xref: /netbsd-src/sys/kern/kern_tc.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /* $NetBSD: kern_tc.c,v 1.3 2006/06/09 22:47:56 kardel Exp $ */
2 
3 /*-
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ---------------------------------------------------------------------------
10  */
11 
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.3 2006/06/09 22:47:56 kardel Exp $");
15 
16 #include "opt_ntp.h"
17 
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER	/* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28 #include <sys/evcnt.h>
29 #include <sys/kauth.h>
30 
31 /*
32  * maximum name length for TC names in sysctl interface
33  */
34 #define MAX_TCNAMELEN	64
35 
36 /*
37  * A large step happens on boot.  This constant detects such steps.
38  * It is relatively small so that ntp_update_second gets called enough
39  * in the typical 'missed a couple of seconds' case, but doesn't loop
40  * forever when the time step is large.
41  */
42 #define LARGE_STEP	200
43 
44 /*
45  * Implement a dummy timecounter which we can use until we get a real one
46  * in the air.  This allows the console and other early stuff to use
47  * time services.
48  */
49 
50 static u_int
51 dummy_get_timecount(struct timecounter *tc)
52 {
53 	static u_int now;
54 
55 	return (++now);
56 }
57 
58 static struct timecounter dummy_timecounter = {
59 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
60 };
61 
62 struct timehands {
63 	/* These fields must be initialized by the driver. */
64 	struct timecounter	*th_counter;
65 	int64_t			th_adjustment;
66 	u_int64_t		th_scale;
67 	u_int	 		th_offset_count;
68 	struct bintime		th_offset;
69 	struct timeval		th_microtime;
70 	struct timespec		th_nanotime;
71 	/* Fields not to be copied in tc_windup start with th_generation. */
72 	volatile u_int		th_generation;
73 	struct timehands	*th_next;
74 };
75 
76 static struct timehands th0;
77 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
78 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
79 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
80 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
81 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
82 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
83 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
84 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
85 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
86 static struct timehands th0 = {
87 	&dummy_timecounter,
88 	0,
89 	(uint64_t)-1 / 1000000,
90 	0,
91 	{1, 0},
92 	{0, 0},
93 	{0, 0},
94 	1,
95 	&th1
96 };
97 
98 static struct timehands *volatile timehands = &th0;
99 struct timecounter *timecounter = &dummy_timecounter;
100 static struct timecounter *timecounters = &dummy_timecounter;
101 
102 time_t time_second = 1;
103 time_t time_uptime = 1;
104 
105 static struct bintime boottimebin;
106 struct timeval boottime;
107 #ifdef __FreeBSD__
108 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
109 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
110     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
111 
112 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
113 #endif /* __FreeBSD__ */
114 
115 static int timestepwarnings;
116 
117 #ifdef __FreeBSD__
118 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
119     &timestepwarnings, 0, "");
120 #endif /* __FreeBSD__ */
121 
122 /*
123  * sysctl helper routine for kern.timercounter.current
124  */
125 static int
126 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
127 {
128 	struct sysctlnode node;
129 	int error;
130 	char newname[MAX_TCNAMELEN];
131 	struct timecounter *newtc, *tc;
132 
133 	tc = timecounter;
134 
135 	strlcpy(newname, tc->tc_name, sizeof(newname));
136 
137 	node = *rnode;
138 	node.sysctl_data = newname;
139 	node.sysctl_size = sizeof(newname);
140 
141 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
142 
143 	if (error ||
144 	    newp == NULL ||
145 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
146 		return error;
147 
148 	if (l && (error = kauth_authorize_generic(l->l_proc->p_cred,
149                     KAUTH_GENERIC_ISSUSER, &l->l_proc->p_acflag)) != 0)
150 		return (error);
151 
152 	/* XXX locking */
153 
154 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
