realtime timer */ 593 int 594 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap, 595 register_t *retval) 596 { 597 /* { 598 syscallarg(timer_t) timerid; 599 } */ 600 struct proc *p = l->l_proc; 601 timer_t timerid; 602 struct ptimers *pts; 603 struct ptimer *pt, *ptn; 604 605 timerid = SCARG(uap, timerid); 606 pts = p->p_timers; 607 608 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 609 return (EINVAL); 610 611 mutex_spin_enter(&timer_lock); 612 if ((pt = pts->pts_timers[timerid]) == NULL) { 613 mutex_spin_exit(&timer_lock); 614 return (EINVAL); 615 } 616 if (pt->pt_type != CLOCK_REALTIME) { 617 if (pt->pt_active) { 618 ptn = LIST_NEXT(pt, pt_list); 619 LIST_REMOVE(pt, pt_list); 620 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list)) 621 timespecadd(&pt->pt_time.it_value, 622 &ptn->pt_time.it_value, 623 &ptn->pt_time.it_value); 624 pt->pt_active = 0; 625 } 626 } 627 itimerfree(pts, timerid); 628 629 return (0); 630 } 631 632 /* 633 * Set up the given timer. The value in pt->pt_time.it_value is taken 634 * to be an absolute time for CLOCK_REALTIME timers and a relative 635 * time for virtual timers. 636 * Must be called at splclock(). 637 */ 638 void 639 timer_settime(struct ptimer *pt) 640 { 641 struct ptimer *ptn, *pptn; 642 struct ptlist *ptl; 643 644 KASSERT(mutex_owned(&timer_lock)); 645 646 if (pt->pt_type == CLOCK_REALTIME) { 647 callout_stop(&pt->pt_ch); 648 if (timespecisset(&pt->pt_time.it_value)) { 649 /* 650 * Don't need to check tshzto() return value, here. 651 * callout_reset() does it for us. 652 */ 653 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value), 654 realtimerexpire, pt); 655 } 656 } else { 657 if (pt->pt_active) { 658 ptn = LIST_NEXT(pt, pt_list); 659 LIST_REMOVE(pt, pt_list); 660 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list)) 661 timespecadd(&pt->pt_time.it_value, 662 &ptn->pt_time.it_value, 663 &ptn->pt_time.it_value); 664 } 665 if (timespecisset(&pt->pt_time.it_value)) { 666 if (pt->pt_type == CLOCK_VIRTUAL) 667 ptl = &pt->pt_proc->p_timers->pts_virtual; 668 else 669 ptl = &pt->pt_proc->p_timers->pts_prof; 670 671 for (ptn = LIST_FIRST(ptl), pptn = NULL; 672 ptn && timespeccmp(&pt->pt_time.it_value, 673 &ptn->pt_time.it_value, >); 674 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list)) 675 timespecsub(&pt->pt_time.it_value, 676 &ptn->pt_time.it_value, 677 &pt->pt_time.it_value); 678 679 if (pptn) 680 LIST_INSERT_AFTER(pptn, pt, pt_list); 681 else 682 LIST_INSERT_HEAD(ptl, pt, pt_list); 683 684 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list)) 685 timespecsub(&ptn->pt_time.it_value, 686 &pt->pt_time.it_value, 687 &ptn->pt_time.it_value); 688 689 pt->pt_active = 1; 690 } else 691 pt->pt_active = 0; 692 } 693 } 694 695 void 696 timer_gettime(struct ptimer *pt, struct itimerspec *aits) 697 { 698 struct timespec now; 699 struct ptimer *ptn; 700 701 KASSERT(mutex_owned(&timer_lock)); 702 703 *aits = pt->pt_time; 704 if (pt->pt_type == CLOCK_REALTIME) { 705 /* 706 * Convert from absolute to relative time in .it_value 707 * part of real time timer. If time for real time 708 * timer has passed return 0, else return difference 709 * between current time and time for the timer to go 710 * off. 711 */ 712 if (timespecisset(&aits->it_value)) { 713 getnanotime(&now); 714 if (timespeccmp(&aits->it_value, &now, <)) 715 timespecclear(&aits->it_value); 716 else 717 timespecsub(&aits->it_value, &now, 718 &aits->it_value); 719 } 720 } else if (pt->pt_active) { 721 if (pt->pt_type == CLOCK_VIRTUAL) 722 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual); 