xref: /netbsd-src/sys/kern/kern_tc.c (revision cd22f25e6f6d1cc1f197fe8c5468a80f51d1c4e1)
1 /* $NetBSD: kern_tc.c,v 1.34 2008/04/28 20:24:03 martin Exp $ */
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*-
30  * ----------------------------------------------------------------------------
31  * "THE BEER-WARE LICENSE" (Revision 42):
32  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
33  * can do whatever you want with this stuff. If we meet some day, and you think
34  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
35  * ---------------------------------------------------------------------------
36  */
37 
38 #include <sys/cdefs.h>
39 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
40 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.34 2008/04/28 20:24:03 martin Exp $");
41 
42 #include "opt_ntp.h"
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
47 #include <sys/sysctl.h>
48 #include <sys/syslog.h>
49 #include <sys/systm.h>
50 #include <sys/timepps.h>
51 #include <sys/timetc.h>
52 #include <sys/timex.h>
53 #include <sys/evcnt.h>
54 #include <sys/kauth.h>
55 #include <sys/mutex.h>
56 #include <sys/atomic.h>
57 
58 /*
59  * A large step happens on boot.  This constant detects such steps.
60  * It is relatively small so that ntp_update_second gets called enough
61  * in the typical 'missed a couple of seconds' case, but doesn't loop
62  * forever when the time step is large.
63  */
64 #define LARGE_STEP	200
65 
66 /*
67  * Implement a dummy timecounter which we can use until we get a real one
68  * in the air.  This allows the console and other early stuff to use
69  * time services.
70  */
71 
72 static u_int
73 dummy_get_timecount(struct timecounter *tc)
74 {
75 	static u_int now;
76 
77 	return (++now);
78 }
79 
80 static struct timecounter dummy_timecounter = {
81 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
82 };
83 
84 struct timehands {
85 	/* These fields must be initialized by the driver. */
86 	struct timecounter	*th_counter;
87 	int64_t			th_adjustment;
88 	u_int64_t		th_scale;
89 	u_int	 		th_offset_count;
90 	struct bintime		th_offset;
91 	struct timeval		th_microtime;
92 	struct timespec		th_nanotime;
93 	/* Fields not to be copied in tc_windup start with th_generation. */
94 	volatile u_int		th_generation;
95 	struct timehands	*th_next;
96 };
97 
98 static struct timehands th0;
99 static struct timehands th9 = { .th_next = &th0, };
100 static struct timehands th8 = { .th_next = &th9, };
101 static struct timehands th7 = { .th_next = &th8, };
102 static struct timehands th6 = { .th_next = &th7, };
103 static struct timehands th5 = { .th_next = &th6, };
104 static struct timehands th4 = { .th_next = &th5, };
105 static struct timehands th3 = { .th_next = &th4, };
106 static struct timehands th2 = { .th_next = &th3, };
107 static struct timehands th1 = { .th_next = &th2, };
108 static struct timehands th0 = {
109 	.th_counter = &dummy_timecounter,
110 	.th_scale = (uint64_t)-1 / 1000000,
111 	.th_offset = { .sec = 1, .frac = 0 },
112 	.th_generation = 1,
113 	.th_next = &th1,
114 };
115 
116 static struct timehands *volatile timehands = &th0;
117 struct timecounter *timecounter = &dummy_timecounter;
118 static struct timecounter *timecounters = &dummy_timecounter;
119 
120 time_t time_second = 1;
121 time_t time_uptime = 1;
122 
123 static struct bintime timebasebin;
124 
125 static int timestepwarnings;
126 
127 extern kmutex_t time_lock;
128 kmutex_t timecounter_lock;
129 
130 #ifdef __FreeBSD__
131 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
132     &timestepwarnings, 0, "");
133 #endif /* __FreeBSD__ */
134 
135 /*
136  * sysctl helper routine for kern.timercounter.hardware
137  */
138 static int
139 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
140 {
141 	struct sysctlnode node;
142 	int error;
143 	char newname[MAX_TCNAMELEN];
144 	struct timecounter *newtc, *tc;
145 
146 	tc = timecounter;
147 
148 	strlcpy(newname, tc->tc_name, sizeof(newname));
149 
150 	node = *rnode;
151 	node.sysctl_data = newname;
152 	node.sysctl_size = sizeof(newname);
153 
154 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
155 
156 	if (error ||
157 	    newp == NULL ||
158 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
159 		return error;
160 