155 		if (strcmp(newname, newtc->tc_name) != 0)
156 			continue;
157 
158 		/* Warm up new timecounter. */
159 		(void)newtc->tc_get_timecount(newtc);
160 		(void)newtc->tc_get_timecount(newtc);
161 
162 		timecounter = newtc;
163 
164 		/* XXX unlock */
165 
166 		return (0);
167 	}
168 
169 	/* XXX unlock */
170 
171 	return (EINVAL);
172 }
173 
174 static int
175 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
176 {
177 	char buf[48];
178 	char *where = oldp;
179 	const char *spc;
180 	struct timecounter *tc;
181 	size_t needed, left, slen;
182 	int error;
183 
184 	if (newp != NULL)
185 		return (EPERM);
186 	if (namelen != 0)
187 		return (EINVAL);
188 
189 	spc = "";
190 	error = 0;
191 	needed = 0;
192 	left = *oldlenp;
193 
194 	/* XXX locking */
195 
196 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
197 		if (where == NULL) {
198 			needed += sizeof(buf);  /* be conservative */
199 		} else {
200 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
201 					" Hz)", spc, tc->tc_name, tc->tc_quality,
202 					tc->tc_frequency);
203 			if (left < slen + 1)
204 				break;
205 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
206 			error = copyout(buf, where, slen + 1);
207 			spc = " ";
208 			where += slen;
209 			needed += slen;
210 			left -= slen;
211 		}
212 	}
213 
214 	/* XXX unlock */
215 
216 	*oldlenp = needed;
217 	return (error);
218 }
219 
220 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
221 {
222 	const struct sysctlnode *node;
223 
224 	sysctl_createv(clog, 0, NULL, &node,
225 		       CTLFLAG_PERMANENT,
226 		       CTLTYPE_NODE, "timecounter",
227 		       SYSCTL_DESCR("time counter information"),
228 		       NULL, 0, NULL, 0,
229 		       CTL_KERN, CTL_CREATE, CTL_EOL);
230 
231 	if (node != NULL) {
232 		sysctl_createv(clog, 0, NULL, NULL,
233 			       CTLFLAG_PERMANENT,
234 			       CTLTYPE_STRING, "choice",
235 			       SYSCTL_DESCR("available counters"),
236 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
237 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
238 
239 		sysctl_createv(clog, 0, NULL, NULL,
240 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
241 			       CTLTYPE_STRING, "hardware",
242 			       SYSCTL_DESCR("currently active time counter"),
243 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
244 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
245 
246 		sysctl_createv(clog, 0, NULL, NULL,
247 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
248 			       CTLTYPE_INT, "timestepwarnings",
249 			       SYSCTL_DESCR("log time steps"),
250 			       NULL, 0, &timestepwarnings, 0,
251 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
252 	}
253 }
254 
255 #define	TC_STATS(name)							\
256 static struct evcnt n##name =						\
257     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
258 EVCNT_ATTACH_STATIC(n##name)
259 
260 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
261 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
262 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
263 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
264 TC_STATS(setclock);
265 
266 #undef TC_STATS
267 
268 static void tc_windup(void);
269 
270 #ifdef __FreeBSD__
271 static int
272 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
273 {
274 #ifdef SCTL_MASK32
275 	int tv[2];
276 
277 	if (req->flags & SCTL_MASK32) {
278 		tv[0] = boottime.tv_sec;
279 		tv[1] = boottime.tv_usec;
280 		return SYSCTL_OUT(req, tv, sizeof(tv));
281 	} else
282 #endif
283 		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
284 }
285 #endif /* __FreeBSD__ */
286 
287 /*
288  * Return the difference between the timehands' counter value now and what
289  * was when we copied it to the timehands' offset_count.
290  */
291 static __inline u_int
292 tc_delta(struct timehands *th)
293 {
294 	struct timecounter *tc;
295 
296 	tc = th->th_counter;
297 	return ((tc->tc_get_timecount(tc) -
298 		 th->th_offset_count) & tc->tc_counter_mask);
299 }
300 
301 /*
302  * Functions for reading the time.  We have to loop until we are sure that
303  * the timehands that we operated on was not updated under our feet.  See
304  * the comment in <sys/time.h> for a description of these 12 functions.
