xref: /netbsd-src/sys/kern/kern_time.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: kern_time.c,v 1.85 2004/11/14 03:30:09 atatat Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Christopher G. Demetriou.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1982, 1986, 1989, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.85 2004/11/14 03:30:09 atatat Exp $");
72 
73 #include "fs_nfs.h"
74 #include "opt_nfs.h"
75 #include "opt_nfsserver.h"
76 
77 #include <sys/param.h>
78 #include <sys/resourcevar.h>
79 #include <sys/kernel.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/proc.h>
83 #include <sys/sa.h>
84 #include <sys/savar.h>
85 #include <sys/vnode.h>
86 #include <sys/signalvar.h>
87 #include <sys/syslog.h>
88 
89 #include <sys/mount.h>
90 #include <sys/syscallargs.h>
91 
92 #include <uvm/uvm_extern.h>
93 
94 #if defined(NFS) || defined(NFSSERVER)
95 #include <nfs/rpcv2.h>
96 #include <nfs/nfsproto.h>
97 #include <nfs/nfs_var.h>
98 #endif
99 
100 #include <machine/cpu.h>
101 
102 static void timerupcall(struct lwp *, void *);
103 
104 
105 /* Time of day and interval timer support.
106  *
107  * These routines provide the kernel entry points to get and set
108  * the time-of-day and per-process interval timers.  Subroutines
109  * here provide support for adding and subtracting timeval structures
110  * and decrementing interval timers, optionally reloading the interval
111  * timers when they expire.
112  */
113 
114 /* This function is used by clock_settime and settimeofday */
115 int
116 settime(struct timeval *tv)
117 {
118 	struct timeval delta;
119 	struct cpu_info *ci;
120 	int s;
121 
122 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123 	s = splclock();
124 	timersub(tv, &time, &delta);
125 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126 		splx(s);
127 		return (EPERM);
128 	}
129 #ifdef notyet
130 	if ((delta.tv_sec < 86400) && securelevel > 0) {
131 		splx(s);
132 		return (EPERM);
133 	}
134 #endif
135 	time = *tv;
136 	(void) spllowersoftclock();
137 	timeradd(&boottime, &delta, &boottime);
138 	/*
139 	 * XXXSMP
140 	 * This is wrong.  We should traverse a list of all
141 	 * CPUs and add the delta to the runtime of those
142 	 * CPUs which have a process on them.
143 	 */
144 	ci = curcpu();
145 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146 	    &ci->ci_schedstate.spc_runtime);
147 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148 		nqnfs_lease_updatetime(delta.tv_sec);
149 #	endif
150 	splx(s);
151 	resettodr();
152 	return (0);
153 }
154 
155 /* ARGSUSED */
156 int
157 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
158 {
159 	struct sys_clock_gettime_args /* {
160 		syscallarg(clockid_t) clock_id;
161 		syscallarg(struct timespec *) tp;
162 	} */ *uap = v;
163 	clockid_t clock_id;
164 	struct timeval atv;
165 	struct timespec ats;
166 	int s;
167 
168 	clock_id = SCARG(uap, clock_id);
169 	switch (clock_id) {
170 	case CLOCK_REALTIME:
171 		microtime(&atv);
172 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
173 		break;
174 	case CLOCK_MONOTONIC:
175 		/* XXX "hz" granularity */
176 		s = splclock();
177 		atv = mono_time;
178 		splx(s);
179 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
180 		break;
181 	default:
182 		return (EINVAL);
183 	}
184 
185 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
186 }
187 
188 /* ARGSUSED */
189 int
190 sys_clock_settime(l, v, retval)
191 	struct lwp *l;
192 	void *v;
193 	register_t *retval;
194 {
195 	struct sys_clock_settime_args /* {
196 		syscallarg(clockid_t) clock_id;
197 		syscallarg(const struct timespec *) tp;
198 	} */ *uap = v;
199 	struct proc *p = l->l_proc;
200 	int error;
201 
202 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
203 		return (error);
204 
205 	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
206 }
207 
208 
209 int
210 clock_settime1(clock_id, tp)
211 	clockid_t clock_id;
212 	const struct timespec *tp;
213 {
214 	struct timespec ats;
215 	struct timeval atv;
216 	int error;
217 
218 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
219 		return (error);
220 
221 	switch (clock_id) {
222 	case CLOCK_REALTIME:
223 		TIMESPEC_TO_TIMEVAL(&atv, &ats);
224 		if ((error = settime(&atv)) != 0)
225 			return (error);
226 		break;
227 	case CLOCK_MONOTONIC:
228 		return (EINVAL);	/* read-only clock */
229 	default:
230 		return (EINVAL);
231 	}
232 
233 	return 0;
234 }
235 
236 int
237 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
238 {
239 	struct sys_clock_getres_args /* {
240 		syscallarg(clockid_t) clock_id;
241 		syscallarg(struct timespec *) tp;
242 	} */ *uap = v;
243 	clockid_t clock_id;
244 	struct timespec ts;
245 	int error = 0;
246 
247 	clock_id = SCARG(uap, clock_id);
248 	switch (clock_id) {
249 	case CLOCK_REALTIME:
250 	case CLOCK_MONOTONIC:
251 		ts.tv_sec = 0;
252 		ts.tv_nsec = 1000000000 / hz;
253 		break;
254 	default:
255 		return (EINVAL);
