xref: /netbsd-src/sys/kern/kern_tc.c (revision da9817918ec7e88db2912a2882967c7570a83f47)
1 /* $NetBSD: kern_tc.c,v 1.40 2009/06/14 13:16:32 kardel Exp $ */
2 
3 /*-
4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * ----------------------------------------------------------------------------
34  * "THE BEER-WARE LICENSE" (Revision 42):
35  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
36  * can do whatever you want with this stuff. If we meet some day, and you think
37  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
38  * ---------------------------------------------------------------------------
39  */
40 
41 #include <sys/cdefs.h>
42 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
43 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.40 2009/06/14 13:16:32 kardel Exp $");
44 
45 #include "opt_ntp.h"
46 
47 #include <sys/param.h>
48 #include <sys/kernel.h>
49 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
50 #include <sys/sysctl.h>
51 #include <sys/syslog.h>
52 #include <sys/systm.h>
53 #include <sys/timepps.h>
54 #include <sys/timetc.h>
55 #include <sys/timex.h>
56 #include <sys/evcnt.h>
57 #include <sys/kauth.h>
58 #include <sys/mutex.h>
59 #include <sys/atomic.h>
60 #include <sys/xcall.h>
61 
62 /*
63  * A large step happens on boot.  This constant detects such steps.
64  * It is relatively small so that ntp_update_second gets called enough
65  * in the typical 'missed a couple of seconds' case, but doesn't loop
66  * forever when the time step is large.
67  */
68 #define LARGE_STEP	200
69 
70 /*
71  * Implement a dummy timecounter which we can use until we get a real one
72  * in the air.  This allows the console and other early stuff to use
73  * time services.
74  */
75 
76 static u_int
77 dummy_get_timecount(struct timecounter *tc)
78 {
79 	static u_int now;
80 
81 	return (++now);
82 }
83 
84 static struct timecounter dummy_timecounter = {
85 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
86 };
87 
88 struct timehands {
89 	/* These fields must be initialized by the driver. */
90 	struct timecounter	*th_counter;     /* active timecounter */
91 	int64_t			th_adjustment;   /* frequency adjustment */
92 						 /* (NTP/adjtime) */
93 	u_int64_t		th_scale;        /* scale factor (counter */
94 						 /* tick->time) */
95 	u_int64_t 		th_offset_count; /* offset at last time */
96 						 /* update (tc_windup()) */
97 	struct bintime		th_offset;       /* bin (up)time at windup */
98 	struct timeval		th_microtime;    /* cached microtime */
99 	struct timespec		th_nanotime;     /* cached nanotime */
100 	/* Fields not to be copied in tc_windup start with th_generation. */
101 	volatile u_int		th_generation;   /* current genration */
102 	struct timehands	*th_next;        /* next timehand */
103 };
104 
105 static struct timehands th0;
106 static struct timehands th9 = { .th_next = &th0, };
107 static struct timehands th8 = { .th_next = &th9, };
108 static struct timehands th7 = { .th_next = &th8, };
109 static struct timehands th6 = { .th_next = &th7, };
110 static struct timehands th5 = { .th_next = &th6, };
111 static struct timehands th4 = { .th_next = &th5, };
112 static struct timehands th3 = { .th_next = &th4, };
113 static struct timehands th2 = { .th_next = &th3, };
114 static struct timehands th1 = { .th_next = &th2, };
115 static struct timehands th0 = {
116 	.th_counter = &dummy_timecounter,
117 	.th_scale = (uint64_t)-1 / 1000000,
118 	.th_offset = { .sec = 1, .frac = 0 },
119 	.th_generation = 1,
120 	.th_next = &th1,
121 };
122 
123 static struct timehands *volatile timehands = &th0;
124 struct timecounter *timecounter = &dummy_timecounter;
125 static struct timecounter *timecounters = &dummy_timecounter;
126 
127 time_t time_second = 1;
128 time_t time_uptime = 1;
129 
130 static struct bintime timebasebin;
131 
132 static int timestepwarnings;
133 
134 kmutex_t timecounter_lock;
135 static u_int timecounter_mods;
136 static volatile int timecounter_removals = 1;
137 static u_int timecounter_bad;
138 
139 #ifdef __FreeBSD__
140 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
141     &timestepwarnings, 0, "");
142 #endif /* __FreeBSD__ */
143 
144 /*
145  * sysctl helper routine for kern.timercounter.hardware
146  */
147 static int
148 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
149 {
150 	struct sysctlnode node;
151 	int error;
152 	char newname[MAX_TCNAMELEN];