161 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
162 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
163 	    NULL, NULL)) != 0)
164 		return (error);
165 
166 	if (!cold)
167 		mutex_enter(&time_lock);
168 	error = EINVAL;
169 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
170 		if (strcmp(newname, newtc->tc_name) != 0)
171 			continue;
172 		/* Warm up new timecounter. */
173 		(void)newtc->tc_get_timecount(newtc);
174 		(void)newtc->tc_get_timecount(newtc);
175 		timecounter = newtc;
176 		error = 0;
177 		break;
178 	}
179 	if (!cold)
180 		mutex_exit(&time_lock);
181 	return error;
182 }
183 
184 static int
185 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
186 {
187 	char buf[MAX_TCNAMELEN+48];
188 	char *where = oldp;
189 	const char *spc;
190 	struct timecounter *tc;
191 	size_t needed, left, slen;
192 	int error;
193 
194 	if (newp != NULL)
195 		return (EPERM);
196 	if (namelen != 0)
197 		return (EINVAL);
198 
199 	spc = "";
200 	error = 0;
201 	needed = 0;
202 	left = *oldlenp;
203 
204 	mutex_enter(&time_lock);
205 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
206 		if (where == NULL) {
207 			needed += sizeof(buf);  /* be conservative */
208 		} else {
209 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
210 					" Hz)", spc, tc->tc_name, tc->tc_quality,
211 					tc->tc_frequency);
212 			if (left < slen + 1)
213 				break;
214 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
215 			/* XXX copyout with held lock. */
216 			error = copyout(buf, where, slen + 1);
217 			spc = " ";
218 			where += slen;
219 			needed += slen;
220 			left -= slen;
221 		}
222 	}
223 	mutex_exit(&time_lock);
224 
225 	*oldlenp = needed;
226 	return (error);
227 }
228 
229 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
230 {
231 	const struct sysctlnode *node;
232 
233 	sysctl_createv(clog, 0, NULL, &node,
234 		       CTLFLAG_PERMANENT,
235 		       CTLTYPE_NODE, "timecounter",
236 		       SYSCTL_DESCR("time counter information"),
237 		       NULL, 0, NULL, 0,
238 		       CTL_KERN, CTL_CREATE, CTL_EOL);
239 
240 	if (node != NULL) {
241 		sysctl_createv(clog, 0, NULL, NULL,
242 			       CTLFLAG_PERMANENT,
243 			       CTLTYPE_STRING, "choice",
244 			       SYSCTL_DESCR("available counters"),
245 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
246 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
247 
248 		sysctl_createv(clog, 0, NULL, NULL,
249 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
250 			       CTLTYPE_STRING, "hardware",
251 			       SYSCTL_DESCR("currently active time counter"),
252 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
253 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
254 
255 		sysctl_createv(clog, 0, NULL, NULL,
256 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
257 			       CTLTYPE_INT, "timestepwarnings",
258 			       SYSCTL_DESCR("log time steps"),
259 			       NULL, 0, &timestepwarnings, 0,
260 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
261 	}
262 }
263 
264 #ifdef TC_COUNTERS
265 #define	TC_STATS(name)							\
266 static struct evcnt n##name =						\
267     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
268 EVCNT_ATTACH_STATIC(n##name)
269 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
270 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
271 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
272 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
273 TC_STATS(setclock);
274 #define	TC_COUNT(var)	var.ev_count++
275 #undef TC_STATS
276 #else
277 #define	TC_COUNT(var)	/* nothing */
278 #endif	/* TC_COUNTERS */
279 
280 static void tc_windup(void);
281 
282 /*
283  * Return the difference between the timehands' counter value now and what
284  * was when we copied it to the timehands' offset_count.
285  */
286 static __inline u_int
287 tc_delta(struct timehands *th)
288 {
289 	struct timecounter *tc;
290 
291 	tc = th->th_counter;
292 	return ((tc->tc_get_timecount(tc) -
293 		 th->th_offset_count) & tc->tc_counter_mask);
294 }
295 
296 /*
297  * Functions for reading the time.  We have to loop until we are sure that
298  * the timehands that we operated on was not updated under our feet.  See
299  * the comment in <sys/timevar.h> for a description of these 12 functions.