723 else 724 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof); 725 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list)) 726 timespecadd(&aits->it_value, 727 &ptn->pt_time.it_value, &aits->it_value); 728 KASSERT(ptn != NULL); /* pt should be findable on the list */ 729 } else 730 timespecclear(&aits->it_value); 731 } 732 733 734 735 /* Set and arm a POSIX realtime timer */ 736 int 737 sys___timer_settime50(struct lwp *l, 738 const struct sys___timer_settime50_args *uap, 739 register_t *retval) 740 { 741 /* { 742 syscallarg(timer_t) timerid; 743 syscallarg(int) flags; 744 syscallarg(const struct itimerspec *) value; 745 syscallarg(struct itimerspec *) ovalue; 746 } */ 747 int error; 748 struct itimerspec value, ovalue, *ovp = NULL; 749 750 if ((error = copyin(SCARG(uap, value), &value, 751 sizeof(struct itimerspec))) != 0) 752 return (error); 753 754 if (SCARG(uap, ovalue)) 755 ovp = &ovalue; 756 757 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp, 758 SCARG(uap, flags), l->l_proc)) != 0) 759 return error; 760 761 if (ovp) 762 return copyout(&ovalue, SCARG(uap, ovalue), 763 sizeof(struct itimerspec)); 764 return 0; 765 } 766 767 int 768 dotimer_settime(int timerid, struct itimerspec *value, 769 struct itimerspec *ovalue, int flags, struct proc *p) 770 { 771 struct timespec now; 772 struct itimerspec val, oval; 773 struct ptimers *pts; 774 struct ptimer *pt; 775 int error; 776 777 pts = p->p_timers; 778 779 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 780 return EINVAL; 781 val = *value; 782 if ((error = itimespecfix(&val.it_value)) != 0 || 783 (error = itimespecfix(&val.it_interval)) != 0) 784 return error; 785 786 mutex_spin_enter(&timer_lock); 787 if ((pt = pts->pts_timers[timerid]) == NULL) { 788 mutex_spin_exit(&timer_lock); 789 return EINVAL; 790 } 791 792 oval = pt->pt_time; 793 pt->pt_time = val; 794 795 /* 796 * If we've been passed a relative time for a realtime timer, 797 * convert it to absolute; if an absolute time for a virtual 798 * timer, convert it to relative and make sure we don't set it 799 * to zero, which would cancel the timer, or let it go 800 * negative, which would confuse the comparison tests. 801 */ 802 if (timespecisset(&pt->pt_time.it_value)) { 803 if (pt->pt_type == CLOCK_REALTIME) { 804 if ((flags & TIMER_ABSTIME) == 0) { 805 getnanotime(&now); 806 timespecadd(&pt->pt_time.it_value, &now, 807 &pt->pt_time.it_value); 808 } 809 } else { 810 if ((flags & TIMER_ABSTIME) != 0) { 811 getnanotime(&now); 812 timespecsub(&pt->pt_time.it_value, &now, 813 &pt->pt_time.it_value); 814 if (!timespecisset(&pt->pt_time.it_value) || 815 pt->pt_time.it_value.tv_sec < 0) { 816 pt->pt_time.it_value.tv_sec = 0; 817 pt->pt_time.it_value.tv_nsec = 1; 818 } 819 } 820 } 821 } 822 823 timer_settime(pt); 824 mutex_spin_exit(&timer_lock); 825 826 if (ovalue) 827 *ovalue = oval; 828 829 return (0); 830 } 831 832 /* Return the time remaining until a POSIX timer fires. */ 833 int 834 sys___timer_gettime50(struct lwp *l, 835 const struct sys___timer_gettime50_args *uap, register_t *retval) 836 { 837 /* { 838 syscallarg(timer_t) timerid; 839 syscallarg(struct itimerspec *) value; 840 } */ 841 struct itimerspec its; 842 int error; 843 844 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc, 845 &its)) != 0) 846 return error; 847 848 return copyout(&its, SCARG(uap, value), sizeof(its)); 849 } 850 851 int 852 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its) 853 { 854 struct ptimer *pt; 855 struct ptimers *pts; 856 857 pts = p->p_timers; 858 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 859 return (EINVAL); 860 mutex_spin_enter(&timer_lock); 861 if ((pt = pts->pts_timers[timerid]) == NULL) { 862 mutex_spin_exit(&timer_lock); 863 return (EINVAL); 864 } 865 timer_gettime(pt, its); 866 mutex_spin_exit(&timer_lock); 867 868 return 0; 869 } 870 871 /* 872 * Return the count of the number of times a periodic timer expired 873 * while a notification was already pending. The counter is reset when 874 * a timer expires and a notification can be posted. 