153 	struct timecounter *newtc, *tc;
154 
155 	tc = timecounter;
156 
157 	strlcpy(newname, tc->tc_name, sizeof(newname));
158 
159 	node = *rnode;
160 	node.sysctl_data = newname;
161 	node.sysctl_size = sizeof(newname);
162 
163 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
164 
165 	if (error ||
166 	    newp == NULL ||
167 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
168 		return error;
169 
170 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
171 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
172 	    NULL, NULL)) != 0)
173 		return (error);
174 
175 	if (!cold)
176 		mutex_spin_enter(&timecounter_lock);
177 	error = EINVAL;
178 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
179 		if (strcmp(newname, newtc->tc_name) != 0)
180 			continue;
181 		/* Warm up new timecounter. */
182 		(void)newtc->tc_get_timecount(newtc);
183 		(void)newtc->tc_get_timecount(newtc);
184 		timecounter = newtc;
185 		error = 0;
186 		break;
187 	}
188 	if (!cold)
189 		mutex_spin_exit(&timecounter_lock);
190 	return error;
191 }
192 
193 static int
194 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
195 {
196 	char buf[MAX_TCNAMELEN+48];
197 	char *where;
198 	const char *spc;
199 	struct timecounter *tc;
200 	size_t needed, left, slen;
201 	int error, mods;
202 
203 	if (newp != NULL)
204 		return (EPERM);
205 	if (namelen != 0)
206 		return (EINVAL);
207 
208 	mutex_spin_enter(&timecounter_lock);
209  retry:
210 	spc = "";
211 	error = 0;
212 	needed = 0;
213 	left = *oldlenp;
214 	where = oldp;
215 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
216 		if (where == NULL) {
217 			needed += sizeof(buf);  /* be conservative */
218 		} else {
219 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
220 					" Hz)", spc, tc->tc_name, tc->tc_quality,
221 					tc->tc_frequency);
222 			if (left < slen + 1)
223 				break;
224 		 	mods = timecounter_mods;
225 			mutex_spin_exit(&timecounter_lock);
226 			error = copyout(buf, where, slen + 1);
227 			mutex_spin_enter(&timecounter_lock);
228 			if (mods != timecounter_mods) {
229 				goto retry;
230 			}
231 			spc = " ";
232 			where += slen;
233 			needed += slen;
234 			left -= slen;
235 		}
236 	}
237 	mutex_spin_exit(&timecounter_lock);
238 
239 	*oldlenp = needed;
240 	return (error);
241 }
242 
243 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
244 {
245 	const struct sysctlnode *node;
246 
247 	sysctl_createv(clog, 0, NULL, &node,
248 		       CTLFLAG_PERMANENT,
249 		       CTLTYPE_NODE, "timecounter",
250 		       SYSCTL_DESCR("time counter information"),
251 		       NULL, 0, NULL, 0,
252 		       CTL_KERN, CTL_CREATE, CTL_EOL);
253 
254 	if (node != NULL) {
255 		sysctl_createv(clog, 0, NULL, NULL,
256 			       CTLFLAG_PERMANENT,
257 			       CTLTYPE_STRING, "choice",
258 			       SYSCTL_DESCR("available counters"),
259 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
260 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
261 
262 		sysctl_createv(clog, 0, NULL, NULL,
263 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
264 			       CTLTYPE_STRING, "hardware",
265 			       SYSCTL_DESCR("currently active time counter"),
266 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
267 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
268 
269 		sysctl_createv(clog, 0, NULL, NULL,
270 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
271 			       CTLTYPE_INT, "timestepwarnings",
272 			       SYSCTL_DESCR("log time steps"),
273 			       NULL, 0, &timestepwarnings, 0,
274 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
275 	}
276 }
277 
278 #ifdef TC_COUNTERS
279 #define	TC_STATS(name)							\
280 static struct evcnt n##name =						\
281     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
282 EVCNT_ATTACH_STATIC(n##name)
283 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
284 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
285 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
286 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
287 TC_STATS(setclock);
288 #define	TC_COUNT(var)	var.ev_count++
289 #undef TC_STATS
290 #else
291 #define	TC_COUNT(var)	/* nothing */
292 #endif	/* TC_COUNTERS */
293 
294 static void tc_windup(void);
295 
296 /*
297  * Return the difference between the timehands' counter value now and what
298  * was when we copied it to the timehands' offset_count.
