xref: /netbsd-src/sys/kern/kern_time.c (revision 06be8101a16cc95f40783b3cb7afd12112103a9a)
1 /*	$NetBSD: kern_time.c,v 1.59 2001/11/13 00:34:21 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Christopher G. Demetriou.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1982, 1986, 1989, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
72  */
73 
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.59 2001/11/13 00:34:21 christos Exp $");
76 
77 #include "fs_nfs.h"
78 #include "opt_nfs.h"
79 #include "opt_nfsserver.h"
80 
81 #include <sys/param.h>
82 #include <sys/resourcevar.h>
83 #include <sys/kernel.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/vnode.h>
87 #include <sys/signalvar.h>
88 #include <sys/syslog.h>
89 
90 #include <sys/mount.h>
91 #include <sys/syscallargs.h>
92 
93 #include <uvm/uvm_extern.h>
94 
95 #if defined(NFS) || defined(NFSSERVER)
96 #include <nfs/rpcv2.h>
97 #include <nfs/nfsproto.h>
98 #include <nfs/nfs_var.h>
99 #endif
100 
101 #include <machine/cpu.h>
102 
103 /*
104  * Time of day and interval timer support.
105  *
106  * These routines provide the kernel entry points to get and set
107  * the time-of-day and per-process interval timers.  Subroutines
108  * here provide support for adding and subtracting timeval structures
109  * and decrementing interval timers, optionally reloading the interval
110  * timers when they expire.
111  */
112 
113 /* This function is used by clock_settime and settimeofday */
114 int
115 settime(tv)
116 	struct timeval *tv;
117 {
118 	struct timeval delta;
119 	struct cpu_info *ci;
120 	int s;
121 
122 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123 	s = splclock();
124 	timersub(tv, &time, &delta);
125 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126 		splx(s);
127 		return (EPERM);
128 	}
129 #ifdef notyet
130 	if ((delta.tv_sec < 86400) && securelevel > 0) {
131 		splx(s);
132 		return (EPERM);
133 	}
134 #endif
135 	time = *tv;
136 	(void) spllowersoftclock();
137 	timeradd(&boottime, &delta, &boottime);
138 	/*
139 	 * XXXSMP
140 	 * This is wrong.  We should traverse a list of all
141 	 * CPUs and add the delta to the runtime of those
142 	 * CPUs which have a process on them.
143 	 */
144 	ci = curcpu();
145 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146 	    &ci->ci_schedstate.spc_runtime);
147 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148 		nqnfs_lease_updatetime(delta.tv_sec);
149 #	endif
150 	splx(s);
151 	resettodr();
152 	return (0);
153 }
154 
155 /* ARGSUSED */
156 int
157 sys_clock_gettime(p, v, retval)
158 	struct proc *p;
159 	void *v;
160 	register_t *retval;
161 {
162 	struct sys_clock_gettime_args /* {
163 		syscallarg(clockid_t) clock_id;
164 		syscallarg(struct timespec *) tp;
165 	} */ *uap = v;
166 	clockid_t clock_id;
167 	struct timeval atv;
168 	struct timespec ats;
169 
170 	clock_id = SCARG(uap, clock_id);
171 	if (clock_id != CLOCK_REALTIME)
172 		return (EINVAL);
173 
174 	microtime(&atv);
175 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
176 
177 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
178 }
179 
180 /* ARGSUSED */
181 int
182 sys_clock_settime(p, v, retval)
183 	struct proc *p;
184 	void *v;
185 	register_t *retval;
186 {
187 	struct sys_clock_settime_args /* {
188 		syscallarg(clockid_t) clock_id;
189 		syscallarg(const struct timespec *) tp;
190 	} */ *uap = v;
191 	clockid_t clock_id;
192 	struct timespec ats;
193 	int error;
194 
195 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
196 		return (error);
197 
198 	clock_id = SCARG(uap, clock_id);
199 
200 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
201 		return (error);
202 
203 	return (clock_settime1(clock_id, &ats));
204 }
205 
206 
207 int
208 clock_settime1(clock_id, ats)
209 	clockid_t clock_id;
210 	struct timespec *ats;
211 {
212 	struct timeval atv;
213 	int error;
214 
215 	if (clock_id != CLOCK_REALTIME)
216 		return (EINVAL);
217 
218 	TIMESPEC_TO_TIMEVAL(&atv, ats);
219 	if ((error = settime(&atv)) != 0)
220 		return (error);
221 
222 	return 0;
223 }
224 
225 int
226 sys_clock_getres(p, v, retval)
227 	struct proc *p;