875 */ 876 int 877 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap, 878 register_t *retval) 879 { 880 /* { 881 syscallarg(timer_t) timerid; 882 } */ 883 struct proc *p = l->l_proc; 884 struct ptimers *pts; 885 int timerid; 886 struct ptimer *pt; 887 888 timerid = SCARG(uap, timerid); 889 890 pts = p->p_timers; 891 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 892 return (EINVAL); 893 mutex_spin_enter(&timer_lock); 894 if ((pt = pts->pts_timers[timerid]) == NULL) { 895 mutex_spin_exit(&timer_lock); 896 return (EINVAL); 897 } 898 *retval = pt->pt_poverruns; 899 mutex_spin_exit(&timer_lock); 900 901 return (0); 902 } 903 904 #ifdef KERN_SA 905 /* Glue function that triggers an upcall; called from userret(). */ 906 void 907 timerupcall(struct lwp *l) 908 { 909 struct ptimers *pt = l->l_proc->p_timers; 910 struct proc *p = l->l_proc; 911 unsigned int i, fired, done; 912 913 KDASSERT(l->l_proc->p_sa); 914 /* Bail out if we do not own the virtual processor */ 915 if (l->l_savp->savp_lwp != l) 916 return ; 917 918 mutex_enter(p->p_lock); 919 920 fired = pt->pts_fired; 921 done = 0; 922 while ((i = ffs(fired)) != 0) { 923 siginfo_t *si; 924 int mask = 1 << --i; 925 int f; 926 927 f = ~l->l_pflag & LP_SA_NOBLOCK; 928 l->l_pflag |= LP_SA_NOBLOCK; 929 si = siginfo_alloc(PR_WAITOK); 930 si->_info = pt->pts_timers[i]->pt_info.ksi_info; 931 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l, 932 sizeof(*si), si, siginfo_free) != 0) { 933 siginfo_free(si); 934 /* XXX What do we do here?? */ 935 } else 936 done |= mask; 937 fired &= ~mask; 938 l->l_pflag ^= f; 939 } 940 pt->pts_fired &= ~done; 941 if (pt->pts_fired == 0) 942 l->l_proc->p_timerpend = 0; 943 944 mutex_exit(p->p_lock); 945 } 946 #endif /* KERN_SA */ 947 948 /* 949 * Real interval timer expired: 950 * send process whose timer expired an alarm signal. 951 * If time is not set up to reload, then just return. 952 * Else compute next time timer should go off which is > current time. 953 * This is where delay in processing this timeout causes multiple 954 * SIGALRM calls to be compressed into one. 955 */ 956 void 957 realtimerexpire(void *arg) 958 { 959 uint64_t last_val, next_val, interval, now_ms; 960 struct timespec now, next; 961 struct ptimer *pt; 962 int backwards; 963 964 pt = arg; 965 966 mutex_spin_enter(&timer_lock); 967 itimerfire(pt); 968 969 if (!timespecisset(&pt->pt_time.it_interval)) { 970 timespecclear(&pt->pt_time.it_value); 971 mutex_spin_exit(&timer_lock); 972 return; 973 } 974 975 getnanotime(&now); 976 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >)); 977 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next); 978 /* Handle the easy case of non-overflown timers first. */ 979 if (!backwards && timespeccmp(&next, &now, >)) { 980 pt->pt_time.it_value = next; 981 } else { 982 now_ms = timespec2ns(&now); 983 last_val = timespec2ns(&pt->pt_time.it_value); 984 interval = timespec2ns(&pt->pt_time.it_interval); 985 986 next_val = now_ms + 987 (now_ms - last_val + interval - 1) % interval; 988 989 if (backwards) 990 next_val += interval; 991 else 