256 	}
257 
258 	if (SCARG(uap, tp))
259 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
260 
261 	return error;
262 }
263 
264 /* ARGSUSED */
265 int
266 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
267 {
268 	static int nanowait;
269 	struct sys_nanosleep_args/* {
270 		syscallarg(struct timespec *) rqtp;
271 		syscallarg(struct timespec *) rmtp;
272 	} */ *uap = v;
273 	struct timespec rqt;
274 	struct timespec rmt;
275 	struct timeval atv, utv;
276 	int error, s, timo;
277 
278 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
279 		       sizeof(struct timespec));
280 	if (error)
281 		return (error);
282 
283 	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
284 	if (itimerfix(&atv))
285 		return (EINVAL);
286 
287 	s = splclock();
288 	timeradd(&atv,&time,&atv);
289 	timo = hzto(&atv);
290 	/*
291 	 * Avoid inadvertantly sleeping forever
292 	 */
293 	if (timo == 0)
294 		timo = 1;
295 	splx(s);
296 
297 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
298 	if (error == ERESTART)
299 		error = EINTR;
300 	if (error == EWOULDBLOCK)
301 		error = 0;
302 
303 	if (SCARG(uap, rmtp)) {
304 		int error;
305 
306 		s = splclock();
307 		utv = time;
308 		splx(s);
309 
310 		timersub(&atv, &utv, &utv);
311 		if (utv.tv_sec < 0)
312 			timerclear(&utv);
313 
314 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
315 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
316 			sizeof(rmt));
317 		if (error)
318 			return (error);
319 	}
320 
321 	return error;
322 }
323 
324 /* ARGSUSED */
325 int
326 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
327 {
328 	struct sys_gettimeofday_args /* {
329 		syscallarg(struct timeval *) tp;
330 		syscallarg(void *) tzp;		really "struct timezone *"
331 	} */ *uap = v;
332 	struct timeval atv;
333 	int error = 0;
334 	struct timezone tzfake;
335 
336 	if (SCARG(uap, tp)) {
337 		microtime(&atv);
338 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
339 		if (error)
340 			return (error);
341 	}
342 	if (SCARG(uap, tzp)) {
343 		/*
344 		 * NetBSD has no kernel notion of time zone, so we just
345 		 * fake up a timezone struct and return it if demanded.
346 		 */
347 		tzfake.tz_minuteswest = 0;
348 		tzfake.tz_dsttime = 0;
349 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
350 	}
351 	return (error);
352 }
353 
354 /* ARGSUSED */
355 int
356 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
357 {
358 	struct sys_settimeofday_args /* {
359 		syscallarg(const struct timeval *) tv;
360 		syscallarg(const void *) tzp;	really "const struct timezone *"
361 	} */ *uap = v;
362 	struct proc *p = l->l_proc;
363 	int error;
364 
365 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
366 		return (error);
367 
368 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
369 }
370 
371 int
372 settimeofday1(utv, utzp, p)
373 	const struct timeval *utv;
374 	const struct timezone *utzp;
375 	struct proc *p;
376 {
377 	struct timeval atv;
378 	struct timezone atz;
379 	struct timeval *tv = NULL;
380 	struct timezone *tzp = NULL;
381 	int error;
382 
383 	/* Verify all parameters before changing time. */
384 	if (utv) {
385 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
386 			return (error);
387 		tv = &atv;
388 	}
389 	/* XXX since we don't use tz, probably no point in doing copyin. */
390 	if (utzp) {
391 		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
392 			return (error);
393 		tzp = &atz;
394 	}
395 
396 	if (tv)
397 		if ((error = settime(tv)) != 0)
398 			return (error);
399 	/*
400 	 * NetBSD has no kernel notion of time zone, and only an
401 	 * obsolete program would try to set it, so we log a warning.
402 	 */
403 	if (tzp)
404 		log(LOG_WARNING, "pid %d attempted to set the "
405 		    "(obsolete) kernel time zone\n", p->p_pid);
406 	return (0);
407 }
408 
409 int	tickdelta;			/* current clock skew, us. per tick */
410 long	timedelta;			/* unapplied time correction, us. */
411 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
412 int	time_adjusted;			/* set if an adjustment is made */
413 
414 /* ARGSUSED */
415 int
416 sys_adjtime(struct lwp *l, void *v, register_t *retval)
417 {
418 	struct sys_adjtime_args /* {
419 		syscallarg(const struct timeval *) delta;
420 		syscallarg(struct timeval *) olddelta;
421 	} */ *uap = v;
422 	struct proc *p = l->l_proc;
423 	int error;
424 
425 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
426 		return (error);
427 
428 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
429 }
430 
431 int
432 adjtime1(delta, olddelta, p)
433 	const struct timeval *delta;
434 	struct timeval *olddelta;
435 	struct proc *p;
436 {
437 	struct timeval atv;
438 	long ndelta, ntickdelta, odelta;
439 	int error;
440 	int s;
441 
442 	error = copyin(delta, &atv, sizeof(struct timeval));
443 	if (error)
444 		return (error);
445 
446 	/*
447 	 * Compute the total correction and the rate at which to apply it.