228 	void *v;
229 	register_t *retval;
230 {
231 	struct sys_clock_getres_args /* {
232 		syscallarg(clockid_t) clock_id;
233 		syscallarg(struct timespec *) tp;
234 	} */ *uap = v;
235 	clockid_t clock_id;
236 	struct timespec ts;
237 	int error = 0;
238 
239 	clock_id = SCARG(uap, clock_id);
240 	if (clock_id != CLOCK_REALTIME)
241 		return (EINVAL);
242 
243 	if (SCARG(uap, tp)) {
244 		ts.tv_sec = 0;
245 		ts.tv_nsec = 1000000000 / hz;
246 
247 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248 	}
249 
250 	return error;
251 }
252 
253 /* ARGSUSED */
254 int
255 sys_nanosleep(p, v, retval)
256 	struct proc *p;
257 	void *v;
258 	register_t *retval;
259 {
260 	static int nanowait;
261 	struct sys_nanosleep_args/* {
262 		syscallarg(struct timespec *) rqtp;
263 		syscallarg(struct timespec *) rmtp;
264 	} */ *uap = v;
265 	struct timespec rqt;
266 	struct timespec rmt;
267 	struct timeval atv, utv;
268 	int error, s, timo;
269 
270 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
271 		       sizeof(struct timespec));
272 	if (error)
273 		return (error);
274 
275 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
276 	if (itimerfix(&atv) || atv.tv_sec > 1000000000)
277 		return (EINVAL);
278 
279 	s = splclock();
280 	timeradd(&atv,&time,&atv);
281 	timo = hzto(&atv);
282 	/*
283 	 * Avoid inadvertantly sleeping forever
284 	 */
285 	if (timo == 0)
286 		timo = 1;
287 	splx(s);
288 
289 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
290 	if (error == ERESTART)
291 		error = EINTR;
292 	if (error == EWOULDBLOCK)
293 		error = 0;
294 
295 	if (SCARG(uap, rmtp)) {
296 		int error;
297 
298 		s = splclock();
299 		utv = time;
300 		splx(s);
301 
302 		timersub(&atv, &utv, &utv);
303 		if (utv.tv_sec < 0)
304 			timerclear(&utv);
305 
306 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
307 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
308 			sizeof(rmt));
309 		if (error)
310 			return (error);
311 	}
312 
313 	return error;
314 }
315 
316 /* ARGSUSED */
317 int
318 sys_gettimeofday(p, v, retval)
319 	struct proc *p;
320 	void *v;
321 	register_t *retval;
322 {
323 	struct sys_gettimeofday_args /* {
324 		syscallarg(struct timeval *) tp;
325 		syscallarg(struct timezone *) tzp;
326 	} */ *uap = v;
327 	struct timeval atv;
328 	int error = 0;
329 	struct timezone tzfake;
330 
331 	if (SCARG(uap, tp)) {
332 		microtime(&atv);
333 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
334 		if (error)
335 			return (error);
336 	}
337 	if (SCARG(uap, tzp)) {
338 		/*
339 		 * NetBSD has no kernel notion of time zone, so we just
340 		 * fake up a timezone struct and return it if demanded.
341 		 */
342 		tzfake.tz_minuteswest = 0;
343 		tzfake.tz_dsttime = 0;
344 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
345 	}
346 	return (error);
347 }
348 
349 /* ARGSUSED */
350 int
351 sys_settimeofday(p, v, retval)
352 	struct proc *p;
353 	void *v;
354 	register_t *retval;
355 {
356 	struct sys_settimeofday_args /* {
357 		syscallarg(const struct timeval *) tv;
358 		syscallarg(const struct timezone *) tzp;
359 	} */ *uap = v;
360 	struct timeval atv;
361 	struct timezone atz;
362 	struct timeval *tv = NULL;
363 	struct timezone *tzp = NULL;
364 	int error;
365 
366 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
367 		return (error);
368 
369 	/* Verify all parameters before changing time. */
370 	if (SCARG(uap, tv)) {
371 		if ((error = copyin(SCARG(uap, tv), &atv, sizeof(atv))) != 0)
372 			return (error);
373 		tv = &atv;
374 	}
375 	/* XXX since we don't use tz, probably no point in doing copyin. */
376 	if (SCARG(uap, tzp)) {
377 		if ((error = copyin(SCARG(uap, tzp), &atz, sizeof(atz))) != 0)
378 			return (error);
379 		tzp = &atz;
380 	}
381 
382 	return settimeofday1(tv, tzp, p);
383 }
384 
385 int
386 settimeofday1(tv, tzp, p)
387 	struct timeval *tv;
388 	struct timezone *tzp;
389 	struct proc *p;
390 {
391 	int error;
392 
393 	if (tv)
394 		if ((error = settime(tv)) != 0)
395 			return (error);
396 	/*
397 	 * NetBSD has no kernel notion of time zone, and only an
398 	 * obsolete program would try to set it, so we log a warning.
