xref: /netbsd-src/sys/kern/kern_time.c (revision 27578b9aac214cc7796ead81dcc5427e79d5f2a0)
1 /*	$NetBSD: kern_time.c,v 1.56 2001/09/16 06:50:06 manu Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Christopher G. Demetriou.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1982, 1986, 1989, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
72  */
73 
74 #include "fs_nfs.h"
75 #include "opt_nfs.h"
76 #include "opt_nfsserver.h"
77 
78 #include <sys/param.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/signalvar.h>
85 #include <sys/syslog.h>
86 
87 #include <sys/mount.h>
88 #include <sys/syscallargs.h>
89 
90 #include <uvm/uvm_extern.h>
91 
92 #if defined(NFS) || defined(NFSSERVER)
93 #include <nfs/rpcv2.h>
94 #include <nfs/nfsproto.h>
95 #include <nfs/nfs_var.h>
96 #endif
97 
98 #include <machine/cpu.h>
99 
100 /*
101  * Time of day and interval timer support.
102  *
103  * These routines provide the kernel entry points to get and set
104  * the time-of-day and per-process interval timers.  Subroutines
105  * here provide support for adding and subtracting timeval structures
106  * and decrementing interval timers, optionally reloading the interval
107  * timers when they expire.
108  */
109 
110 /* This function is used by clock_settime and settimeofday */
111 int
112 settime(tv)
113 	struct timeval *tv;
114 {
115 	struct timeval delta;
116 	struct cpu_info *ci;
117 	int s;
118 
119 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
120 	s = splclock();
121 	timersub(tv, &time, &delta);
122 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
123 		splx(s);
124 		return (EPERM);
125 	}
126 #ifdef notyet
127 	if ((delta.tv_sec < 86400) && securelevel > 0) {
128 		splx(s);
129 		return (EPERM);
130 	}
131 #endif
132 	time = *tv;
133 	(void) spllowersoftclock();
134 	timeradd(&boottime, &delta, &boottime);
135 	/*
136 	 * XXXSMP
137 	 * This is wrong.  We should traverse a list of all
138 	 * CPUs and add the delta to the runtime of those
139 	 * CPUs which have a process on them.
140 	 */
141 	ci = curcpu();
142 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
143 	    &ci->ci_schedstate.spc_runtime);
144 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
145 		nqnfs_lease_updatetime(delta.tv_sec);
146 #	endif
147 	splx(s);
148 	resettodr();
149 	return (0);
150 }
151 
152 /* ARGSUSED */
153 int
154 sys_clock_gettime(p, v, retval)
155 	struct proc *p;
156 	void *v;
157 	register_t *retval;
158 {
159 	struct sys_clock_gettime_args /* {
160 		syscallarg(clockid_t) clock_id;
161 		syscallarg(struct timespec *) tp;
162 	} */ *uap = v;
163 	clockid_t clock_id;
164 	struct timeval atv;
165 	struct timespec ats;
166 
167 	clock_id = SCARG(uap, clock_id);
168 	if (clock_id != CLOCK_REALTIME)
169 		return (EINVAL);
170 
171 	microtime(&atv);
172 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
173 
174 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
175 }
176 
177 /* ARGSUSED */
178 int
179 sys_clock_settime(p, v, retval)
180 	struct proc *p;
181 	void *v;
182 	register_t *retval;
183 {
184 	struct sys_clock_settime_args /* {
185 		syscallarg(clockid_t) clock_id;
186 		syscallarg(const struct timespec *) tp;
187 	} */ *uap = v;
188 	clockid_t clock_id;
189 	struct timespec ats;
190 	int error;
191 
192 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
193 		return (error);
194 
195 	clock_id = SCARG(uap, clock_id);
196 
197 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
198 		return (error);
199 
200 	return (clock_settime1(clock_id, &ats));
201 }
202 
203 
204 int
205 clock_settime1(clock_id, ats)
206 	clockid_t clock_id;
207 	struct timespec *ats;
208 {
209 	struct timeval atv;
210 	int error;
211 
212 	if (clock_id != CLOCK_REALTIME)
213 		return (EINVAL);
214 
215 	TIMESPEC_TO_TIMEVAL(&atv, ats);
216 	if ((error = settime(&atv)) != 0)
217 		return (error);
218 
219 	return 0;
220 }
221 
222 int
223 sys_clock_getres(p, v, retval)
224 	struct proc *p;
225 	void *v;
226 	register_t *retval;
227 {
228 	struct sys_clock_getres_args /* {