448 	 * Round the adjustment down to a whole multiple of the per-tick
449 	 * delta, so that after some number of incremental changes in
450 	 * hardclock(), tickdelta will become zero, lest the correction
451 	 * overshoot and start taking us away from the desired final time.
452 	 */
453 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
454 	if (ndelta > bigadj || ndelta < -bigadj)
455 		ntickdelta = 10 * tickadj;
456 	else
457 		ntickdelta = tickadj;
458 	if (ndelta % ntickdelta)
459 		ndelta = ndelta / ntickdelta * ntickdelta;
460 
461 	/*
462 	 * To make hardclock()'s job easier, make the per-tick delta negative
463 	 * if we want time to run slower; then hardclock can simply compute
464 	 * tick + tickdelta, and subtract tickdelta from timedelta.
465 	 */
466 	if (ndelta < 0)
467 		ntickdelta = -ntickdelta;
468 	if (ndelta != 0)
469 		/* We need to save the system clock time during shutdown */
470 		time_adjusted |= 1;
471 	s = splclock();
472 	odelta = timedelta;
473 	timedelta = ndelta;
474 	tickdelta = ntickdelta;
475 	splx(s);
476 
477 	if (olddelta) {
478 		atv.tv_sec = odelta / 1000000;
479 		atv.tv_usec = odelta % 1000000;
480 		error = copyout(&atv, olddelta, sizeof(struct timeval));
481 	}
482 	return error;
483 }
484 
485 /*
486  * Interval timer support. Both the BSD getitimer() family and the POSIX
487  * timer_*() family of routines are supported.
488  *
489  * All timers are kept in an array pointed to by p_timers, which is
490  * allocated on demand - many processes don't use timers at all. The
491  * first three elements in this array are reserved for the BSD timers:
492  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
493  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
494  * syscall.
495  *
496  * Realtime timers are kept in the ptimer structure as an absolute
497  * time; virtual time timers are kept as a linked list of deltas.
498  * Virtual time timers are processed in the hardclock() routine of
499  * kern_clock.c.  The real time timer is processed by a callout
500  * routine, called from the softclock() routine.  Since a callout may
501  * be delayed in real time due to interrupt processing in the system,
502  * it is possible for the real time timeout routine (realtimeexpire,
503  * given below), to be delayed in real time past when it is supposed
504  * to occur.  It does not suffice, therefore, to reload the real timer
505  * .it_value from the real time timers .it_interval.  Rather, we
506  * compute the next time in absolute time the timer should go off.  */
507 
508 /* Allocate a POSIX realtime timer. */
509 int
510 sys_timer_create(struct lwp *l, void *v, register_t *retval)
511 {
512 	struct sys_timer_create_args /* {
513 		syscallarg(clockid_t) clock_id;
514 		syscallarg(struct sigevent *) evp;
515 		syscallarg(timer_t *) timerid;
516 	} */ *uap = v;
517 	struct proc *p = l->l_proc;
518 	clockid_t id;
519 	struct sigevent *evp;
520 	struct ptimer *pt;
521 	timer_t timerid;
522 	int error;
523 
524 	id = SCARG(uap, clock_id);
525 	if (id < CLOCK_REALTIME ||
526 	    id > CLOCK_PROF)
527 		return (EINVAL);
528 
529 	if (p->p_timers == NULL)
530 		timers_alloc(p);
531 
532 	/* Find a free timer slot, skipping those reserved for setitimer(). */
533 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
534 		if (p->p_timers->pts_timers[timerid] == NULL)
535 			break;
536 
537 	if (timerid == TIMER_MAX)
538 		return EAGAIN;
539 
540 	pt = pool_get(&ptimer_pool, PR_WAITOK);
541 	evp = SCARG(uap, evp);
542 	if (evp) {
543 		if (((error =
544 		    copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
545 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
546 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
547 			pool_put(&ptimer_pool, pt);
548 			return (error ? error : EINVAL);
549 		}
550 	} else {
551 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
552 		switch (id) {
553 		case CLOCK_REALTIME:
554 			pt->pt_ev.sigev_signo = SIGALRM;
555 			break;
556 		case CLOCK_VIRTUAL:
557 			pt->pt_ev.sigev_signo = SIGVTALRM;
558 			break;
559 		case CLOCK_PROF:
560 			pt->pt_ev.sigev_signo = SIGPROF;
561 			break;
562 		}
563 		pt->pt_ev.sigev_value.sival_int = timerid;
564 	}
565 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
566 	pt->pt_info.ksi_errno = 0;
567 	pt->pt_info.ksi_code = 0;
568 	pt->pt_info.ksi_pid = p->p_pid;
569 	pt->pt_info.ksi_uid = p->p_cred->p_ruid;
570 	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
571 
572 	pt->pt_type = id;
573 	pt->pt_proc = p;
574 	pt->pt_overruns = 0;
575 	pt->pt_poverruns = 0;
576 	pt->pt_entry = timerid;
577 	timerclear(&pt->pt_time.it_value);
578 	if (id == CLOCK_REALTIME)
579 		callout_init(&pt->pt_ch);
580 	else
581 		pt->pt_active = 0;
582 
583 	p->p_timers->pts_timers[timerid] = pt;
584 
585 	return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
586 }
587 
588 
589 /* Delete a POSIX realtime timer */
590 int
591 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
592 {
593 	struct sys_timer_delete_args /*  {
594 		syscallarg(timer_t) timerid;
595 	} */ *uap = v;
596 	struct proc *p = l->l_proc;
597 	timer_t timerid;
598 	struct ptimer *pt, *ptn;
599 	int s;
600 
601 	timerid = SCARG(uap, timerid);
602 
603 	if ((p->p_timers == NULL) ||
604 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
605 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
606 		return (EINVAL);
607 
608 	if (pt->pt_type == CLOCK_REALTIME)
609 		callout_stop(&pt->pt_ch);
610 	else if (pt->pt_active) {
611 		s = splclock();
612 		ptn = LIST_NEXT(pt, pt_list);
613 		LIST_REMOVE(pt, pt_list);
614 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
615 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
616 			    &ptn->pt_time.it_value);
617 		splx(s);
618 	}
619 
620 	p->p_timers->pts_timers[timerid] = NULL;
621 	pool_put(&ptimer_pool, pt);
622 
623 	return (0);
624 }
625 
626 /*
627  * Set up the given timer. The value in pt->pt_time.it_value is taken
628  * to be an absolute time for CLOCK_REALTIME timers and a relative
629  * time for virtual timers.
630  * Must be called at splclock().
631  */
632 void
633 timer_settime(struct ptimer *pt)
634 {
635 	struct ptimer *ptn, *pptn;
636 	struct ptlist *ptl;
637 
638 	if (pt->pt_type == CLOCK_REALTIME) {
639 		callout_stop(&pt->pt_ch);
640 		if (timerisset(&pt->pt_time.it_value)) {
641 			/*
642 			 * Don't need to check hzto() return value, here.
643 			 * callout_reset() does it for us.
644 			 */
645 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
646 			    realtimerexpire, pt);
647 		}
648 	} else {
649 		if (pt->pt_active) {
650 			ptn = LIST_NEXT(pt, pt_list);
651 			LIST_REMOVE(pt, pt_list);
652 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
653 				timeradd(&pt->pt_time.it_value,
654 				    &ptn->pt_time.it_value,
655 				    &ptn->pt_time.it_value);
656 		}
657 		if (timerisset(&pt->pt_time.it_value)) {
658 			if (pt->pt_type == CLOCK_VIRTUAL)
659 				ptl = &pt->pt_proc->p_timers->pts_virtual;
660 			else
661 				ptl = &pt->pt_proc->p_timers->pts_prof;
662 
663 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
664 			     ptn && timercmp(&pt->pt_time.it_value,
665 				 &ptn->pt_time.it_value, >);
666 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
667 				timersub(&pt->pt_time.it_value,
668 				    &ptn->pt_time.it_value,
669 				    &pt->pt_time.it_value);
670 
671 			if (pptn)
672 				LIST_INSERT_AFTER(pptn, pt, pt_list);
673 			else
674 				LIST_INSERT_HEAD(ptl, pt, pt_list);
675 
676 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
677 				timersub(&ptn->pt_time.it_value,
678 				    &pt->pt_time.it_value,
679 				    &ptn->pt_time.it_value);
680 
681 			pt->pt_active = 1;
682 		} else
683 			pt->pt_active = 0;
684 	}
685 }
686 
687 void
688 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
689 {
690 	struct ptimer *ptn;
691 
692 	*aitv = pt->pt_time;
693 	if (pt->pt_type == CLOCK_REALTIME) {
694 		/*
695 		 * Convert from absolute to relative time in .it_value
696 		 * part of real time timer.  If time for real time
697 		 * timer has passed return 0, else return difference
698 		 * between current time and time for the timer to go
699 		 * off.