300  */
301 
302 void
303 binuptime(struct bintime *bt)
304 {
305 	struct timehands *th;
306 	u_int gen;
307 
308 	TC_COUNT(nbinuptime);
309 	do {
310 		th = timehands;
311 		gen = th->th_generation;
312 		*bt = th->th_offset;
313 		bintime_addx(bt, th->th_scale * tc_delta(th));
314 	} while (gen == 0 || gen != th->th_generation);
315 }
316 
317 void
318 nanouptime(struct timespec *tsp)
319 {
320 	struct bintime bt;
321 
322 	TC_COUNT(nnanouptime);
323 	binuptime(&bt);
324 	bintime2timespec(&bt, tsp);
325 }
326 
327 void
328 microuptime(struct timeval *tvp)
329 {
330 	struct bintime bt;
331 
332 	TC_COUNT(nmicrouptime);
333 	binuptime(&bt);
334 	bintime2timeval(&bt, tvp);
335 }
336 
337 void
338 bintime(struct bintime *bt)
339 {
340 
341 	TC_COUNT(nbintime);
342 	binuptime(bt);
343 	bintime_add(bt, &timebasebin);
344 }
345 
346 void
347 nanotime(struct timespec *tsp)
348 {
349 	struct bintime bt;
350 
351 	TC_COUNT(nnanotime);
352 	bintime(&bt);
353 	bintime2timespec(&bt, tsp);
354 }
355 
356 void
357 microtime(struct timeval *tvp)
358 {
359 	struct bintime bt;
360 
361 	TC_COUNT(nmicrotime);
362 	bintime(&bt);
363 	bintime2timeval(&bt, tvp);
364 }
365 
366 void
367 getbinuptime(struct bintime *bt)
368 {
369 	struct timehands *th;
370 	u_int gen;
371 
372 	TC_COUNT(ngetbinuptime);
373 	do {
374 		th = timehands;
375 		gen = th->th_generation;
376 		*bt = th->th_offset;
377 	} while (gen == 0 || gen != th->th_generation);
378 }
379 
380 void
381 getnanouptime(struct timespec *tsp)
382 {
383 	struct timehands *th;
384 	u_int gen;
385 
386 	TC_COUNT(ngetnanouptime);
387 	do {
388 		th = timehands;
389 		gen = th->th_generation;
390 		bintime2timespec(&th->th_offset, tsp);
391 	} while (gen == 0 || gen != th->th_generation);
392 }
393 
394 void
395 getmicrouptime(struct timeval *tvp)
396 {
397 	struct timehands *th;
398 	u_int gen;
399 
400 	TC_COUNT(ngetmicrouptime);
401 	do {
402 		th = timehands;
403 		gen = th->th_generation;
404 		bintime2timeval(&th->th_offset, tvp);
405 	} while (gen == 0 || gen != th->th_generation);
406 }
407 
408 void
409 getbintime(struct bintime *bt)
410 {
411 	struct timehands *th;
412 	u_int gen;
413 
414 	TC_COUNT(ngetbintime);
415 	do {
416 		th = timehands;
417 		gen = th->th_generation;
418 		*bt = th->th_offset;
419 	} while (gen == 0 || gen != th->th_generation);
420 	bintime_add(bt, &timebasebin);
421 }
422 
423 void
424 getnanotime(struct timespec *tsp)
425 {
426 	struct timehands *th;
427 	u_int gen;
428 
429 	TC_COUNT(ngetnanotime);
430 	do {
431 		th = timehands;
432 		gen = th->th_generation;
433 		*tsp = th->th_nanotime;
434 	} while (gen == 0 || gen != th->th_generation);
435 }
436 
437 void
438 getmicrotime(struct timeval *tvp)
439 {
440 	struct timehands *th;
441 	u_int gen;
442 
443 	TC_COUNT(ngetmicrotime);
444 	do {
445 		th = timehands;
446 		gen = th->th_generation;
447 		*tvp = th->th_microtime;
448 	} while (gen == 0 || gen != th->th_generation);
449 }
450 
451 /*
452  * Initialize a new timecounter and possibly use it.