305  */
306 
307 void
308 binuptime(struct bintime *bt)
309 {
310 	struct timehands *th;
311 	u_int gen;
312 
313 	nbinuptime.ev_count++;
314 	do {
315 		th = timehands;
316 		gen = th->th_generation;
317 		*bt = th->th_offset;
318 		bintime_addx(bt, th->th_scale * tc_delta(th));
319 	} while (gen == 0 || gen != th->th_generation);
320 }
321 
322 void
323 nanouptime(struct timespec *tsp)
324 {
325 	struct bintime bt;
326 
327 	nnanouptime.ev_count++;
328 	binuptime(&bt);
329 	bintime2timespec(&bt, tsp);
330 }
331 
332 void
333 microuptime(struct timeval *tvp)
334 {
335 	struct bintime bt;
336 
337 	nmicrouptime.ev_count++;
338 	binuptime(&bt);
339 	bintime2timeval(&bt, tvp);
340 }
341 
342 void
343 bintime(struct bintime *bt)
344 {
345 
346 	nbintime.ev_count++;
347 	binuptime(bt);
348 	bintime_add(bt, &boottimebin);
349 }
350 
351 void
352 nanotime(struct timespec *tsp)
353 {
354 	struct bintime bt;
355 
356 	nnanotime.ev_count++;
357 	bintime(&bt);
358 	bintime2timespec(&bt, tsp);
359 }
360 
361 void
362 microtime(struct timeval *tvp)
363 {
364 	struct bintime bt;
365 
366 	nmicrotime.ev_count++;
367 	bintime(&bt);
368 	bintime2timeval(&bt, tvp);
369 }
370 
371 void
372 getbinuptime(struct bintime *bt)
373 {
374 	struct timehands *th;
375 	u_int gen;
376 
377 	ngetbinuptime.ev_count++;
378 	do {
379 		th = timehands;
380 		gen = th->th_generation;
381 		*bt = th->th_offset;
382 	} while (gen == 0 || gen != th->th_generation);
383 }
384 
385 void
386 getnanouptime(struct timespec *tsp)
387 {
388 	struct timehands *th;
389 	u_int gen;
390 
391 	ngetnanouptime.ev_count++;
392 	do {
393 		th = timehands;
394 		gen = th->th_generation;
395 		bintime2timespec(&th->th_offset, tsp);
396 	} while (gen == 0 || gen != th->th_generation);
397 }
398 
399 void
400 getmicrouptime(struct timeval *tvp)
401 {
402 	struct timehands *th;
403 	u_int gen;
404 
405 	ngetmicrouptime.ev_count++;
406 	do {
407 		th = timehands;
408 		gen = th->th_generation;
409 		bintime2timeval(&th->th_offset, tvp);
410 	} while (gen == 0 || gen != th->th_generation);
411 }
412 
413 void
414 getbintime(struct bintime *bt)
415 {
416 	struct timehands *th;
417 	u_int gen;
418 
419 	ngetbintime.ev_count++;
420 	do {
421 		th = timehands;
422 		gen = th->th_generation;
423 		*bt = th->th_offset;
424 	} while (gen == 0 || gen != th->th_generation);
425 	bintime_add(bt, &boottimebin);
426 }
427 
428 void
429 getnanotime(struct timespec *tsp)
430 {
431 	struct timehands *th;
432 	u_int gen;
433 
434 	ngetnanotime.ev_count++;
435 	do {
436 		th = timehands;
437 		gen = th->th_generation;
438 		*tsp = th->th_nanotime;
439 	} while (gen == 0 || gen != th->th_generation);
440 }
441 
442 void
443 getmicrotime(struct timeval *tvp)
444 {
445 	struct timehands *th;
446 	u_int gen;
447 
448 	ngetmicrotime.ev_count++;
449 	do {
450 		th = timehands;
451 		gen = th->th_generation;
452 		*tvp = th->th_microtime;
453 	} while (gen == 0 || gen != th->th_generation);
454 }
455 
456 /*
457  * Initialize a new timecounter and possibly use it.