700 		 */
701 		if (timerisset(&aitv->it_value)) {
702 			if (timercmp(&aitv->it_value, &time, <))
703 				timerclear(&aitv->it_value);
704 			else
705 				timersub(&aitv->it_value, &time,
706 				    &aitv->it_value);
707 		}
708 	} else if (pt->pt_active) {
709 		if (pt->pt_type == CLOCK_VIRTUAL)
710 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
711 		else
712 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
713 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
714 			timeradd(&aitv->it_value,
715 			    &ptn->pt_time.it_value, &aitv->it_value);
716 		KASSERT(ptn != NULL); /* pt should be findable on the list */
717 	} else
718 		timerclear(&aitv->it_value);
719 }
720 
721 
722 
723 /* Set and arm a POSIX realtime timer */
724 int
725 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
726 {
727 	struct sys_timer_settime_args /* {
728 		syscallarg(timer_t) timerid;
729 		syscallarg(int) flags;
730 		syscallarg(const struct itimerspec *) value;
731 		syscallarg(struct itimerspec *) ovalue;
732 	} */ *uap = v;
733 	struct proc *p = l->l_proc;
734 	int error, s, timerid;
735 	struct itimerval val, oval;
736 	struct itimerspec value, ovalue;
737 	struct ptimer *pt;
738 
739 	timerid = SCARG(uap, timerid);
740 
741 	if ((p->p_timers == NULL) ||
742 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
743 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
744 		return (EINVAL);
745 
746 	if ((error = copyin(SCARG(uap, value), &value,
747 	    sizeof(struct itimerspec))) != 0)
748 		return (error);
749 
750 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
751 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
752 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
753 		return (EINVAL);
754 
755 	oval = pt->pt_time;
756 	pt->pt_time = val;
757 
758 	s = splclock();
759 	/*
760 	 * If we've been passed a relative time for a realtime timer,
761 	 * convert it to absolute; if an absolute time for a virtual
762 	 * timer, convert it to relative and make sure we don't set it
763 	 * to zero, which would cancel the timer, or let it go
764 	 * negative, which would confuse the comparison tests.
765 	 */
766 	if (timerisset(&pt->pt_time.it_value)) {
767 		if (pt->pt_type == CLOCK_REALTIME) {
768 			if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
769 				timeradd(&pt->pt_time.it_value, &time,
770 				    &pt->pt_time.it_value);
771 		} else {
772 			if ((SCARG(uap, flags) & TIMER_ABSTIME) != 0) {
773 				timersub(&pt->pt_time.it_value, &time,
774 				    &pt->pt_time.it_value);
775 				if (!timerisset(&pt->pt_time.it_value) ||
776 				    pt->pt_time.it_value.tv_sec < 0) {
777 					pt->pt_time.it_value.tv_sec = 0;
778 					pt->pt_time.it_value.tv_usec = 1;
779 				}
780 			}
781 		}
782 	}
783 
784 	timer_settime(pt);
785 	splx(s);
786 
787 	if (SCARG(uap, ovalue)) {
788 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
789 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
790 		return copyout(&ovalue, SCARG(uap, ovalue),
791 		    sizeof(struct itimerspec));
792 	}
793 
794 	return (0);
795 }
796 
797 /* Return the time remaining until a POSIX timer fires. */
798 int
799 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
800 {
801 	struct sys_timer_gettime_args /* {
802 		syscallarg(timer_t) timerid;
803 		syscallarg(struct itimerspec *) value;
804 	} */ *uap = v;
805 	struct itimerval aitv;
806 	struct itimerspec its;
807 	struct proc *p = l->l_proc;
808 	int s, timerid;
809 	struct ptimer *pt;
810 
811 	timerid = SCARG(uap, timerid);
812 
813 	if ((p->p_timers == NULL) ||
814 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
815 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
816 		return (EINVAL);
817 
818 	s = splclock();
819 	timer_gettime(pt, &aitv);
820 	splx(s);
821 
822 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
823 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
824 
825 	return copyout(&its, SCARG(uap, value), sizeof(its));
826 }
827 
828 /*
829  * Return the count of the number of times a periodic timer expired
830  * while a notification was already pending. The counter is reset when
831  * a timer expires and a notification can be posted.
832  */
833 int
834 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
835 {
836 	struct sys_timer_getoverrun_args /* {
837 		syscallarg(timer_t) timerid;
838 	} */ *uap = v;
839 	struct proc *p = l->l_proc;
840 	int timerid;
841 	struct ptimer *pt;
842 
843 	timerid = SCARG(uap, timerid);
844 
845 	if ((p->p_timers == NULL) ||
846 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
847 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
848 		return (EINVAL);
849 
850 	*retval = pt->pt_poverruns;
851 
852 	return (0);
853 }
854 
855 /* Glue function that triggers an upcall; called from userret(). */
856 static void
857 timerupcall(struct lwp *l, void *arg)
858 {
859 	struct ptimers *pt = (struct ptimers *)arg;
860 	unsigned int i, fired, done;
861 	extern struct pool siginfo_pool;	/* XXX Ew. */
862 
863 	KDASSERT(l->l_proc->p_sa);
864 	/* Bail out if we do not own the virtual processor */
865 	if (l->l_savp->savp_lwp != l)
866 		return ;
867 
868 	KERNEL_PROC_LOCK(l);
869 
870 	fired = pt->pts_fired;
871 	done = 0;
872 	while ((i = ffs(fired)) != 0) {
873 		siginfo_t *si;
874 		int mask = 1 << --i;
875 		int f;
876 
877 		f = l->l_flag & L_SA;
878 		l->l_flag &= ~L_SA;
879 		si = pool_get(&siginfo_pool, PR_WAITOK);
880 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
881 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
882 		    sizeof(*si), si) == 0)
883 			done |= mask;
884 		fired &= ~mask;
885 		l->l_flag |= f;
886 	}
887 	pt->pts_fired &= ~done;
888 	if (pt->pts_fired == 0)
889 		l->l_proc->p_userret = NULL;
890 
891 	KERNEL_PROC_UNLOCK(l);
892 }
893 
894 
895 /*
896  * Real interval timer expired:
897  * send process whose timer expired an alarm signal.