453  */
454 void
455 tc_init(struct timecounter *tc)
456 {
457 	u_int u;
458 
459 	u = tc->tc_frequency / tc->tc_counter_mask;
460 	/* XXX: We need some margin here, 10% is a guess */
461 	u *= 11;
462 	u /= 10;
463 	if (u > hz && tc->tc_quality >= 0) {
464 		tc->tc_quality = -2000;
465 		aprint_verbose(
466 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
467 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
468 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
469 	} else if (tc->tc_quality >= 0 || bootverbose) {
470 		aprint_verbose(
471 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
472 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
473 		    tc->tc_quality);
474 	}
475 
476 	mutex_enter(&time_lock);
477 	mutex_spin_enter(&timecounter_lock);
478 	tc->tc_next = timecounters;
479 	timecounters = tc;
480 	/*
481 	 * Never automatically use a timecounter with negative quality.
482 	 * Even though we run on the dummy counter, switching here may be
483 	 * worse since this timecounter may not be monotonous.
484 	 */
485 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
486 	    (tc->tc_quality == timecounter->tc_quality &&
487 	    tc->tc_frequency > timecounter->tc_frequency))) {
488 		(void)tc->tc_get_timecount(tc);
489 		(void)tc->tc_get_timecount(tc);
490 		timecounter = tc;
491 		tc_windup();
492 	}
493 	mutex_spin_exit(&timecounter_lock);
494 	mutex_exit(&time_lock);
495 }
496 
497 /*
498  * Stop using a timecounter and remove it from the timecounters list.
499  */
500 int
501 tc_detach(struct timecounter *target)
502 {
503 	struct timecounter *best, *tc;
504 	struct timecounter **tcp = NULL;
505 	int rc = 0;
506 
507 	mutex_enter(&time_lock);
508 	for (tcp = &timecounters, tc = timecounters;
509 	     tc != NULL;
510 	     tcp = &tc->tc_next, tc = tc->tc_next) {
511 		if (tc == target)
512 			break;
513 	}
514 	if (tc == NULL) {
515 		rc = ESRCH;
516 		goto out;
517 	}
518 	*tcp = tc->tc_next;
519 
520 	if (timecounter != target)
521 		goto out;
522 
523 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
524 		if (tc->tc_quality > best->tc_quality)
525 			best = tc;
526 		else if (tc->tc_quality < best->tc_quality)
527 			continue;
528 		else if (tc->tc_frequency > best->tc_frequency)
529 			best = tc;
530 	}
531 	mutex_spin_enter(&timecounter_lock);
532 	(void)best->tc_get_timecount(best);
533 	(void)best->tc_get_timecount(best);
534 	timecounter = best;
535 	tc_windup();
536 	mutex_spin_exit(&timecounter_lock);
537 out:
538 	mutex_exit(&time_lock);
539 	return rc;
540 }
541 
542 /* Report the frequency of the current timecounter. */
543 u_int64_t
544 tc_getfrequency(void)
545 {
546 
547 	return (timehands->th_counter->tc_frequency);
548 }
549 
550 /*
551  * Step our concept of UTC.  This is done by modifying our estimate of
552  * when we booted.
553  */
554 void
555 tc_setclock(struct timespec *ts)
556 {
557 	struct timespec ts2;
558 	struct bintime bt, bt2;
559 
560 	mutex_spin_enter(&timecounter_lock);
561 	TC_COUNT(nsetclock);
562 	binuptime(&bt2);
563 	timespec2bintime(ts, &bt);
564 	bintime_sub(&bt, &bt2);
565 	bintime_add(&bt2, &timebasebin);
566 	timebasebin = bt;
567 	tc_windup();
568 	mutex_spin_exit(&timecounter_lock);
569 
570 	if (timestepwarnings) {
571 		bintime2timespec(&bt2, &ts2);
572 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
573 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
574 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
575 	}
576 }
577 
578 /*
579  * Initialize the next struct timehands in the ring and make
580  * it the active timehands.  Along the way we might switch to a different
581  * timecounter and/or do seconds processing in NTP.  Slightly magic.
582  */
583 static void
584 tc_windup(void)
585 {
586 	struct bintime bt;
587 	struct timehands *th, *tho;
588 	u_int64_t scale;
589 	u_int delta, ncount, ogen;
590 	int i, s_update;
591 	time_t t;
592 
593 	KASSERT(mutex_owned(&timecounter_lock));
594 
595 	s_update = 0;
596 
597 	/*
598 	 * Make the next timehands a copy of the current one, but do not
599 	 * overwrite the generation or next pointer.  While we update
600 	 * the contents, the generation must be zero.  Ensure global
601 	 * visibility of the generation before proceeding.