299  */
300 static __inline u_int
301 tc_delta(struct timehands *th)
302 {
303 	struct timecounter *tc;
304 
305 	tc = th->th_counter;
306 	return ((tc->tc_get_timecount(tc) -
307 		 th->th_offset_count) & tc->tc_counter_mask);
308 }
309 
310 /*
311  * Functions for reading the time.  We have to loop until we are sure that
312  * the timehands that we operated on was not updated under our feet.  See
313  * the comment in <sys/timevar.h> for a description of these 12 functions.
314  */
315 
316 void
317 binuptime(struct bintime *bt)
318 {
319 	struct timehands *th;
320 	lwp_t *l;
321 	u_int lgen, gen;
322 
323 	TC_COUNT(nbinuptime);
324 
325 	/*
326 	 * Provide exclusion against tc_detach().
327 	 *
328 	 * We record the number of timecounter removals before accessing
329 	 * timecounter state.  Note that the LWP can be using multiple
330 	 * "generations" at once, due to interrupts (interrupted while in
331 	 * this function).  Hardware interrupts will borrow the interrupted
332 	 * LWP's l_tcgen value for this purpose, and can themselves be
333 	 * interrupted by higher priority interrupts.  In this case we need
334 	 * to ensure that the oldest generation in use is recorded.
335 	 *
336 	 * splsched() is too expensive to use, so we take care to structure
337 	 * this code in such a way that it is not required.  Likewise, we
338 	 * do not disable preemption.
339 	 *
340 	 * Memory barriers are also too expensive to use for such a
341 	 * performance critical function.  The good news is that we do not
342 	 * need memory barriers for this type of exclusion, as the thread
343 	 * updating timecounter_removals will issue a broadcast cross call
344 	 * before inspecting our l_tcgen value (this elides memory ordering
345 	 * issues).
346 	 */
347 	l = curlwp;
348 	lgen = l->l_tcgen;
349 	if (__predict_true(lgen == 0)) {
350 		l->l_tcgen = timecounter_removals;
351 	}
352 	__insn_barrier();
353 
354 	do {
355 		th = timehands;
356 		gen = th->th_generation;
357 		*bt = th->th_offset;
358 		bintime_addx(bt, th->th_scale * tc_delta(th));
359 	} while (gen == 0 || gen != th->th_generation);
360 
361 	__insn_barrier();
362 	l->l_tcgen = lgen;
363 }
364 
365 void
366 nanouptime(struct timespec *tsp)
367 {
368 	struct bintime bt;
369 
370 	TC_COUNT(nnanouptime);
371 	binuptime(&bt);
372 	bintime2timespec(&bt, tsp);
373 }
374 
375 void
376 microuptime(struct timeval *tvp)
377 {
378 	struct bintime bt;
379 
380 	TC_COUNT(nmicrouptime);
381 	binuptime(&bt);
382 	bintime2timeval(&bt, tvp);
383 }
384 
385 void
386 bintime(struct bintime *bt)
387 {
388 
389 	TC_COUNT(nbintime);
390 	binuptime(bt);
391 	bintime_add(bt, &timebasebin);
392 }
393 
394 void
395 nanotime(struct timespec *tsp)
396 {
397 	struct bintime bt;
398 
399 	TC_COUNT(nnanotime);
400 	bintime(&bt);
401 	bintime2timespec(&bt, tsp);
402 }
403 
404 void
405 microtime(struct timeval *tvp)
406 {
407 	struct bintime bt;
408 
409 	TC_COUNT(nmicrotime);
410 	bintime(&bt);
411 	bintime2timeval(&bt, tvp);
412 }
413 
414 void
415 getbinuptime(struct bintime *bt)
416 {
417 	struct timehands *th;
418 	u_int gen;
419 
420 	TC_COUNT(ngetbinuptime);
421 	do {
422 		th = timehands;
423 		gen = th->th_generation;
424 		*bt = th->th_offset;
425 	} while (gen == 0 || gen != th->th_generation);
426 }
427 
428 void
429 getnanouptime(struct timespec *tsp)
430 {
431 	struct timehands *th;
432 	u_int gen;
433 
434 	TC_COUNT(ngetnanouptime);
435 	do {
436 		th = timehands;
437 		gen = th->th_generation;
438 		bintime2timespec(&th->th_offset, tsp);
439 	} while (gen == 0 || gen != th->th_generation);
440 }
441 
442 void