898  * If time is not set up to reload, then just return.
899  * Else compute next time timer should go off which is > current time.
900  * This is where delay in processing this timeout causes multiple
901  * SIGALRM calls to be compressed into one.
902  */
903 void
904 realtimerexpire(void *arg)
905 {
906 	struct ptimer *pt;
907 	int s;
908 
909 	pt = (struct ptimer *)arg;
910 
911 	itimerfire(pt);
912 
913 	if (!timerisset(&pt->pt_time.it_interval)) {
914 		timerclear(&pt->pt_time.it_value);
915 		return;
916 	}
917 	for (;;) {
918 		s = splclock();
919 		timeradd(&pt->pt_time.it_value,
920 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
921 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
922 			/*
923 			 * Don't need to check hzto() return value, here.
924 			 * callout_reset() does it for us.
925 			 */
926 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
927 			    realtimerexpire, pt);
928 			splx(s);
929 			return;
930 		}
931 		splx(s);
932 		pt->pt_overruns++;
933 	}
934 }
935 
936 /* BSD routine to get the value of an interval timer. */
937 /* ARGSUSED */
938 int
939 sys_getitimer(struct lwp *l, void *v, register_t *retval)
940 {
941 	struct sys_getitimer_args /* {
942 		syscallarg(int) which;
943 		syscallarg(struct itimerval *) itv;
944 	} */ *uap = v;
945 	struct proc *p = l->l_proc;
946 	struct itimerval aitv;
947 	int s, which;
948 
949 	which = SCARG(uap, which);
950 
951 	if ((u_int)which > ITIMER_PROF)
952 		return (EINVAL);
953 
954 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
955 		timerclear(&aitv.it_value);
956 		timerclear(&aitv.it_interval);
957 	} else {
958 		s = splclock();
959 		timer_gettime(p->p_timers->pts_timers[which], &aitv);
960 		splx(s);
961 	}
962 
963 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
964 
965 }
966 
967 /* BSD routine to set/arm an interval timer. */
968 /* ARGSUSED */
969 int
970 sys_setitimer(struct lwp *l, void *v, register_t *retval)
971 {
972 	struct sys_setitimer_args /* {
973 		syscallarg(int) which;
974 		syscallarg(const struct itimerval *) itv;
975 		syscallarg(struct itimerval *) oitv;
976 	} */ *uap = v;
977 	struct proc *p = l->l_proc;
978 	int which = SCARG(uap, which);
979 	struct sys_getitimer_args getargs;
980 	struct itimerval aitv;
981 	const struct itimerval *itvp;
982 	struct ptimer *pt;
983 	int s, error;
984 
985 	if ((u_int)which > ITIMER_PROF)
986 		return (EINVAL);
987 	itvp = SCARG(uap, itv);
988 	if (itvp &&
989 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
990 		return (error);
991 	if (SCARG(uap, oitv) != NULL) {
992 		SCARG(&getargs, which) = which;
993 		SCARG(&getargs, itv) = SCARG(uap, oitv);
994 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
995 			return (error);
996 	}
997 	if (itvp == 0)
998 		return (0);
999 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
1000 		return (EINVAL);
1001 
1002 	/*
1003 	 * Don't bother allocating data structures if the process just
1004 	 * wants to clear the timer.
1005 	 */
1006 	if (!timerisset(&aitv.it_value) &&
1007 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1008 		return (0);
1009 
1010 	if (p->p_timers == NULL)
1011 		timers_alloc(p);
1012 	if (p->p_timers->pts_timers[which] == NULL) {
1013 		pt = pool_get(&ptimer_pool, PR_WAITOK);
1014 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1015 		pt->pt_ev.sigev_value.sival_int = which;
1016 		pt->pt_overruns = 0;
1017 		pt->pt_proc = p;
1018 		pt->pt_type = which;
1019 		pt->pt_entry = which;
1020 		switch (which) {
1021 		case ITIMER_REAL:
1022 			callout_init(&pt->pt_ch);
1023 			pt->pt_ev.sigev_signo = SIGALRM;
1024 			break;
1025 		case ITIMER_VIRTUAL:
1026 			pt->pt_active = 0;
1027 			pt->pt_ev.sigev_signo = SIGVTALRM;
1028 			break;
1029 		case ITIMER_PROF:
1030 			pt->pt_active = 0;
1031 			pt->pt_ev.sigev_signo = SIGPROF;
1032 			break;
1033 		}
1034 	} else
1035 		pt = p->p_timers->pts_timers[which];
1036 
1037 	pt->pt_time = aitv;
1038 	p->p_timers->pts_timers[which] = pt;
1039 
1040 	s = splclock();
1041 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1042 		/* Convert to absolute time */
1043 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1044 	}
1045 	timer_settime(pt);
1046 	splx(s);
1047 
1048 	return (0);
1049 }
1050 
1051 /* Utility routines to manage the array of pointers to timers. */
1052 void
1053 timers_alloc(struct proc *p)
1054 {
1055 	int i;
1056 	struct ptimers *pts;
1057 
1058 	pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1059 	LIST_INIT(&pts->pts_virtual);
1060 	LIST_INIT(&pts->pts_prof);
1061 	for (i = 0; i < TIMER_MAX; i++)
1062 		pts->pts_timers[i] = NULL;
1063 	pts->pts_fired = 0;
1064 	p->p_timers = pts;
1065 }
1066 
1067 /*
1068  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1069  * then clean up all timers and free all the data structures. If
1070  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1071  * by timer_create(), not the BSD setitimer() timers, and only free the
1072  * structure if none of those remain.