399 	 */
400 	if (tzp)
401 		log(LOG_WARNING, "pid %d attempted to set the "
402 		    "(obsolete) kernel time zone\n", p->p_pid);
403 	return (0);
404 }
405 
406 int	tickdelta;			/* current clock skew, us. per tick */
407 long	timedelta;			/* unapplied time correction, us. */
408 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
409 
410 /* ARGSUSED */
411 int
412 sys_adjtime(p, v, retval)
413 	struct proc *p;
414 	void *v;
415 	register_t *retval;
416 {
417 	struct sys_adjtime_args /* {
418 		syscallarg(const struct timeval *) delta;
419 		syscallarg(struct timeval *) olddelta;
420 	} */ *uap = v;
421 	struct timeval atv;
422 	struct timeval *oatv = NULL;
423 	int error;
424 
425 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
426 		return (error);
427 
428 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
429 	if (error)
430 		return (error);
431 
432 	if (SCARG(uap, olddelta) != NULL) {
433 		if (uvm_useracc((caddr_t)SCARG(uap, olddelta),
434 		    sizeof(struct timeval), B_WRITE) == FALSE)
435 			return (EFAULT);
436 		oatv = SCARG(uap, olddelta);
437 	}
438 
439 	return adjtime1(&atv, oatv, p);
440 }
441 
442 int
443 adjtime1(delta, olddelta, p)
444 	struct timeval *delta;
445 	struct timeval *olddelta;
446 	struct proc *p;
447 {
448 	long ndelta, ntickdelta, odelta;
449 	int s;
450 
451 	/*
452 	 * Compute the total correction and the rate at which to apply it.
453 	 * Round the adjustment down to a whole multiple of the per-tick
454 	 * delta, so that after some number of incremental changes in
455 	 * hardclock(), tickdelta will become zero, lest the correction
456 	 * overshoot and start taking us away from the desired final time.
457 	 */
458 	ndelta = delta->tv_sec * 1000000 + delta->tv_usec;
459 	if (ndelta > bigadj || ndelta < -bigadj)
460 		ntickdelta = 10 * tickadj;
461 	else
462 		ntickdelta = tickadj;
463 	if (ndelta % ntickdelta)
464 		ndelta = ndelta / ntickdelta * ntickdelta;
465 
466 	/*
467 	 * To make hardclock()'s job easier, make the per-tick delta negative
468 	 * if we want time to run slower; then hardclock can simply compute
469 	 * tick + tickdelta, and subtract tickdelta from timedelta.
470 	 */
471 	if (ndelta < 0)
472 		ntickdelta = -ntickdelta;
473 	s = splclock();
474 	odelta = timedelta;
475 	timedelta = ndelta;
476 	tickdelta = ntickdelta;
477 	splx(s);
478 
479 	if (olddelta) {
480 		delta->tv_sec = odelta / 1000000;
481 		delta->tv_usec = odelta % 1000000;
482 		(void) copyout(delta, olddelta, sizeof(struct timeval));
483 	}
484 	return (0);
485 }
486 
487 /*
488  * Get value of an interval timer.  The process virtual and
489  * profiling virtual time timers are kept in the p_stats area, since
490  * they can be swapped out.  These are kept internally in the
491  * way they are specified externally: in time until they expire.
492  *
493  * The real time interval timer is kept in the process table slot
494  * for the process, and its value (it_value) is kept as an
495  * absolute time rather than as a delta, so that it is easy to keep
496  * periodic real-time signals from drifting.
497  *
498  * Virtual time timers are processed in the hardclock() routine of
499  * kern_clock.c.  The real time timer is processed by a timeout
500  * routine, called from the softclock() routine.  Since a callout
501  * may be delayed in real time due to interrupt processing in the system,
502  * it is possible for the real time timeout routine (realitexpire, given below),
503  * to be delayed in real time past when it is supposed to occur.  It
504  * does not suffice, therefore, to reload the real timer .it_value from the
505  * real time timers .it_interval.  Rather, we compute the next time in
506  * absolute time the timer should go off.