458  */
459 void
460 tc_init(struct timecounter *tc)
461 {
462 	u_int u;
463 
464 	u = tc->tc_frequency / tc->tc_counter_mask;
465 	/* XXX: We need some margin here, 10% is a guess */
466 	u *= 11;
467 	u /= 10;
468 	if (u > hz && tc->tc_quality >= 0) {
469 		tc->tc_quality = -2000;
470 		if (bootverbose) {
471 			printf("timecounter: Timecounter \"%s\" frequency %ju Hz",
472 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
473 			printf(" -- Insufficient hz, needs at least %u\n", u);
474 		}
475 	} else if (tc->tc_quality >= 0 || bootverbose) {
476 		printf("timecounter: Timecounter \"%s\" frequency %ju Hz quality %d\n",
477 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
478 		    tc->tc_quality);
479 	}
480 
481 	/* XXX locking */
482 	tc->tc_next = timecounters;
483 	timecounters = tc;
484 	/*
485 	 * Never automatically use a timecounter with negative quality.
486 	 * Even though we run on the dummy counter, switching here may be
487 	 * worse since this timecounter may not be monotonous.
488 	 */
489 	if (tc->tc_quality < 0)
490 		return;
491 	if (tc->tc_quality < timecounter->tc_quality)
492 		return;
493 	if (tc->tc_quality == timecounter->tc_quality &&
494 	    tc->tc_frequency < timecounter->tc_frequency)
495 		return;
496 	(void)tc->tc_get_timecount(tc);
497 	(void)tc->tc_get_timecount(tc);
498 	timecounter = tc;
499 	tc_windup();
500 }
501 
502 /* Report the frequency of the current timecounter. */
503 u_int64_t
504 tc_getfrequency(void)
505 {
506 
507 	return (timehands->th_counter->tc_frequency);
508 }
509 
510 /*
511  * Step our concept of UTC.  This is done by modifying our estimate of
512  * when we booted.
513  * XXX: not locked.
514  */
515 void
516 tc_setclock(struct timespec *ts)
517 {
518 	struct timespec ts2;
519 	struct bintime bt, bt2;
520 
521 	nsetclock.ev_count++;
522 	binuptime(&bt2);
523 	timespec2bintime(ts, &bt);
524 	bintime_sub(&bt, &bt2);
525 	bintime_add(&bt2, &boottimebin);
526 	boottimebin = bt;
527 	bintime2timeval(&bt, &boottime);
528 
529 	/* XXX fiddle all the little crinkly bits around the fiords... */
530 	tc_windup();
531 	if (timestepwarnings) {
532 		bintime2timespec(&bt2, &ts2);
533 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
534 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
535 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
536 	}
537 }
538 
539 /*
540  * Initialize the next struct timehands in the ring and make
541  * it the active timehands.  Along the way we might switch to a different
542  * timecounter and/or do seconds processing in NTP.  Slightly magic.
543  */
544 static void
545 tc_windup(void)
546 {
547 	struct bintime bt;
548 	struct timehands *th, *tho;
549 	u_int64_t scale;
550 	u_int delta, ncount, ogen;
551 	int i;
552 	time_t t;
553 
554 	/*
555 	 * Make the next timehands a copy of the current one, but do not
556 	 * overwrite the generation or next pointer.  While we update
557 	 * the contents, the generation must be zero.
558 	 */
559 	tho = timehands;
560 	th = tho->th_next;
561 	ogen = th->th_generation;
562 	th->th_generation = 0;
563 	bcopy(tho, th, offsetof(struct timehands, th_generation));
564 
565 	/*
566 	 * Capture a timecounter delta on the current timecounter and if
567 	 * changing timecounters, a counter value from the new timecounter.
568 	 * Update the offset fields accordingly.
569 	 */
570 	delta = tc_delta(th);
571 	if (th->th_counter != timecounter)
572 		ncount = timecounter->tc_get_timecount(timecounter);
573 	else
574 		ncount = 0;
575 	th->th_offset_count += delta;
576 	th->th_offset_count &= th->th_counter->tc_counter_mask;
577 	bintime_addx(&th->th_offset, th->th_scale * delta);
578 
579 	/*
580 	 * Hardware latching timecounters may not generate interrupts on
581 	 * PPS events, so instead we poll them.  There is a finite risk that
582 	 * the hardware might capture a count which is later than the one we
583 	 * got above, and therefore possibly in the next NTP second which might
584 	 * have a different rate than the current NTP second.  It doesn't
585 	 * matter in practice.