1073  */
1074 void
1075 timers_free(struct proc *p, int which)
1076 {
1077 	int i, s;
1078 	struct ptimers *pts;
1079 	struct ptimer *pt, *ptn;
1080 	struct timeval tv;
1081 
1082 	if (p->p_timers) {
1083 		pts = p->p_timers;
1084 		if (which == TIMERS_ALL)
1085 			i = 0;
1086 		else {
1087 			s = splclock();
1088 			timerclear(&tv);
1089 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1090 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1091 			     ptn = LIST_NEXT(ptn, pt_list))
1092 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1093 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1094 			if (ptn) {
1095 				timeradd(&tv, &ptn->pt_time.it_value,
1096 				    &ptn->pt_time.it_value);
1097 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1098 				    ptn, pt_list);
1099 			}
1100 
1101 			timerclear(&tv);
1102 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1103 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1104 			     ptn = LIST_NEXT(ptn, pt_list))
1105 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1106 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1107 			if (ptn) {
1108 				timeradd(&tv, &ptn->pt_time.it_value,
1109 				    &ptn->pt_time.it_value);
1110 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1111 				    pt_list);
1112 			}
1113 			splx(s);
1114 			i = 3;
1115 		}
1116 		for ( ; i < TIMER_MAX; i++)
1117 			if ((pt = pts->pts_timers[i]) != NULL) {
1118 				if (pt->pt_type == CLOCK_REALTIME)
1119 					callout_stop(&pt->pt_ch);
1120 				pts->pts_timers[i] = NULL;
1121 				pool_put(&ptimer_pool, pt);
1122 			}
1123 		if ((pts->pts_timers[0] == NULL) &&
1124 		    (pts->pts_timers[1] == NULL) &&
1125 		    (pts->pts_timers[2] == NULL)) {
1126 			p->p_timers = NULL;
1127 			free(pts, M_SUBPROC);
1128 		}
1129 	}
1130 }
1131 
1132 /*
1133  * Check that a proposed value to load into the .it_value or
1134  * .it_interval part of an interval timer is acceptable, and
1135  * fix it to have at least minimal value (i.e. if it is less
1136  * than the resolution of the clock, round it up.)
1137  */
1138 int
1139 itimerfix(struct timeval *tv)
1140 {
1141 
1142 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1143 		return (EINVAL);
1144 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1145 		tv->tv_usec = tick;
1146 	return (0);
1147 }
1148 
1149 /*
1150  * Decrement an interval timer by a specified number
1151  * of microseconds, which must be less than a second,
1152  * i.e. < 1000000.  If the timer expires, then reload
1153  * it.  In this case, carry over (usec - old value) to
1154  * reduce the value reloaded into the timer so that
1155  * the timer does not drift.  This routine assumes
1156  * that it is called in a context where the timers
1157  * on which it is operating cannot change in value.
1158  */
1159 int
1160 itimerdecr(struct ptimer *pt, int usec)
1161 {
1162 	struct itimerval *itp;
1163 
1164 	itp = &pt->pt_time;
1165 	if (itp->it_value.tv_usec < usec) {
1166 		if (itp->it_value.tv_sec == 0) {
1167 			/* expired, and already in next interval */
1168 			usec -= itp->it_value.tv_usec;
1169 			goto expire;
1170 		}
1171 		itp->it_value.tv_usec += 1000000;
1172 		itp->it_value.tv_sec--;
1173 	}
1174 	itp->it_value.tv_usec -= usec;
1175 	usec = 0;
1176 	if (timerisset(&itp->it_value))
1177 		return (1);
1178 	/* expired, exactly at end of interval */
1179 expire:
1180 	if (timerisset(&itp->it_interval)) {
1181 		itp->it_value = itp->it_interval;
1182 		itp->it_value.tv_usec -= usec;
1183 		if (itp->it_value.tv_usec < 0) {
1184 			itp->it_value.tv_usec += 1000000;
1185 			itp->it_value.tv_sec--;
1186 		}
1187 		timer_settime(pt);
1188 	} else
1189 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1190 	return (0);
1191 }
1192 
1193 void
1194 itimerfire(struct ptimer *pt)
1195 {
1196 	struct proc *p = pt->pt_proc;
1197 	struct sadata_vp *vp;
1198 	int s;
1199 	unsigned int i;
1200 
1201 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1202 		/*
1203 		 * No RT signal infrastructure exists at this time;
1204 		 * just post the signal number and throw away the
1205 		 * value.