507  */
508 /* ARGSUSED */
509 int
510 sys_getitimer(p, v, retval)
511 	struct proc *p;
512 	void *v;
513 	register_t *retval;
514 {
515 	struct sys_getitimer_args /* {
516 		syscallarg(int) which;
517 		syscallarg(struct itimerval *) itv;
518 	} */ *uap = v;
519 	int which = SCARG(uap, which);
520 	struct itimerval aitv;
521 	int s;
522 
523 	if ((u_int)which > ITIMER_PROF)
524 		return (EINVAL);
525 	s = splclock();
526 	if (which == ITIMER_REAL) {
527 		/*
528 		 * Convert from absolute to relative time in .it_value
529 		 * part of real time timer.  If time for real time timer
530 		 * has passed return 0, else return difference between
531 		 * current time and time for the timer to go off.
532 		 */
533 		aitv = p->p_realtimer;
534 		if (timerisset(&aitv.it_value)) {
535 			if (timercmp(&aitv.it_value, &time, <))
536 				timerclear(&aitv.it_value);
537 			else
538 				timersub(&aitv.it_value, &time, &aitv.it_value);
539 		}
540 	} else
541 		aitv = p->p_stats->p_timer[which];
542 	splx(s);
543 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
544 }
545 
546 /* ARGSUSED */
547 int
548 sys_setitimer(p, v, retval)
549 	struct proc *p;
550 	void *v;
551 	register_t *retval;
552 {
553 	struct sys_setitimer_args /* {
554 		syscallarg(int) which;
555 		syscallarg(const struct itimerval *) itv;
556 		syscallarg(struct itimerval *) oitv;
557 	} */ *uap = v;
558 	int which = SCARG(uap, which);
559 	struct sys_getitimer_args getargs;
560 	struct itimerval aitv;
561 	const struct itimerval *itvp;
562 	int s, error;
563 
564 	if ((u_int)which > ITIMER_PROF)
565 		return (EINVAL);
566 	itvp = SCARG(uap, itv);
567 	if (itvp &&
568 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
569 		return (error);
570 	if (SCARG(uap, oitv) != NULL) {
571 		SCARG(&getargs, which) = which;
572 		SCARG(&getargs, itv) = SCARG(uap, oitv);
573 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
574 			return (error);
575 	}
576 	if (itvp == 0)
577 		return (0);
578 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
579 		return (EINVAL);
580 	s = splclock();
581 	if (which == ITIMER_REAL) {
582 		callout_stop(&p->p_realit_ch);
583 		if (timerisset(&aitv.it_value)) {
584 			/*
585 			 * Don't need to check hzto() return value, here.
586 			 * callout_reset() does it for us.
587 			 */
588 			timeradd(&aitv.it_value, &time, &aitv.it_value);
589 			callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
590 			    realitexpire, p);
591 		}
592 		p->p_realtimer = aitv;
593 	} else
594 		p->p_stats->p_timer[which] = aitv;
595 	splx(s);
596 	return (0);
597 }
598 
599 /*
600  * Real interval timer expired:
601  * send process whose timer expired an alarm signal.
602  * If time is not set up to reload, then just return.
603  * Else compute next time timer should go off which is > current time.
604  * This is where delay in processing this timeout causes multiple
605  * SIGALRM calls to be compressed into one.
606  */
607 void
608 realitexpire(arg)
609 	void *arg;
610 {
611 	struct proc *p;
612 	int s;
613 
614 	p = (struct proc *)arg;
615 	psignal(p, SIGALRM);
616 	if (!timerisset(&p->p_realtimer.it_interval)) {
617 		timerclear(&p->p_realtimer.it_value);
618 		return;
619 	}
620 	for (;;) {
621 		s = splclock();
622 		timeradd(&p->p_realtimer.it_value,
623 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
624 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
625 			/*
626 			 * Don't need to check hzto() return value, here.
627 			 * callout_reset() does it for us.
628 			 */
629 			callout_reset(&p->p_realit_ch,
630 			    hzto(&p->p_realtimer.it_value), realitexpire, p);
631 			splx(s);
632 			return;
633 		}
634 		splx(s);
635 	}
636 }
637 
638 /*
639  * Check that a proposed value to load into the .it_value or
640  * .it_interval part of an interval timer is acceptable, and
641  * fix it to have at least minimal value (i.e. if it is less
642  * than the resolution of the clock, round it up.)