229 		syscallarg(clockid_t) clock_id;
230 		syscallarg(struct timespec *) tp;
231 	} */ *uap = v;
232 	clockid_t clock_id;
233 	struct timespec ts;
234 	int error = 0;
235 
236 	clock_id = SCARG(uap, clock_id);
237 	if (clock_id != CLOCK_REALTIME)
238 		return (EINVAL);
239 
240 	if (SCARG(uap, tp)) {
241 		ts.tv_sec = 0;
242 		ts.tv_nsec = 1000000000 / hz;
243 
244 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
245 	}
246 
247 	return error;
248 }
249 
250 /* ARGSUSED */
251 int
252 sys_nanosleep(p, v, retval)
253 	struct proc *p;
254 	void *v;
255 	register_t *retval;
256 {
257 	static int nanowait;
258 	struct sys_nanosleep_args/* {
259 		syscallarg(struct timespec *) rqtp;
260 		syscallarg(struct timespec *) rmtp;
261 	} */ *uap = v;
262 	struct timespec rqt;
263 	struct timespec rmt;
264 	struct timeval atv, utv;
265 	int error, s, timo;
266 
267 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
268 		       sizeof(struct timespec));
269 	if (error)
270 		return (error);
271 
272 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
273 	if (itimerfix(&atv))
274 		return (EINVAL);
275 
276 	s = splclock();
277 	timeradd(&atv,&time,&atv);
278 	timo = hzto(&atv);
279 	/*
280 	 * Avoid inadvertantly sleeping forever
281 	 */
282 	if (timo == 0)
283 		timo = 1;
284 	splx(s);
285 
286 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
287 	if (error == ERESTART)
288 		error = EINTR;
289 	if (error == EWOULDBLOCK)
290 		error = 0;
291 
292 	if (SCARG(uap, rmtp)) {
293 		int error;
294 
295 		s = splclock();
296 		utv = time;
297 		splx(s);
298 
299 		timersub(&atv, &utv, &utv);
300 		if (utv.tv_sec < 0)
301 			timerclear(&utv);
302 
303 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
304 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
305 			sizeof(rmt));
306 		if (error)
307 			return (error);
308 	}
309 
310 	return error;
311 }
312 
313 /* ARGSUSED */
314 int
315 sys_gettimeofday(p, v, retval)
316 	struct proc *p;
317 	void *v;
318 	register_t *retval;
319 {
320 	struct sys_gettimeofday_args /* {
321 		syscallarg(struct timeval *) tp;
322 		syscallarg(struct timezone *) tzp;
323 	} */ *uap = v;
324 	struct timeval atv;
325 	int error = 0;
326 	struct timezone tzfake;
327 
328 	if (SCARG(uap, tp)) {
329 		microtime(&atv);
330 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
331 		if (error)
332 			return (error);
333 	}
334 	if (SCARG(uap, tzp)) {
335 		/*
336 		 * NetBSD has no kernel notion of time zone, so we just
337 		 * fake up a timezone struct and return it if demanded.
338 		 */
339 		tzfake.tz_minuteswest = 0;
340 		tzfake.tz_dsttime = 0;
341 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
342 	}
343 	return (error);
344 }
345 
346 /* ARGSUSED */
347 int
348 sys_settimeofday(p, v, retval)
349 	struct proc *p;
350 	void *v;
351 	register_t *retval;
352 {
353 	struct sys_settimeofday_args /* {
354 		syscallarg(const struct timeval *) tv;
355 		syscallarg(const struct timezone *) tzp;
356 	} */ *uap = v;
357 	struct timeval atv;
358 	struct timezone atz;
359 	struct timeval *tv = NULL;
360 	struct timezone *tzp = NULL;
361 	int error;
362 
363 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
364 		return (error);
365 
366 	/* Verify all parameters before changing time. */
367 	if (SCARG(uap, tv)) {
368 		if ((error = copyin(SCARG(uap, tv), &atv, sizeof(atv))) != 0)
369 			return (error);
370 		tv = &atv;
371 	}
372 	/* XXX since we don't use tz, probably no point in doing copyin. */
373 	if (SCARG(uap, tzp)) {
374 		if ((error = copyin(SCARG(uap, tzp), &atz, sizeof(atz))) != 0)
375 			return (error);
376 		tzp = &atz;
377 	}
378 
379 	return settimeofday1(tv, tzp, p);
380 }
381 
382 int
383 settimeofday1(tv, tzp, p)
384 	struct timeval *tv;
385 	struct timezone *tzp;
386 	struct proc *p;
387 {
388 	int error;
389 
390 	if (tv)
391 		if ((error = settime(tv)) != 0)
392 			return (error);
393 	/*
394 	 * NetBSD has no kernel notion of time zone, and only an
395 	 * obsolete program would try to set it, so we log a warning.