992 pt->pt_overruns += (now_ms - last_val) / interval; 993 994 pt->pt_time.it_value.tv_sec = next_val / 1000000000; 995 pt->pt_time.it_value.tv_nsec = next_val % 1000000000; 996 } 997 998 /* 999 * Don't need to check tshzto() return value, here. 1000 * callout_reset() does it for us. 1001 */ 1002 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value), 1003 realtimerexpire, pt); 1004 mutex_spin_exit(&timer_lock); 1005 } 1006 1007 /* BSD routine to get the value of an interval timer. */ 1008 /* ARGSUSED */ 1009 int 1010 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap, 1011 register_t *retval) 1012 { 1013 /* { 1014 syscallarg(int) which; 1015 syscallarg(struct itimerval *) itv; 1016 } */ 1017 struct proc *p = l->l_proc; 1018 struct itimerval aitv; 1019 int error; 1020 1021 error = dogetitimer(p, SCARG(uap, which), &aitv); 1022 if (error) 1023 return error; 1024 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval))); 1025 } 1026 1027 int 1028 dogetitimer(struct proc *p, int which, struct itimerval *itvp) 1029 { 1030 struct ptimers *pts; 1031 struct ptimer *pt; 1032 struct itimerspec its; 1033 1034 if ((u_int)which > ITIMER_PROF) 1035 return (EINVAL); 1036 1037 mutex_spin_enter(&timer_lock); 1038 pts = p->p_timers; 1039 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) { 1040 timerclear(&itvp->it_value); 1041 timerclear(&itvp->it_interval); 1042 } else { 1043 timer_gettime(pt, &its); 1044 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value); 1045 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval); 1046 } 1047 mutex_spin_exit(&timer_lock); 1048 1049 return 0; 1050 } 1051 1052 /* BSD routine to set/arm an interval timer. */ 1053 /* ARGSUSED */ 1054 int 1055 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap, 1056 register_t *retval) 1057 { 1058 /* { 1059 syscallarg(int) which; 1060 syscallarg(const struct itimerval *) itv; 1061 syscallarg(struct itimerval *) oitv; 1062 } */ 1063 struct proc *p = l->l_proc; 1064 int which = SCARG(uap, which); 1065 struct sys___getitimer50_args getargs; 1066 const struct itimerval *itvp; 1067 struct itimerval aitv; 1068 int error; 1069 1070 if ((u_int)which > ITIMER_PROF) 1071 return (EINVAL); 1072 itvp = SCARG(uap, itv); 1073 if (itvp && 1074 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0)) 1075 return (error); 1076 if (SCARG(uap, oitv) != NULL) { 1077 SCARG(&getargs, which) = which; 1078 SCARG(&getargs, itv) = SCARG(uap, oitv); 1079 if ((error = sys___getitimer50(l, &getargs, retval)) != 0) 1080 return (error); 1081 } 1082 if (itvp == 0) 1083 return (0); 1084 1085 return dosetitimer(p, which, &aitv); 1086 } 1087 1088 int 1089 dosetitimer(struct proc *p, int which, struct itimerval *itvp) 1090 { 1091 struct timespec now; 1092 struct ptimers *pts; 1093 struct ptimer *pt, *spare; 1094 1095 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval)) 1096 return (EINVAL); 1097 1098 /* 1099 * Don't bother allocating data structures if the process just 1100 * wants to clear the timer. 1101 */ 1102 spare = NULL; 1103 pts = p->p_timers; 1104 retry: 1105 if (!timerisset(&itvp->it_value) && (pts == NULL || 1106 pts->pts_timers[which] == NULL)) 1107 return (0); 1108 if (pts == NULL) 1109 pts = timers_alloc(p); 1110 mutex_spin_enter(&timer_lock); 1111 pt = pts->pts_timers[which]; 1112 if (pt == NULL) { 1113 if (spare == NULL) { 1114 mutex_spin_exit(&timer_lock); 1115 spare = pool_get(&ptimer_pool, PR_WAITOK); 1116 goto retry; 1117 } 1118 pt = spare; 1119 spare = NULL; 1120 pt->pt_ev.sigev_notify = SIGEV_SIGNAL; 1121 pt->pt_ev.sigev_value.sival_int = which; 