586 	 */
587 	if (tho->th_counter->tc_poll_pps)
588 		tho->th_counter->tc_poll_pps(tho->th_counter);
589 
590 	/*
591 	 * Deal with NTP second processing.  The for loop normally
592 	 * iterates at most once, but in extreme situations it might
593 	 * keep NTP sane if timeouts are not run for several seconds.
594 	 * At boot, the time step can be large when the TOD hardware
595 	 * has been read, so on really large steps, we call
596 	 * ntp_update_second only twice.  We need to call it twice in
597 	 * case we missed a leap second.
598 	 * If NTP is not compiled in ntp_update_second still calculates
599 	 * the adjustment resulting from adjtime() calls.
600 	 */
601 	bt = th->th_offset;
602 	bintime_add(&bt, &boottimebin);
603 	i = bt.sec - tho->th_microtime.tv_sec;
604 	if (i > LARGE_STEP)
605 		i = 2;
606 	for (; i > 0; i--) {
607 		t = bt.sec;
608 		ntp_update_second(&th->th_adjustment, &bt.sec);
609 		if (bt.sec != t)
610 			boottimebin.sec += bt.sec - t;
611 	}
612 
613 	/* Update the UTC timestamps used by the get*() functions. */
614 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
615 	bintime2timeval(&bt, &th->th_microtime);
616 	bintime2timespec(&bt, &th->th_nanotime);
617 
618 	/* Now is a good time to change timecounters. */
619 	if (th->th_counter != timecounter) {
620 		th->th_counter = timecounter;
621 		th->th_offset_count = ncount;
622 
623 		printf("timecounter: selected timecounter \"%s\" frequency %ju Hz quality %d\n",
624 		    timecounter->tc_name, (uintmax_t)timecounter->tc_frequency,
625 		    timecounter->tc_quality);
626 	}
627 
628 	/*-
629 	 * Recalculate the scaling factor.  We want the number of 1/2^64
630 	 * fractions of a second per period of the hardware counter, taking
631 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
632 	 * processing provides us with.
633 	 *
634 	 * The th_adjustment is nanoseconds per second with 32 bit binary
635 	 * fraction and we want 64 bit binary fraction of second:
636 	 *
637 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
638 	 *
639 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
640 	 * we can only multiply by about 850 without overflowing, but that
641 	 * leaves suitably precise fractions for multiply before divide.
642 	 *
643 	 * Divide before multiply with a fraction of 2199/512 results in a
644 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
645 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
646  	 *
647 	 * We happily sacrifice the lowest of the 64 bits of our result
648 	 * to the goddess of code clarity.
649 	 *
650 	 */
651 	scale = (u_int64_t)1 << 63;
652 	scale += (th->th_adjustment / 1024) * 2199;
653 	scale /= th->th_counter->tc_frequency;
654 	th->th_scale = scale * 2;
655 
656 	/*
657 	 * Now that the struct timehands is again consistent, set the new
658 	 * generation number, making sure to not make it zero.