396 	 */
397 	if (tzp)
398 		log(LOG_WARNING, "pid %d attempted to set the "
399 		    "(obsolete) kernel time zone\n", p->p_pid);
400 	return (0);
401 }
402 
403 int	tickdelta;			/* current clock skew, us. per tick */
404 long	timedelta;			/* unapplied time correction, us. */
405 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
406 
407 /* ARGSUSED */
408 int
409 sys_adjtime(p, v, retval)
410 	struct proc *p;
411 	void *v;
412 	register_t *retval;
413 {
414 	struct sys_adjtime_args /* {
415 		syscallarg(const struct timeval *) delta;
416 		syscallarg(struct timeval *) olddelta;
417 	} */ *uap = v;
418 	struct timeval atv;
419 	struct timeval *oatv = NULL;
420 	int error;
421 
422 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
423 		return (error);
424 
425 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
426 	if (error)
427 		return (error);
428 
429 	if (SCARG(uap, olddelta) != NULL) {
430 		if (uvm_useracc((caddr_t)SCARG(uap, olddelta),
431 		    sizeof(struct timeval), B_WRITE) == FALSE)
432 			return (EFAULT);
433 		oatv = SCARG(uap, olddelta);
434 	}
435 
436 	return adjtime1(&atv, oatv, p);
437 }
438 
439 int
440 adjtime1(delta, olddelta, p)
441 	struct timeval *delta;
442 	struct timeval *olddelta;
443 	struct proc *p;
444 {
445 	long ndelta, ntickdelta, odelta;
446 	int s;
447 
448 	/*
449 	 * Compute the total correction and the rate at which to apply it.
450 	 * Round the adjustment down to a whole multiple of the per-tick
451 	 * delta, so that after some number of incremental changes in
452 	 * hardclock(), tickdelta will become zero, lest the correction
453 	 * overshoot and start taking us away from the desired final time.
454 	 */
455 	ndelta = delta->tv_sec * 1000000 + delta->tv_usec;
456 	if (ndelta > bigadj || ndelta < -bigadj)
457 		ntickdelta = 10 * tickadj;
458 	else
459 		ntickdelta = tickadj;
460 	if (ndelta % ntickdelta)
461 		ndelta = ndelta / ntickdelta * ntickdelta;
462 
463 	/*
464 	 * To make hardclock()'s job easier, make the per-tick delta negative
465 	 * if we want time to run slower; then hardclock can simply compute
466 	 * tick + tickdelta, and subtract tickdelta from timedelta.
467 	 */
468 	if (ndelta < 0)
469 		ntickdelta = -ntickdelta;
470 	s = splclock();
471 	odelta = timedelta;
472 	timedelta = ndelta;
473 	tickdelta = ntickdelta;
474 	splx(s);
475 
476 	if (olddelta) {
477 		delta->tv_sec = odelta / 1000000;
478 		delta->tv_usec = odelta % 1000000;
479 		(void) copyout(delta, olddelta, sizeof(struct timeval));
480 	}
481 	return (0);
482 }
483 
484 /*
485  * Get value of an interval timer.  The process virtual and
486  * profiling virtual time timers are kept in the p_stats area, since
487  * they can be swapped out.  These are kept internally in the
488  * way they are specified externally: in time until they expire.
489  *
490  * The real time interval timer is kept in the process table slot
491  * for the process, and its value (it_value) is kept as an
492  * absolute time rather than as a delta, so that it is easy to keep
493  * periodic real-time signals from drifting.
494  *
495  * Virtual time timers are processed in the hardclock() routine of
496  * kern_clock.c.  The real time timer is processed by a timeout
497  * routine, called from the softclock() routine.  Since a callout
498  * may be delayed in real time due to interrupt processing in the system,
499  * it is possible for the real time timeout routine (realitexpire, given below),
500  * to be delayed in real time past when it is supposed to occur.  It
501  * does not suffice, therefore, to reload the real timer .it_value from the
502  * real time timers .it_interval.  Rather, we compute the next time in
503  * absolute time the timer should go off.