1122 pt->pt_overruns = 0; 1123 pt->pt_proc = p; 1124 pt->pt_type = which; 1125 pt->pt_entry = which; 1126 pt->pt_queued = false; 1127 if (pt->pt_type == CLOCK_REALTIME) 1128 callout_init(&pt->pt_ch, CALLOUT_MPSAFE); 1129 else 1130 pt->pt_active = 0; 1131 1132 switch (which) { 1133 case ITIMER_REAL: 1134 pt->pt_ev.sigev_signo = SIGALRM; 1135 break; 1136 case ITIMER_VIRTUAL: 1137 pt->pt_ev.sigev_signo = SIGVTALRM; 1138 break; 1139 case ITIMER_PROF: 1140 pt->pt_ev.sigev_signo = SIGPROF; 1141 break; 1142 } 1143 pts->pts_timers[which] = pt; 1144 } 1145 1146 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value); 1147 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval); 1148 1149 if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) { 1150 /* Convert to absolute time */ 1151 /* XXX need to wrap in splclock for timecounters case? */ 1152 getnanotime(&now); 1153 timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value); 1154 } 1155 timer_settime(pt); 1156 mutex_spin_exit(&timer_lock); 1157 if (spare != NULL) 1158 pool_put(&ptimer_pool, spare); 1159 1160 return (0); 1161 } 1162 1163 /* Utility routines to manage the array of pointers to timers. */ 1164 struct ptimers * 1165 timers_alloc(struct proc *p) 1166 { 1167 struct ptimers *pts; 1168 int i; 1169 1170 pts = pool_get(&ptimers_pool, PR_WAITOK); 1171 LIST_INIT(&pts->pts_virtual); 1172 LIST_INIT(&pts->pts_prof); 1173 for (i = 0; i < TIMER_MAX; i++) 1174 pts->pts_timers[i] = NULL; 1175 pts->pts_fired = 0; 1176 mutex_spin_enter(&timer_lock); 1177 if (p->p_timers == NULL) { 1178 p->p_timers = pts; 1179 mutex_spin_exit(&timer_lock); 1180 return pts; 1181 } 1182 mutex_spin_exit(&timer_lock); 1183 pool_put(&ptimers_pool, pts); 1184 return p->p_timers; 1185 } 1186 1187 /* 1188 * Clean up the per-process timers. If "which" is set to TIMERS_ALL, 1189 * then clean up all timers and free all the data structures. If 1190 * "which" is set to TIMERS_POSIX, only clean up the timers allocated 1191 * by timer_create(), not the BSD setitimer() timers, and only free the 1192 * structure if none of those remain. 1193 */ 1194 void 1195 timers_free(struct proc *p, int which) 1196 { 1197 struct ptimers *pts; 1198 struct ptimer *ptn; 1199 struct timespec ts; 1200 int i; 1201 1202 if (p->p_timers == NULL) 1203 return; 1204 1205 pts = p->p_timers; 1206 mutex_spin_enter(&timer_lock); 1207 if (which == TIMERS_ALL) { 1208 p->p_timers = NULL; 1209 i = 0; 1210 } else { 1211 timespecclear(&ts); 1212 for (ptn = LIST_FIRST(&pts->pts_virtual); 1213 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL]; 1214 ptn = LIST_NEXT(ptn, pt_list)) { 1215 KASSERT(ptn->pt_type != CLOCK_REALTIME); 1216 timespecadd(&ts, &ptn->pt_time.it_value, &ts); 1217 } 1218 LIST_FIRST(&pts->pts_virtual) = NULL; 1219 if (ptn) { 1220 KASSERT(ptn->pt_type != CLOCK_REALTIME); 1221 timespecadd(&ts, &ptn->pt_time.it_value, 1222 &ptn->pt_time.it_value); 1223 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list); 1224 } 1225 timespecclear(&ts); 1226 for (ptn = LIST_FIRST(&pts->pts_prof); 1227 ptn && ptn != pts->pts_timers[ITIMER_PROF]; 1228 ptn = LIST_NEXT(ptn, pt_list)) { 1229 KASSERT(ptn->pt_type != CLOCK_REALTIME); 1230 timespecadd(&ts, &ptn->pt_time.it_value, &ts); 1231 } 1232 LIST_FIRST(&pts->pts_prof) = NULL; 1233 if (ptn) { 1234 KASSERT(ptn->pt_type != CLOCK_REALTIME); 1235 timespecadd(&ts, &ptn->pt_time.it_value, 1236 &ptn->pt_time.it_value); 1237 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list); 1238 } 1239 i = 3; 1240 } 1241 for ( ; i < TIMER_MAX; i++) { 1242 if (pts->pts_timers[i] != NULL) { 