659 	 */
660 	if (++ogen == 0)
661 		ogen = 1;
662 	th->th_generation = ogen;
663 
664 	/* Go live with the new struct timehands. */
665 	time_second = th->th_microtime.tv_sec;
666 	time_uptime = th->th_offset.sec;
667 	timehands = th;
668 }
669 
670 #ifdef __FreeBSD__
671 /* Report or change the active timecounter hardware. */
672 static int
673 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
674 {
675 	char newname[32];
676 	struct timecounter *newtc, *tc;
677 	int error;
678 
679 	tc = timecounter;
680 	strlcpy(newname, tc->tc_name, sizeof(newname));
681 
682 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
683 	if (error != 0 || req->newptr == NULL ||
684 	    strcmp(newname, tc->tc_name) == 0)
685 		return (error);
686 
687 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
688 		if (strcmp(newname, newtc->tc_name) != 0)
689 			continue;
690 
691 		/* Warm up new timecounter. */
692 		(void)newtc->tc_get_timecount(newtc);
693 		(void)newtc->tc_get_timecount(newtc);
694 
695 		timecounter = newtc;
696 		return (0);
697 	}
698 	return (EINVAL);
699 }
700 
701 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
702     0, 0, sysctl_kern_timecounter_hardware, "A", "");
703 
704 
705 /* Report or change the active timecounter hardware. */
706 static int
707 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
708 {
709 	char buf[32], *spc;
710 	struct timecounter *tc;
711 	int error;
712 
713 	spc = "";
714 	error = 0;
715 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
716 		sprintf(buf, "%s%s(%d)",
717 		    spc, tc->tc_name, tc->tc_quality);
718 		error = SYSCTL_OUT(req, buf, strlen(buf));
719 		spc = " ";
720 	}
721 	return (error);
722 }
723 
724 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
725     0, 0, sysctl_kern_timecounter_choice, "A", "");
726 #endif /* __FreeBSD__ */
727 
728 /*
729  * RFC 2783 PPS-API implementation.
730  */
731 
732 int
733 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
734 {
735 	pps_params_t *app;
736 	pps_info_t *pipi;
737 #ifdef PPS_SYNC
738 	int *epi;
739 #endif
740 
741 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
742 	switch (cmd) {
743 	case PPS_IOC_CREATE:
744 		return (0);
745 	case PPS_IOC_DESTROY:
746 		return (0);
747 	case PPS_IOC_SETPARAMS:
748 		app = (pps_params_t *)data;
749 		if (app->mode & ~pps->ppscap)
750 			return (EINVAL);
751 		pps->ppsparam = *app;
752 		return (0);
753 	case PPS_IOC_GETPARAMS:
754 		app = (pps_params_t *)data;
755 		*app = pps->ppsparam;
756 		app->api_version = PPS_API_VERS_1;
757 		return (0);
758 	case PPS_IOC_GETCAP:
759 		*(int*)data = pps->ppscap;
760 		return (0);
761 	case PPS_IOC_FETCH:
762 		pipi = (pps_info_t *)data;
763 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
764 		*pipi = pps->ppsinfo;
765 		return (0);
766 	case PPS_IOC_KCBIND:
767 #ifdef PPS_SYNC
768 		epi = (int *)data;
769 		/* XXX Only root should be able to do this */
770 		if (*epi & ~pps->ppscap)
771 			return (EINVAL);
772 		pps->kcmode = *epi;
773 		return (0);
774 #else
775 		return (EOPNOTSUPP);
776 #endif
777 	default:
778 		return (EPASSTHROUGH);
779 	}
780 }
781 
782 void
783 pps_init(struct pps_state *pps)
784 {
785 	pps->ppscap |= PPS_TSFMT_TSPEC;
786 	if (pps->ppscap & PPS_CAPTUREASSERT)
787 		pps->ppscap |= PPS_OFFSETASSERT;
788 	if (pps->ppscap & PPS_CAPTURECLEAR)
789 		pps->ppscap |= PPS_OFFSETCLEAR;
790 }
791 
792 void
793 pps_capture(struct pps_state *pps)
794 {
795 	struct timehands *th;
796 
797 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
798 	th = timehands;
799 	pps->capgen = th->th_generation;
800 	pps->capth = th;
801 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
802 	if (pps->capgen != th->th_generation)
803 		pps->capgen = 0;
804 }
805 
806 void
807 pps_event(struct pps_state *pps, int event)
808 {
809 	struct bintime bt;
810 	struct timespec ts, *tsp, *osp;
811 	u_int tcount, *pcount;
812 	int foff, fhard;
813 	pps_seq_t *pseq;
814 
815 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
816 	/* If the timecounter was wound up underneath us, bail out. */
817 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
818 		return;
819 
820 	/* Things would be easier with arrays. */
821 	if (event == PPS_CAPTUREASSERT) {
822 		tsp = &pps->ppsinfo.assert_timestamp;
823 		osp = &pps->ppsparam.assert_offset;
824 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
825 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
826 		pcount = &pps->ppscount[0];
827 		pseq = &pps->ppsinfo.assert_sequence;
828 	} else {
829 		tsp = &pps->ppsinfo.clear_timestamp;
830 		osp = &pps->ppsparam.clear_offset;
831 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
832 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
833 		pcount = &pps->ppscount[1];
834 		pseq = &pps->ppsinfo.clear_sequence;
835 	}
836 
837 	/*
838 	 * If the timecounter changed, we cannot compare the count values, so
839 	 * we have to drop the rest of the PPS-stuff until the next event.