1206 		 */
1207 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1208 			pt->pt_overruns++;
1209 		else {
1210 			ksiginfo_t ksi;
1211 			(void)memset(&ksi, 0, sizeof(ksi));
1212 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
1213 			ksi.ksi_code = SI_TIMER;
1214 			ksi.ksi_sigval = pt->pt_ev.sigev_value;
1215 			pt->pt_poverruns = pt->pt_overruns;
1216 			pt->pt_overruns = 0;
1217 			kpsignal(p, &ksi, NULL);
1218 		}
1219 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1220 		/* Cause the process to generate an upcall when it returns. */
1221 
1222 		if (p->p_userret == NULL) {
1223 			/*
1224 			 * XXX stop signals can be processed inside tsleep,
1225 			 * which can be inside sa_yield's inner loop, which
1226 			 * makes testing for sa_idle alone insuffucent to
1227 			 * determine if we really should call setrunnable.
1228 			 */
1229 			pt->pt_poverruns = pt->pt_overruns;
1230 			pt->pt_overruns = 0;
1231 			i = 1 << pt->pt_entry;
1232 			p->p_timers->pts_fired = i;
1233 			p->p_userret = timerupcall;
1234 			p->p_userret_arg = p->p_timers;
1235 
1236 			SCHED_LOCK(s);
1237 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1238 				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1239 					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1240 					sched_wakeup(vp->savp_lwp);
1241 					break;
1242 				}
1243 			}
1244 			SCHED_UNLOCK(s);
1245 		} else if (p->p_userret == timerupcall) {
1246 			i = 1 << pt->pt_entry;
1247 			if ((p->p_timers->pts_fired & i) == 0) {
1248 				pt->pt_poverruns = pt->pt_overruns;
1249 				pt->pt_overruns = 0;
1250 				p->p_timers->pts_fired |= i;
1251 			} else
1252 				pt->pt_overruns++;
1253 		} else {
1254 			pt->pt_overruns++;
1255 			if ((p->p_flag & P_WEXIT) == 0)
1256 				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1257 				    p->p_pid, pt->pt_overruns,
1258 				    pt->pt_ev.sigev_value.sival_int,
1259 				    p->p_userret);
1260 		}
1261 	}
1262 
1263 }
1264 
1265 /*
1266  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1267  * for usage and rationale.
1268  */
1269 int
1270 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1271 {
1272 	struct timeval tv, delta;
1273 	int s, rv = 0;
1274 
1275 	s = splclock();
1276 	tv = mono_time;
1277 	splx(s);
1278 
1279 	timersub(&tv, lasttime, &delta);
1280 
1281 	/*
1282 	 * check for 0,0 is so that the message will be seen at least once,
1283 	 * even if interval is huge.
1284 	 */
1285 	if (timercmp(&delta, mininterval, >=) ||
1286 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1287 		*lasttime = tv;
1288 		rv = 1;
1289 	}
1290 
1291 	return (rv);
1292 }
1293 
1294 /*
1295  * ppsratecheck(): packets (or events) per second limitation.
1296  */
1297 int
1298 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1299 {
1300 	struct timeval tv, delta;
1301 	int s, rv;
1302 
1303 	s = splclock();
1304 	tv = mono_time;
1305 	splx(s);
1306 
1307 	timersub(&tv, lasttime, &delta);
1308 
1309 	/*
1310 	 * check for 0,0 is so that the message will be seen at least once.
1311 	 * if more than one second have passed since the last update of
1312 	 * lasttime, reset the counter.
1313 	 *
1314 	 * we do increment *curpps even in *curpps < maxpps case, as some may
1315 	 * try to use *curpps for stat purposes as well.
1316 	 */
1317 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1318 	    delta.tv_sec >= 1) {
1319 		*lasttime = tv;
1320 		*curpps = 0;
1321 	}
1322 	if (maxpps < 0)
1323 		rv = 1;
1324 	else if (*curpps < maxpps)
1325 		rv = 1;
1326 	else
1327 		rv = 0;
1328 
1329 #if 1 /*DIAGNOSTIC?*/
1330 	/* be careful about wrap-around */
1331 	if (*curpps + 1 > *curpps)
1332 		*curpps = *curpps + 1;
1333 #else
1334 	/*
1335 	 * assume that there's not too many calls to this function.
1336 	 * not sure if the assumption holds, as it depends on *caller's*
1337 	 * behavior, not the behavior of this function.
1338 	 * IMHO it is wrong to make assumption on the caller's behavior,
1339 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1340 	 */
1341 	*curpps = *curpps + 1;
1342 #endif
1343 
1344 	return (rv);
1345 }
1346