1243 itimerfree(pts, i); 1244 mutex_spin_enter(&timer_lock); 1245 } 1246 } 1247 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL && 1248 pts->pts_timers[2] == NULL) { 1249 p->p_timers = NULL; 1250 mutex_spin_exit(&timer_lock); 1251 pool_put(&ptimers_pool, pts); 1252 } else 1253 mutex_spin_exit(&timer_lock); 1254 } 1255 1256 static void 1257 itimerfree(struct ptimers *pts, int index) 1258 { 1259 struct ptimer *pt; 1260 1261 KASSERT(mutex_owned(&timer_lock)); 1262 1263 pt = pts->pts_timers[index]; 1264 pts->pts_timers[index] = NULL; 1265 if (pt->pt_type == CLOCK_REALTIME) 1266 callout_halt(&pt->pt_ch, &timer_lock); 1267 else if (pt->pt_queued) 1268 TAILQ_REMOVE(&timer_queue, pt, pt_chain); 1269 mutex_spin_exit(&timer_lock); 1270 if (pt->pt_type == CLOCK_REALTIME) 1271 callout_destroy(&pt->pt_ch); 1272 pool_put(&ptimer_pool, pt); 1273 } 1274 1275 /* 1276 * Decrement an interval timer by a specified number 1277 * of nanoseconds, which must be less than a second, 1278 * i.e. < 1000000000. If the timer expires, then reload 1279 * it. In this case, carry over (nsec - old value) to 1280 * reduce the value reloaded into the timer so that 1281 * the timer does not drift. This routine assumes 1282 * that it is called in a context where the timers 1283 * on which it is operating cannot change in value. 1284 */ 1285 static int 1286 itimerdecr(struct ptimer *pt, int nsec) 1287 { 1288 struct itimerspec *itp; 1289 1290 KASSERT(mutex_owned(&timer_lock)); 1291 1292 itp = &pt->pt_time; 1293 if (itp->it_value.tv_nsec < nsec) { 1294 if (itp->it_value.tv_sec == 0) { 1295 /* expired, and already in next interval */ 1296 nsec -= itp->it_value.tv_nsec; 1297 goto expire; 1298 } 1299 itp->it_value.tv_nsec += 1000000000; 1300 itp->it_value.tv_sec--; 1301 } 1302 itp->it_value.tv_nsec -= nsec; 1303 nsec = 0; 1304 if (timespecisset(&itp->it_value)) 1305 return (1); 1306 /* expired, exactly at end of interval */ 1307 expire: 1308 if (timespecisset(&itp->it_interval)) { 1309 itp->it_value = itp->it_interval; 1310 itp->it_value.tv_nsec -= nsec; 1311 if (itp->it_value.tv_nsec < 0) { 1312 itp->it_value.tv_nsec += 1000000000; 1313 itp->it_value.tv_sec--; 1314 } 1315 timer_settime(pt); 1316 } else 1317 itp->it_value.tv_nsec = 0; /* sec is already 0 */ 1318 return (0); 1319 } 1320 1321 static void 1322 itimerfire(struct ptimer *pt) 1323 { 1324 1325 KASSERT(mutex_owned(&timer_lock)); 1326 1327 /* 1328 * XXX Can overrun, but we don't do signal queueing yet, anyway. 1329 * XXX Relying on the clock interrupt is stupid. 1330 */ 1331 if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) || 1332 (pt->pt_ev.sigev_notify != SIGEV_SIGNAL && 1333 pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued) 1334 return; 1335 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain); 1336 pt->pt_queued = true; 1337 softint_schedule(timer_sih); 1338 } 1339 1340 void 1341 timer_tick(lwp_t *l, bool user) 1342 { 1343 struct ptimers *pts; 1344 struct ptimer *pt; 1345 proc_t *p; 1346 1347 p = l->l_proc; 1348 if (p->p_timers == NULL) 1349 return; 1350 1351 mutex_spin_enter(&timer_lock); 1352 if ((pts = l->l_proc->p_timers) != NULL) { 1353 /* 1354 * Run current process's virtual and profile time, as needed. 