443 getmicrouptime(struct timeval *tvp)
444 {
445 	struct timehands *th;
446 	u_int gen;
447 
448 	TC_COUNT(ngetmicrouptime);
449 	do {
450 		th = timehands;
451 		gen = th->th_generation;
452 		bintime2timeval(&th->th_offset, tvp);
453 	} while (gen == 0 || gen != th->th_generation);
454 }
455 
456 void
457 getbintime(struct bintime *bt)
458 {
459 	struct timehands *th;
460 	u_int gen;
461 
462 	TC_COUNT(ngetbintime);
463 	do {
464 		th = timehands;
465 		gen = th->th_generation;
466 		*bt = th->th_offset;
467 	} while (gen == 0 || gen != th->th_generation);
468 	bintime_add(bt, &timebasebin);
469 }
470 
471 void
472 getnanotime(struct timespec *tsp)
473 {
474 	struct timehands *th;
475 	u_int gen;
476 
477 	TC_COUNT(ngetnanotime);
478 	do {
479 		th = timehands;
480 		gen = th->th_generation;
481 		*tsp = th->th_nanotime;
482 	} while (gen == 0 || gen != th->th_generation);
483 }
484 
485 void
486 getmicrotime(struct timeval *tvp)
487 {
488 	struct timehands *th;
489 	u_int gen;
490 
491 	TC_COUNT(ngetmicrotime);
492 	do {
493 		th = timehands;
494 		gen = th->th_generation;
495 		*tvp = th->th_microtime;
496 	} while (gen == 0 || gen != th->th_generation);
497 }
498 
499 /*
500  * Initialize a new timecounter and possibly use it.
501  */
502 void
503 tc_init(struct timecounter *tc)
504 {
505 	u_int u;
506 
507 	u = tc->tc_frequency / tc->tc_counter_mask;
508 	/* XXX: We need some margin here, 10% is a guess */
509 	u *= 11;
510 	u /= 10;
511 	if (u > hz && tc->tc_quality >= 0) {
512 		tc->tc_quality = -2000;
513 		aprint_verbose(
514 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
515 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
516 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
517 	} else if (tc->tc_quality >= 0 || bootverbose) {
518 		aprint_verbose(
519 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
520 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
521 		    tc->tc_quality);
522 	}
523 
524 	mutex_spin_enter(&timecounter_lock);
525 	tc->tc_next = timecounters;
526 	timecounters = tc;
527 	timecounter_mods++;
528 	/*
529 	 * Never automatically use a timecounter with negative quality.
530 	 * Even though we run on the dummy counter, switching here may be
531 	 * worse since this timecounter may not be monotonous.
532 	 */
533 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
534 	    (tc->tc_quality == timecounter->tc_quality &&
535 	    tc->tc_frequency > timecounter->tc_frequency))) {
536 		(void)tc->tc_get_timecount(tc);
537 		(void)tc->tc_get_timecount(tc);
538 		timecounter = tc;
539 		tc_windup();
540 	}
541 	mutex_spin_exit(&timecounter_lock);
542 }
543 
544 /*
545  * Pick a new timecounter due to the existing counter going bad.
546  */
547 static void
548 tc_pick(void)
549 {
550 	struct timecounter *best, *tc;
551 
552 	KASSERT(mutex_owned(&timecounter_lock));
553 
554 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
555 		if (tc->tc_quality > best->tc_quality)
556 			best = tc;
557 		else if (tc->tc_quality < best->tc_quality)
558 			continue;
559 		else if (tc->tc_frequency > best->tc_frequency)
560 			best = tc;
561 	}
562 	(void)best->tc_get_timecount(best);
563 	(void)best->tc_get_timecount(best);
564 	timecounter = best;
565 }
566 
567 /*
568  * A timecounter has gone bad, arrange to pick a new one at the next
569  * clock tick.
570  */
571 void
572 tc_gonebad(struct timecounter *tc)
573 {
574 
575 	tc->tc_quality = -100;
576 	membar_producer();
577 	atomic_inc_uint(&timecounter_bad);
578 }
579 
580 /*
581  * Stop using a timecounter and remove it from the timecounters list.