840 	 */
841 	if (pps->ppstc != pps->capth->th_counter) {
842 		pps->ppstc = pps->capth->th_counter;
843 		*pcount = pps->capcount;
844 		pps->ppscount[2] = pps->capcount;
845 		return;
846 	}
847 
848 	/* Convert the count to a timespec. */
849 	tcount = pps->capcount - pps->capth->th_offset_count;
850 	tcount &= pps->capth->th_counter->tc_counter_mask;
851 	bt = pps->capth->th_offset;
852 	bintime_addx(&bt, pps->capth->th_scale * tcount);
853 	bintime_add(&bt, &boottimebin);
854 	bintime2timespec(&bt, &ts);
855 
856 	/* If the timecounter was wound up underneath us, bail out. */
857 	if (pps->capgen != pps->capth->th_generation)
858 		return;
859 
860 	*pcount = pps->capcount;
861 	(*pseq)++;
862 	*tsp = ts;
863 
864 	if (foff) {
865 		timespecadd(tsp, osp, tsp);
866 		if (tsp->tv_nsec < 0) {
867 			tsp->tv_nsec += 1000000000;
868 			tsp->tv_sec -= 1;
869 		}
870 	}
871 #ifdef PPS_SYNC
872 	if (fhard) {
873 		u_int64_t scale;
874 
875 		/*
876 		 * Feed the NTP PLL/FLL.
877 		 * The FLL wants to know how many (hardware) nanoseconds
878 		 * elapsed since the previous event.
879 		 */
880 		tcount = pps->capcount - pps->ppscount[2];
881 		pps->ppscount[2] = pps->capcount;
882 		tcount &= pps->capth->th_counter->tc_counter_mask;
883 		scale = (u_int64_t)1 << 63;
884 		scale /= pps->capth->th_counter->tc_frequency;
885 		scale *= 2;
886 		bt.sec = 0;
887 		bt.frac = 0;
888 		bintime_addx(&bt, scale * tcount);
889 		bintime2timespec(&bt, &ts);
890 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
891 	}
892 #endif
893 }
894 
895 /*
896  * Timecounters need to be updated every so often to prevent the hardware
897  * counter from overflowing.  Updating also recalculates the cached values
898  * used by the get*() family of functions, so their precision depends on
899  * the update frequency.
900  */
901 
902 static int tc_tick;
903 #ifdef __FreeBSD__
904 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
905 #endif /* __FreeBSD__ */
906 
907 void
908 tc_ticktock(void)
909 {
910 	static int count;
911 
912 	if (++count < tc_tick)
913 		return;
914 	count = 0;
915 	tc_windup();
916 }
917 
918 void
919 inittimecounter(void)
920 {
921 	u_int p;
922 
923 	/*
924 	 * Set the initial timeout to
925 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
926 	 * People should probably not use the sysctl to set the timeout
927 	 * to smaller than its inital value, since that value is the
928 	 * smallest reasonable one.  If they want better timestamps they
929 	 * should use the non-"get"* functions.
930 	 */
931 	if (hz > 1000)
932 		tc_tick = (hz + 500) / 1000;
933 	else
934 		tc_tick = 1;
935 	p = (tc_tick * 1000000) / hz;
936 	printf("timecounter: Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
937 
938 	/* warm up new timecounter (again) and get rolling. */
939 	(void)timecounter->tc_get_timecount(timecounter);
940 	(void)timecounter->tc_get_timecount(timecounter);
941 }
942 
943 #ifdef __FreeBSD__
944 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
945 #endif /* __FreeBSD__ */
946 #endif /* __HAVE_TIMECOUNTER */
947