504  */
505 /* ARGSUSED */
506 int
507 sys_getitimer(p, v, retval)
508 	struct proc *p;
509 	void *v;
510 	register_t *retval;
511 {
512 	struct sys_getitimer_args /* {
513 		syscallarg(int) which;
514 		syscallarg(struct itimerval *) itv;
515 	} */ *uap = v;
516 	int which = SCARG(uap, which);
517 	struct itimerval aitv;
518 	int s;
519 
520 	if ((u_int)which > ITIMER_PROF)
521 		return (EINVAL);
522 	s = splclock();
523 	if (which == ITIMER_REAL) {
524 		/*
525 		 * Convert from absolute to relative time in .it_value
526 		 * part of real time timer.  If time for real time timer
527 		 * has passed return 0, else return difference between
528 		 * current time and time for the timer to go off.
529 		 */
530 		aitv = p->p_realtimer;
531 		if (timerisset(&aitv.it_value)) {
532 			if (timercmp(&aitv.it_value, &time, <))
533 				timerclear(&aitv.it_value);
534 			else
535 				timersub(&aitv.it_value, &time, &aitv.it_value);
536 		}
537 	} else
538 		aitv = p->p_stats->p_timer[which];
539 	splx(s);
540 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
541 }
542 
543 /* ARGSUSED */
544 int
545 sys_setitimer(p, v, retval)
546 	struct proc *p;
547 	void *v;
548 	register_t *retval;
549 {
550 	struct sys_setitimer_args /* {
551 		syscallarg(int) which;
552 		syscallarg(const struct itimerval *) itv;
553 		syscallarg(struct itimerval *) oitv;
554 	} */ *uap = v;
555 	int which = SCARG(uap, which);
556 	struct sys_getitimer_args getargs;
557 	struct itimerval aitv;
558 	const struct itimerval *itvp;
559 	int s, error;
560 
561 	if ((u_int)which > ITIMER_PROF)
562 		return (EINVAL);
563 	itvp = SCARG(uap, itv);
564 	if (itvp &&
565 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
566 		return (error);
567 	if (SCARG(uap, oitv) != NULL) {
568 		SCARG(&getargs, which) = which;
569 		SCARG(&getargs, itv) = SCARG(uap, oitv);
570 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
571 			return (error);
572 	}
573 	if (itvp == 0)
574 		return (0);
575 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
576 		return (EINVAL);
577 	s = splclock();
578 	if (which == ITIMER_REAL) {
579 		callout_stop(&p->p_realit_ch);
580 		if (timerisset(&aitv.it_value)) {
581 			/*
582 			 * Don't need to check hzto() return value, here.
583 			 * callout_reset() does it for us.
584 			 */
585 			timeradd(&aitv.it_value, &time, &aitv.it_value);
586 			callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
587 			    realitexpire, p);
588 		}
589 		p->p_realtimer = aitv;
590 	} else
591 		p->p_stats->p_timer[which] = aitv;
592 	splx(s);
593 	return (0);
594 }
595 
596 /*
597  * Real interval timer expired:
598  * send process whose timer expired an alarm signal.
599  * If time is not set up to reload, then just return.
600  * Else compute next time timer should go off which is > current time.
601  * This is where delay in processing this timeout causes multiple
602  * SIGALRM calls to be compressed into one.
603  */
604 void
605 realitexpire(arg)
606 	void *arg;
607 {
608 	struct proc *p;
609 	int s;
610 
611 	p = (struct proc *)arg;
612 	psignal(p, SIGALRM);
613 	if (!timerisset(&p->p_realtimer.it_interval)) {
614 		timerclear(&p->p_realtimer.it_value);
615 		return;
616 	}
617 	for (;;) {
618 		s = splclock();
619 		timeradd(&p->p_realtimer.it_value,
620 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
621 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
622 			/*
623 			 * Don't need to check hzto() return value, here.
624 			 * callout_reset() does it for us.
625 			 */
626 			callout_reset(&p->p_realit_ch,
627 			    hzto(&p->p_realtimer.it_value), realitexpire, p);
628 			splx(s);
629 			return;
630 		}
631 		splx(s);
632 	}
633 }
634 
635 /*
636  * Check that a proposed value to load into the .it_value or
637  * .it_interval part of an interval timer is acceptable, and
638  * fix it to have at least minimal value (i.e. if it is less
639  * than the resolution of the clock, round it up.)