582  */
583 int
584 tc_detach(struct timecounter *target)
585 {
586 	struct timecounter *tc;
587 	struct timecounter **tcp = NULL;
588 	int removals;
589 	uint64_t where;
590 	lwp_t *l;
591 
592 	/* First, find the timecounter. */
593 	mutex_spin_enter(&timecounter_lock);
594 	for (tcp = &timecounters, tc = timecounters;
595 	     tc != NULL;
596 	     tcp = &tc->tc_next, tc = tc->tc_next) {
597 		if (tc == target)
598 			break;
599 	}
600 	if (tc == NULL) {
601 		mutex_spin_exit(&timecounter_lock);
602 		return ESRCH;
603 	}
604 
605 	/* And now, remove it. */
606 	*tcp = tc->tc_next;
607 	if (timecounter == target) {
608 		tc_pick();
609 		tc_windup();
610 	}
611 	timecounter_mods++;
612 	removals = timecounter_removals++;
613 	mutex_spin_exit(&timecounter_lock);
614 
615 	/*
616 	 * We now have to determine if any threads in the system are still
617 	 * making use of this timecounter.
618 	 *
619 	 * We issue a broadcast cross call to elide memory ordering issues,
620 	 * then scan all LWPs in the system looking at each's timecounter
621 	 * generation number.  We need to see a value of zero (not actively
622 	 * using a timecounter) or a value greater than our removal value.
623 	 *
624 	 * We may race with threads that read `timecounter_removals' and
625 	 * and then get preempted before updating `l_tcgen'.  This is not
626 	 * a problem, since it means that these threads have not yet started
627 	 * accessing timecounter state.  All we do need is one clean
628 	 * snapshot of the system where every thread appears not to be using
629 	 * old timecounter state.
630 	 */
631 	for (;;) {
632 		where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
633 		xc_wait(where);
634 
635 		mutex_enter(proc_lock);
636 		LIST_FOREACH(l, &alllwp, l_list) {
637 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
638 				/*
639 				 * Not using timecounter or old timecounter
640 				 * state at time of our xcall or later.
641 				 */
642 				continue;
643 			}
644 			break;
645 		}
646 		mutex_exit(proc_lock);
647 
648 		/*
649 		 * If the timecounter is still in use, wait at least 10ms
650 		 * before retrying.
651 		 */
652 		if (l == NULL) {
653 			return 0;
654 		}
655 		(void)kpause("tcdetach", false, mstohz(10), NULL);
656 	}
657 }
658 
659 /* Report the frequency of the current timecounter. */
660 u_int64_t
661 tc_getfrequency(void)
662 {
663 
664 	return (timehands->th_counter->tc_frequency);
665 }
666 
667 /*
668  * Step our concept of UTC.  This is done by modifying our estimate of
669  * when we booted.
670  */
671 void
672 tc_setclock(const struct timespec *ts)
673 {
674 	struct timespec ts2;
675 	struct bintime bt, bt2;
676 
677 	mutex_spin_enter(&timecounter_lock);
678 	TC_COUNT(nsetclock);
679 	binuptime(&bt2);
680 	timespec2bintime(ts, &bt);
681 	bintime_sub(&bt, &bt2);
682 	bintime_add(&bt2, &timebasebin);
683 	timebasebin = bt;
684 	tc_windup();
685 	mutex_spin_exit(&timecounter_lock);
686 
687 	if (timestepwarnings) {
688 		bintime2timespec(&bt2, &ts2);
689 		log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
690 		    (long long)ts2.tv_sec, ts2.tv_nsec,
691 		    (long long)ts->tv_sec, ts->tv_nsec);
692 	}
693 }
694 
695 /*
696  * Initialize the next struct timehands in the ring and make
697  * it the active timehands.  Along the way we might switch to a different
698  * timecounter and/or do seconds processing in NTP.  Slightly magic.
699  */
700 static void
701 tc_windup(void)
702 {
703 	struct bintime bt;
704 	struct timehands *th, *tho;
705 	u_int64_t scale;
706 	u_int delta, ncount, ogen;
707 	int i, s_update;
708 	time_t t;
709 
710 	KASSERT(mutex_owned(&timecounter_lock));
711 
712 	s_update = 0;
713 
714 	/*
715 	 * Make the next timehands a copy of the current one, but do not
716 	 * overwrite the generation or next pointer.  While we update
717 	 * the contents, the generation must be zero.  Ensure global
718 	 * visibility of the generation before proceeding.