1355 */ 1356 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL) 1357 if (itimerdecr(pt, tick * 1000) == 0) 1358 itimerfire(pt); 1359 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL) 1360 if (itimerdecr(pt, tick * 1000) == 0) 1361 itimerfire(pt); 1362 } 1363 mutex_spin_exit(&timer_lock); 1364 } 1365 1366 #ifdef KERN_SA 1367 /* 1368 * timer_sa_intr: 1369 * 1370 * SIGEV_SA handling for timer_intr(). We are called (and return) 1371 * with the timer lock held. We know that the process had SA enabled 1372 * when this timer was enqueued. As timer_intr() is a soft interrupt 1373 * handler, SA should still be enabled by the time we get here. 1374 */ 1375 static void 1376 timer_sa_intr(struct ptimer *pt, proc_t *p) 1377 { 1378 unsigned int i; 1379 struct sadata *sa; 1380 struct sadata_vp *vp; 1381 1382 /* Cause the process to generate an upcall when it returns. */ 1383 if (!p->p_timerpend) { 1384 /* 1385 * XXX stop signals can be processed inside tsleep, 1386 * which can be inside sa_yield's inner loop, which 1387 * makes testing for sa_idle alone insuffucent to 1388 * determine if we really should call setrunnable. 1389 */ 1390 pt->pt_poverruns = pt->pt_overruns; 1391 pt->pt_overruns = 0; 1392 i = 1 << pt->pt_entry; 1393 p->p_timers->pts_fired = i; 1394 p->p_timerpend = 1; 1395 1396 sa = p->p_sa; 1397 mutex_enter(&sa->sa_mutex); 1398 SLIST_FOREACH(vp, &sa->sa_vps, savp_next) { 1399 struct lwp *vp_lwp = vp->savp_lwp; 1400 lwp_lock(vp_lwp); 1401 lwp_need_userret(vp_lwp); 1402 if (vp_lwp->l_flag & LW_SA_IDLE) { 1403 vp_lwp->l_flag &= ~LW_SA_IDLE; 1404 lwp_unsleep(vp_lwp, true); 1405 break; 1406 } 1407 lwp_unlock(vp_lwp); 1408 } 1409 mutex_exit(&sa->sa_mutex); 1410 } else { 1411 i = 1 << pt->pt_entry; 1412 if ((p->p_timers->pts_fired & i) == 0) { 1413 pt->pt_poverruns = pt->pt_overruns; 1414 pt->pt_overruns = 0; 1415 p->p_timers->pts_fired |= i; 1416 } else 1417 pt->pt_overruns++; 1418 } 1419 } 1420 #endif /* KERN_SA */ 1421 1422 static void 1423 timer_intr(void *cookie) 1424 { 1425 ksiginfo_t ksi; 1426 struct ptimer *pt; 1427 proc_t *p; 1428 1429 mutex_enter(proc_lock); 1430 mutex_spin_enter(&timer_lock); 1431 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) { 1432 TAILQ_REMOVE(&timer_queue, pt, pt_chain); 1433 KASSERT(pt->pt_queued); 1434 pt->pt_queued = false; 1435 1436 if (pt->pt_proc->p_timers == NULL) { 1437 /* Process is dying. */ 1438 continue; 1439 } 1440 p = pt->pt_proc; 1441 #ifdef KERN_SA 1442 if (pt->pt_ev.sigev_notify == SIGEV_SA) { 1443 timer_sa_intr(pt, p); 1444 continue; 1445 } 1446 #endif /* KERN_SA */ 1447 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) 1448 continue; 1449 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) { 1450 pt->pt_overruns++; 1451 continue; 1452 } 1453 1454 KSI_INIT(&ksi); 1455 ksi.ksi_signo = pt->pt_ev.sigev_signo; 1456 ksi.ksi_code = SI_TIMER; 1457 ksi.ksi_value = pt->pt_ev.sigev_value; 1458 pt->pt_poverruns = pt->pt_overruns; 1459 pt->pt_overruns = 0; 1460 mutex_spin_exit(&timer_lock); 1461 kpsignal(p, &ksi, NULL); 1462 mutex_spin_enter(&timer_lock); 1463 } 1464 mutex_spin_exit(&timer_lock); 1465 mutex_exit(proc_lock); 1466 } 1467 1468 /* 1469 * Check if the time will wrap if set to ts. 1470 * 1471 * ts - timespec describing the new time 1472 * delta - the delta between the current time and ts 1473 */ 1474 bool 1475 time_wraps(struct timespec *ts, struct timespec *delta) 1476 { 1477 1478 /* 1479 * Don't allow the time to be set forward so far it 1480 * will wrap and become negative, thus allowing an 1481 * attacker to bypass the next check below. The 1482 * cutoff is 1 year before rollover occurs, so even 1483 * if the attacker uses adjtime(2) to move the time 1484 * past the cutoff, it will take a very long time 1485 * to get to the wrap point. 1486 */ 1487 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) || 1488 (delta->tv_sec < 0 || delta->tv_nsec < 0)) 1489 return true; 1490 1491 return false; 1492 } 1493