640  */
641 int
642 itimerfix(tv)
643 	struct timeval *tv;
644 {
645 
646 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
647 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
648 		return (EINVAL);
649 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
650 		tv->tv_usec = tick;
651 	return (0);
652 }
653 
654 /*
655  * Decrement an interval timer by a specified number
656  * of microseconds, which must be less than a second,
657  * i.e. < 1000000.  If the timer expires, then reload
658  * it.  In this case, carry over (usec - old value) to
659  * reduce the value reloaded into the timer so that
660  * the timer does not drift.  This routine assumes
661  * that it is called in a context where the timers
662  * on which it is operating cannot change in value.
663  */
664 int
665 itimerdecr(itp, usec)
666 	struct itimerval *itp;
667 	int usec;
668 {
669 
670 	if (itp->it_value.tv_usec < usec) {
671 		if (itp->it_value.tv_sec == 0) {
672 			/* expired, and already in next interval */
673 			usec -= itp->it_value.tv_usec;
674 			goto expire;
675 		}
676 		itp->it_value.tv_usec += 1000000;
677 		itp->it_value.tv_sec--;
678 	}
679 	itp->it_value.tv_usec -= usec;
680 	usec = 0;
681 	if (timerisset(&itp->it_value))
682 		return (1);
683 	/* expired, exactly at end of interval */
684 expire:
685 	if (timerisset(&itp->it_interval)) {
686 		itp->it_value = itp->it_interval;
687 		itp->it_value.tv_usec -= usec;
688 		if (itp->it_value.tv_usec < 0) {
689 			itp->it_value.tv_usec += 1000000;
690 			itp->it_value.tv_sec--;
691 		}
692 	} else
693 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
694 	return (0);
695 }
696 
697 /*
698  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
699  * for usage and rationale.
700  */
701 int
702 ratecheck(lasttime, mininterval)
703 	struct timeval *lasttime;
704 	const struct timeval *mininterval;
705 {
706 	struct timeval tv, delta;
707 	int s, rv = 0;
708 
709 	s = splclock();
710 	tv = mono_time;
711 	splx(s);
712 
713 	timersub(&tv, lasttime, &delta);
714 
715 	/*
716 	 * check for 0,0 is so that the message will be seen at least once,
717 	 * even if interval is huge.
718 	 */
719 	if (timercmp(&delta, mininterval, >=) ||
720 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
721 		*lasttime = tv;
722 		rv = 1;
723 	}
724 
725 	return (rv);
726 }
727 
728 /*
729  * ppsratecheck(): packets (or events) per second limitation.
730  */
731 int
732 ppsratecheck(lasttime, curpps, maxpps)
733 	struct timeval *lasttime;
734 	int *curpps;
735 	int maxpps;	/* maximum pps allowed */
736 {
737 	struct timeval tv, delta;
738 	int s, rv;
739 
740 	s = splclock();
741 	tv = mono_time;
742 	splx(s);
743 
744 	timersub(&tv, lasttime, &delta);
745 
746 	/*
747 	 * check for 0,0 is so that the message will be seen at least once.
748 	 * if more than one second have passed since the last update of
749 	 * lasttime, reset the counter.
750 	 *
751 	 * we do increment *curpps even in *curpps < maxpps case, as some may
752 	 * try to use *curpps for stat purposes as well.
753 	 */
754 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
755 	    delta.tv_sec >= 1) {
756 		*lasttime = tv;
757 		*curpps = 0;
758 		rv = 1;
759 	} else if (maxpps < 0)
760 		rv = 1;
761 	else if (*curpps < maxpps)
762 		rv = 1;
763 	else
764 		rv = 0;
765 
766 #if 1 /*DIAGNOSTIC?*/
767 	/* be careful about wrap-around */
768 	if (*curpps + 1 > *curpps)
769 		*curpps = *curpps + 1;
770 #else
771 	/*
772 	 * assume that there's not too many calls to this function.
773 	 * not sure if the assumption holds, as it depends on *caller's*
774 	 * behavior, not the behavior of this function.
775 	 * IMHO it is wrong to make assumption on the caller's behavior,
776 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
777 	 */
778 	*curpps = *curpps + 1;
779 #endif
780 
781 	return (rv);
782 }
783