719 	 */
720 	tho = timehands;
721 	th = tho->th_next;
722 	ogen = th->th_generation;
723 	th->th_generation = 0;
724 	membar_producer();
725 	bcopy(tho, th, offsetof(struct timehands, th_generation));
726 
727 	/*
728 	 * Capture a timecounter delta on the current timecounter and if
729 	 * changing timecounters, a counter value from the new timecounter.
730 	 * Update the offset fields accordingly.
731 	 */
732 	delta = tc_delta(th);
733 	if (th->th_counter != timecounter)
734 		ncount = timecounter->tc_get_timecount(timecounter);
735 	else
736 		ncount = 0;
737 	th->th_offset_count += delta;
738 	bintime_addx(&th->th_offset, th->th_scale * delta);
739 
740 	/*
741 	 * Hardware latching timecounters may not generate interrupts on
742 	 * PPS events, so instead we poll them.  There is a finite risk that
743 	 * the hardware might capture a count which is later than the one we
744 	 * got above, and therefore possibly in the next NTP second which might
745 	 * have a different rate than the current NTP second.  It doesn't
746 	 * matter in practice.
747 	 */
748 	if (tho->th_counter->tc_poll_pps)
749 		tho->th_counter->tc_poll_pps(tho->th_counter);
750 
751 	/*
752 	 * Deal with NTP second processing.  The for loop normally
753 	 * iterates at most once, but in extreme situations it might
754 	 * keep NTP sane if timeouts are not run for several seconds.
755 	 * At boot, the time step can be large when the TOD hardware
756 	 * has been read, so on really large steps, we call
757 	 * ntp_update_second only twice.  We need to call it twice in
758 	 * case we missed a leap second.
759 	 * If NTP is not compiled in ntp_update_second still calculates
760 	 * the adjustment resulting from adjtime() calls.
761 	 */
762 	bt = th->th_offset;
763 	bintime_add(&bt, &timebasebin);
764 	i = bt.sec - tho->th_microtime.tv_sec;
765 	if (i > LARGE_STEP)
766 		i = 2;
767 	for (; i > 0; i--) {
768 		t = bt.sec;
769 		ntp_update_second(&th->th_adjustment, &bt.sec);
770 		s_update = 1;
771 		if (bt.sec != t)
772 			timebasebin.sec += bt.sec - t;
773 	}
774 
775 	/* Update the UTC timestamps used by the get*() functions. */
776 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
777 	bintime2timeval(&bt, &th->th_microtime);
778 	bintime2timespec(&bt, &th->th_nanotime);
779 	/* Now is a good time to change timecounters. */
780 	if (th->th_counter != timecounter) {
781 		th->th_counter = timecounter;
782 		th->th_offset_count = ncount;
783 		s_update = 1;
784 	}
785 
786 	/*-
787 	 * Recalculate the scaling factor.  We want the number of 1/2^64
788 	 * fractions of a second per period of the hardware counter, taking
789 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
790 	 * processing provides us with.
791 	 *
792 	 * The th_adjustment is nanoseconds per second with 32 bit binary
793 	 * fraction and we want 64 bit binary fraction of second:
794 	 *
795 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
796 	 *
797 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
798 	 * we can only multiply by about 850 without overflowing, but that
799 	 * leaves suitably precise fractions for multiply before divide.
800 	 *
801 	 * Divide before multiply with a fraction of 2199/512 results in a
802 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
803 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
804  	 *
805 	 * We happily sacrifice the lowest of the 64 bits of our result
806 	 * to the goddess of code clarity.
807 	 *
808 	 */
809 	if (s_update) {
810 		scale = (u_int64_t)1 << 63;
811 		scale += (th->th_adjustment / 1024) * 2199;
812 		scale /= th->th_counter->tc_frequency;
813 		th->th_scale = scale * 2;
814 	}
815 	/*
816 	 * Now that the struct timehands is again consistent, set the new
817 	 * generation number, making sure to not make it zero.  Ensure
818 	 * changes are globally visible before changing.