602 	 */
603 	tho = timehands;
604 	th = tho->th_next;
605 	ogen = th->th_generation;
606 	th->th_generation = 0;
607 	membar_producer();
608 	bcopy(tho, th, offsetof(struct timehands, th_generation));
609 
610 	/*
611 	 * Capture a timecounter delta on the current timecounter and if
612 	 * changing timecounters, a counter value from the new timecounter.
613 	 * Update the offset fields accordingly.
614 	 */
615 	delta = tc_delta(th);
616 	if (th->th_counter != timecounter)
617 		ncount = timecounter->tc_get_timecount(timecounter);
618 	else
619 		ncount = 0;
620 	th->th_offset_count += delta;
621 	th->th_offset_count &= th->th_counter->tc_counter_mask;
622 	bintime_addx(&th->th_offset, th->th_scale * delta);
623 
624 	/*
625 	 * Hardware latching timecounters may not generate interrupts on
626 	 * PPS events, so instead we poll them.  There is a finite risk that
627 	 * the hardware might capture a count which is later than the one we
628 	 * got above, and therefore possibly in the next NTP second which might
629 	 * have a different rate than the current NTP second.  It doesn't
630 	 * matter in practice.
631 	 */
632 	if (tho->th_counter->tc_poll_pps)
633 		tho->th_counter->tc_poll_pps(tho->th_counter);
634 
635 	/*
636 	 * Deal with NTP second processing.  The for loop normally
637 	 * iterates at most once, but in extreme situations it might
638 	 * keep NTP sane if timeouts are not run for several seconds.
639 	 * At boot, the time step can be large when the TOD hardware
640 	 * has been read, so on really large steps, we call
641 	 * ntp_update_second only twice.  We need to call it twice in
642 	 * case we missed a leap second.
643 	 * If NTP is not compiled in ntp_update_second still calculates
644 	 * the adjustment resulting from adjtime() calls.
645 	 */
646 	bt = th->th_offset;
647 	bintime_add(&bt, &timebasebin);
648 	i = bt.sec - tho->th_microtime.tv_sec;
649 	if (i > LARGE_STEP)
650 		i = 2;
651 	for (; i > 0; i--) {
652 		t = bt.sec;
653 		ntp_update_second(&th->th_adjustment, &bt.sec);
654 		s_update = 1;
655 		if (bt.sec != t)
656 			timebasebin.sec += bt.sec - t;
657 	}
658 
659 	/* Update the UTC timestamps used by the get*() functions. */
660 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
661 	bintime2timeval(&bt, &th->th_microtime);
662 	bintime2timespec(&bt, &th->th_nanotime);
663 
664 	/* Now is a good time to change timecounters. */
665 	if (th->th_counter != timecounter) {
666 		th->th_counter = timecounter;
667 		th->th_offset_count = ncount;
668 		s_update = 1;
669 	}
670 
671 	/*-
672 	 * Recalculate the scaling factor.  We want the number of 1/2^64
673 	 * fractions of a second per period of the hardware counter, taking
674 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
675 	 * processing provides us with.
676 	 *
677 	 * The th_adjustment is nanoseconds per second with 32 bit binary
678 	 * fraction and we want 64 bit binary fraction of second:
679 	 *
680 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
681 	 *
682 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
683 	 * we can only multiply by about 850 without overflowing, but that
684 	 * leaves suitably precise fractions for multiply before divide.
685 	 *
686 	 * Divide before multiply with a fraction of 2199/512 results in a
687 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
688 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
689  	 *
690 	 * We happily sacrifice the lowest of the 64 bits of our result
691 	 * to the goddess of code clarity.
692 	 *
693 	 */
694 	if (s_update) {
695 		scale = (u_int64_t)1 << 63;
696 		scale += (th->th_adjustment / 1024) * 2199;
697 		scale /= th->th_counter->tc_frequency;
698 		th->th_scale = scale * 2;
699 	}
700 	/*
701 	 * Now that the struct timehands is again consistent, set the new
702 	 * generation number, making sure to not make it zero.  Ensure
703 	 * changes are globally visible before changing.
704 	 */
705 	if (++ogen == 0)
706 		ogen = 1;
707 	membar_producer();
708 	th->th_generation = ogen;
709 
710 	/*
711 	 * Go live with the new struct timehands.  Ensure changes are
712 	 * globally visible before changing.