643  */
644 int
645 itimerfix(tv)
646 	struct timeval *tv;
647 {
648 
649 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
650 		return (EINVAL);
651 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
652 		tv->tv_usec = tick;
653 	return (0);
654 }
655 
656 /*
657  * Decrement an interval timer by a specified number
658  * of microseconds, which must be less than a second,
659  * i.e. < 1000000.  If the timer expires, then reload
660  * it.  In this case, carry over (usec - old value) to
661  * reduce the value reloaded into the timer so that
662  * the timer does not drift.  This routine assumes
663  * that it is called in a context where the timers
664  * on which it is operating cannot change in value.
665  */
666 int
667 itimerdecr(itp, usec)
668 	struct itimerval *itp;
669 	int usec;
670 {
671 
672 	if (itp->it_value.tv_usec < usec) {
673 		if (itp->it_value.tv_sec == 0) {
674 			/* expired, and already in next interval */
675 			usec -= itp->it_value.tv_usec;
676 			goto expire;
677 		}
678 		itp->it_value.tv_usec += 1000000;
679 		itp->it_value.tv_sec--;
680 	}
681 	itp->it_value.tv_usec -= usec;
682 	usec = 0;
683 	if (timerisset(&itp->it_value))
684 		return (1);
685 	/* expired, exactly at end of interval */
686 expire:
687 	if (timerisset(&itp->it_interval)) {
688 		itp->it_value = itp->it_interval;
689 		itp->it_value.tv_usec -= usec;
690 		if (itp->it_value.tv_usec < 0) {
691 			itp->it_value.tv_usec += 1000000;
692 			itp->it_value.tv_sec--;
693 		}
694 	} else
695 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
696 	return (0);
697 }
698 
699 /*
700  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
701  * for usage and rationale.
702  */
703 int
704 ratecheck(lasttime, mininterval)
705 	struct timeval *lasttime;
706 	const struct timeval *mininterval;
707 {
708 	struct timeval tv, delta;
709 	int s, rv = 0;
710 
711 	s = splclock();
712 	tv = mono_time;
713 	splx(s);
714 
715 	timersub(&tv, lasttime, &delta);
716 
717 	/*
718 	 * check for 0,0 is so that the message will be seen at least once,
719 	 * even if interval is huge.
720 	 */
721 	if (timercmp(&delta, mininterval, >=) ||
722 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
723 		*lasttime = tv;
724 		rv = 1;
725 	}
726 
727 	return (rv);
728 }
729 
730 /*
731  * ppsratecheck(): packets (or events) per second limitation.
732  */
733 int
734 ppsratecheck(lasttime, curpps, maxpps)
735 	struct timeval *lasttime;
736 	int *curpps;
737 	int maxpps;	/* maximum pps allowed */
738 {
739 	struct timeval tv, delta;
740 	int s, rv;
741 
742 	s = splclock();
743 	tv = mono_time;
744 	splx(s);
745 
746 	timersub(&tv, lasttime, &delta);
747 
748 	/*
749 	 * check for 0,0 is so that the message will be seen at least once.
750 	 * if more than one second have passed since the last update of
751 	 * lasttime, reset the counter.
752 	 *
753 	 * we do increment *curpps even in *curpps < maxpps case, as some may
754 	 * try to use *curpps for stat purposes as well.
755 	 */
756 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
757 	    delta.tv_sec >= 1) {
758 		*lasttime = tv;
759 		*curpps = 0;
760 		rv = 1;
761 	} else if (maxpps < 0)
762 		rv = 1;
763 	else if (*curpps < maxpps)
764 		rv = 1;
765 	else
766 		rv = 0;
767 
768 #if 1 /*DIAGNOSTIC?*/
769 	/* be careful about wrap-around */
770 	if (*curpps + 1 > *curpps)
771 		*curpps = *curpps + 1;
772 #else
773 	/*
774 	 * assume that there's not too many calls to this function.
775 	 * not sure if the assumption holds, as it depends on *caller's*
776 	 * behavior, not the behavior of this function.
777 	 * IMHO it is wrong to make assumption on the caller's behavior,
778 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
779 	 */
780 	*curpps = *curpps + 1;
781 #endif
782 
783 	return (rv);
784 }
785