819 	 */
820 	if (++ogen == 0)
821 		ogen = 1;
822 	membar_producer();
823 	th->th_generation = ogen;
824 
825 	/*
826 	 * Go live with the new struct timehands.  Ensure changes are
827 	 * globally visible before changing.
828 	 */
829 	time_second = th->th_microtime.tv_sec;
830 	time_uptime = th->th_offset.sec;
831 	membar_producer();
832 	timehands = th;
833 
834 	/*
835 	 * Force users of the old timehand to move on.  This is
836 	 * necessary for MP systems; we need to ensure that the
837 	 * consumers will move away from the old timehand before
838 	 * we begin updating it again when we eventually wrap
839 	 * around.
840 	 */
841 	if (++tho->th_generation == 0)
842 		tho->th_generation = 1;
843 }
844 
845 /*
846  * RFC 2783 PPS-API implementation.
847  */
848 
849 int
850 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
851 {
852 	pps_params_t *app;
853 	pps_info_t *pipi;
854 #ifdef PPS_SYNC
855 	int *epi;
856 #endif
857 
858 	KASSERT(mutex_owned(&timecounter_lock));
859 
860 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
861 	switch (cmd) {
862 	case PPS_IOC_CREATE:
863 		return (0);
864 	case PPS_IOC_DESTROY:
865 		return (0);
866 	case PPS_IOC_SETPARAMS:
867 		app = (pps_params_t *)data;
868 		if (app->mode & ~pps->ppscap)
869 			return (EINVAL);
870 		pps->ppsparam = *app;
871 		return (0);
872 	case PPS_IOC_GETPARAMS:
873 		app = (pps_params_t *)data;
874 		*app = pps->ppsparam;
875 		app->api_version = PPS_API_VERS_1;
876 		return (0);
877 	case PPS_IOC_GETCAP:
878 		*(int*)data = pps->ppscap;
879 		return (0);
880 	case PPS_IOC_FETCH:
881 		pipi = (pps_info_t *)data;
882 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
883 		*pipi = pps->ppsinfo;
884 		return (0);
885 	case PPS_IOC_KCBIND:
886 #ifdef PPS_SYNC
887 		epi = (int *)data;
888 		/* XXX Only root should be able to do this */
889 		if (*epi & ~pps->ppscap)
890 			return (EINVAL);
891 		pps->kcmode = *epi;
892 		return (0);
893 #else
894 		return (EOPNOTSUPP);
895 #endif
896 	default:
897 		return (EPASSTHROUGH);
898 	}
899 }
900 
901 void
902 pps_init(struct pps_state *pps)
903 {
904 
905 	KASSERT(mutex_owned(&timecounter_lock));
906 
907 	pps->ppscap |= PPS_TSFMT_TSPEC;
908 	if (pps->ppscap & PPS_CAPTUREASSERT)
909 		pps->ppscap |= PPS_OFFSETASSERT;
910 	if (pps->ppscap & PPS_CAPTURECLEAR)
911 		pps->ppscap |= PPS_OFFSETCLEAR;
912 }
913 
914 void
915 pps_capture(struct pps_state *pps)
916 {
917 	struct timehands *th;
918 
919 	KASSERT(mutex_owned(&timecounter_lock));
920 	KASSERT(pps != NULL);
921 
922 	th = timehands;
923 	pps->capgen = th->th_generation;
924 	pps->capth = th;
925 	pps->capcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
926 	if (pps->capgen != th->th_generation)
927 		pps->capgen = 0;
928 }
929 
930 void
931 pps_event(struct pps_state *pps, int event)
932 {
933 	struct bintime bt;
934 	struct timespec ts, *tsp, *osp;
935 	u_int64_t tcount, *pcount;
936 	int foff, fhard;
937 	pps_seq_t *pseq;
938 
939 	KASSERT(mutex_owned(&timecounter_lock));
940 
941 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
942 	/* If the timecounter was wound up underneath us, bail out. */
943 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
944 		return;
945 
946 	/* Things would be easier with arrays. */
947 	if (event == PPS_CAPTUREASSERT) {
948 		tsp = &pps->ppsinfo.assert_timestamp;
949 		osp = &pps->ppsparam.assert_offset;
950 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
951 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
952 		pcount = &pps->ppscount[0];
953 		pseq = &pps->ppsinfo.assert_sequence;
954 	} else {
955 		tsp = &pps->ppsinfo.clear_timestamp;
956 		osp = &pps->ppsparam.clear_offset;
957 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
958 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
959 		pcount = &pps->ppscount[1];
960 		pseq = &pps->ppsinfo.clear_sequence;
961 	}
962 
963 	/*
964 	 * If the timecounter changed, we cannot compare the count values, so
965 	 * we have to drop the rest of the PPS-stuff until the next event.
966 	 */
967 	if (pps->ppstc != pps->capth->th_counter) {
968 		pps->ppstc = pps->capth->th_counter;
969 		*pcount = pps->capcount;
970 		pps->ppscount[2] = pps->capcount;
971 		return;
972 	}
973 
974 	/* Convert the count to a timespec. */
975 	tcount = pps->capcount - pps->capth->th_offset_count;
976 	bt = pps->capth->th_offset;
977 	bintime_addx(&bt, pps->capth->th_scale * tcount);
978 	bintime_add(&bt, &timebasebin);
979 	bintime2timespec(&bt, &ts);
980 
981 	/* If the timecounter was wound up underneath us, bail out. */
982 	if (pps->capgen != pps->capth->th_generation)
983 		return;
984 
985 	*pcount = pps->capcount;
986 	(*pseq)++;
987 	*tsp = ts;
988 
989 	if (foff) {
990 		timespecadd(tsp, osp, tsp);
991 		if (tsp->tv_nsec < 0) {
992 			tsp->tv_nsec += 1000000000;
993 			tsp->tv_sec -= 1;
994 		}
995 	}
996 #ifdef PPS_SYNC
997 	if (fhard) {
998 		u_int64_t scale;
999 
1000 		/*
1001 		 * Feed the NTP PLL/FLL.
1002 		 * The FLL wants to know how many (hardware) nanoseconds
1003 		 * elapsed since the previous event.
1004 		 */
1005 		tcount = pps->capcount - pps->ppscount[2];
1006 		pps->ppscount[2] = pps->capcount;
1007 		tcount &= pps->capth->th_counter->tc_counter_mask;
1008 		scale = (u_int64_t)1 << 63;
1009 		scale /= pps->capth->th_counter->tc_frequency;
1010 		scale *= 2;
1011 		bt.sec = 0;
1012 		bt.frac = 0;
1013 		bintime_addx(&bt, scale * tcount);
1014 		bintime2timespec(&bt, &ts);
1015 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1016 	}
1017 #endif
1018 }
1019 
1020 /*
1021  * Timecounters need to be updated every so often to prevent the hardware
1022  * counter from overflowing.  Updating also recalculates the cached values
1023  * used by the get*() family of functions, so their precision depends on
1024  * the update frequency.
1025  */
1026 
1027 static int tc_tick;
1028 
1029 void
1030 tc_ticktock(void)
1031 {
1032 	static int count;
1033 
1034 	if (++count < tc_tick)
1035 		return;
1036 	count = 0;
1037 	mutex_spin_enter(&timecounter_lock);
1038 	if (timecounter_bad != 0) {
1039 		/* An existing timecounter has gone bad, pick a new one. */
1040 		(void)atomic_swap_uint(&timecounter_bad, 0);
1041 		if (timecounter->tc_quality < 0) {
1042 			tc_pick();
1043 		}
1044 	}
1045 	tc_windup();
1046 	mutex_spin_exit(&timecounter_lock);
1047 }
1048 
1049 void
1050 inittimecounter(void)
1051 {
1052 	u_int p;
1053 
1054 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
1055 
1056 	/*
1057 	 * Set the initial timeout to
1058 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1059 	 * People should probably not use the sysctl to set the timeout
1060 	 * to smaller than its inital value, since that value is the
1061 	 * smallest reasonable one.  If they want better timestamps they
1062 	 * should use the non-"get"* functions.
1063 	 */
1064 	if (hz > 1000)
1065 		tc_tick = (hz + 500) / 1000;
1066 	else
1067 		tc_tick = 1;
1068 	p = (tc_tick * 1000000) / hz;
1069 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
1070 	    p / 1000, p % 1000);
1071 
1072 	/* warm up new timecounter (again) and get rolling. */
1073 	(void)timecounter->tc_get_timecount(timecounter);
1074 	(void)timecounter->tc_get_timecount(timecounter);
1075 }
1076