713 	 */
714 	time_second = th->th_microtime.tv_sec;
715 	time_uptime = th->th_offset.sec;
716 	membar_producer();
717 	timehands = th;
718 
719 	/*
720 	 * Force users of the old timehand to move on.  This is
721 	 * necessary for MP systems; we need to ensure that the
722 	 * consumers will move away from the old timehand before
723 	 * we begin updating it again when we eventually wrap
724 	 * around.
725 	 */
726 	if (++tho->th_generation == 0)
727 		tho->th_generation = 1;
728 }
729 
730 /*
731  * RFC 2783 PPS-API implementation.
732  */
733 
734 int
735 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
736 {
737 	pps_params_t *app;
738 	pps_info_t *pipi;
739 #ifdef PPS_SYNC
740 	int *epi;
741 #endif
742 
743 	KASSERT(mutex_owned(&timecounter_lock));
744 
745 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
746 	switch (cmd) {
747 	case PPS_IOC_CREATE:
748 		return (0);
749 	case PPS_IOC_DESTROY:
750 		return (0);
751 	case PPS_IOC_SETPARAMS:
752 		app = (pps_params_t *)data;
753 		if (app->mode & ~pps->ppscap)
754 			return (EINVAL);
755 		pps->ppsparam = *app;
756 		return (0);
757 	case PPS_IOC_GETPARAMS:
758 		app = (pps_params_t *)data;
759 		*app = pps->ppsparam;
760 		app->api_version = PPS_API_VERS_1;
761 		return (0);
762 	case PPS_IOC_GETCAP:
763 		*(int*)data = pps->ppscap;
764 		return (0);
765 	case PPS_IOC_FETCH:
766 		pipi = (pps_info_t *)data;
767 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
768 		*pipi = pps->ppsinfo;
769 		return (0);
770 	case PPS_IOC_KCBIND:
771 #ifdef PPS_SYNC
772 		epi = (int *)data;
773 		/* XXX Only root should be able to do this */
774 		if (*epi & ~pps->ppscap)
775 			return (EINVAL);
776 		pps->kcmode = *epi;
777 		return (0);
778 #else
779 		return (EOPNOTSUPP);
780 #endif
781 	default:
782 		return (EPASSTHROUGH);
783 	}
784 }
785 
786 void
787 pps_init(struct pps_state *pps)
788 {
789 
790 	KASSERT(mutex_owned(&timecounter_lock));
791 
792 	pps->ppscap |= PPS_TSFMT_TSPEC;
793 	if (pps->ppscap & PPS_CAPTUREASSERT)
794 		pps->ppscap |= PPS_OFFSETASSERT;
795 	if (pps->ppscap & PPS_CAPTURECLEAR)
796 		pps->ppscap |= PPS_OFFSETCLEAR;
797 }
798 
799 void
800 pps_capture(struct pps_state *pps)
801 {
802 	struct timehands *th;
803 
804 	KASSERT(mutex_owned(&timecounter_lock));
805 	KASSERT(pps != NULL);
806 
807 	th = timehands;
808 	pps->capgen = th->th_generation;
809 	pps->capth = th;
810 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
811 	if (pps->capgen != th->th_generation)
812 		pps->capgen = 0;
813 }
814 
815 void
816 pps_event(struct pps_state *pps, int event)
817 {
818 	struct bintime bt;
819 	struct timespec ts, *tsp, *osp;
820 	u_int tcount, *pcount;
821 	int foff, fhard;
822 	pps_seq_t *pseq;
823 
824 	KASSERT(mutex_owned(&timecounter_lock));
825 
826 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
827 	/* If the timecounter was wound up underneath us, bail out. */
828 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
829 		return;
830 
831 	/* Things would be easier with arrays. */
832 	if (event == PPS_CAPTUREASSERT) {
833 		tsp = &pps->ppsinfo.assert_timestamp;
834 		osp = &pps->ppsparam.assert_offset;
835 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
836 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
837 		pcount = &pps->ppscount[0];
838 		pseq = &pps->ppsinfo.assert_sequence;
839 	} else {
840 		tsp = &pps->ppsinfo.clear_timestamp;
841 		osp = &pps->ppsparam.clear_offset;
842 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
843 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
844 		pcount = &pps->ppscount[1];
845 		pseq = &pps->ppsinfo.clear_sequence;
846 	}
847 
848 	/*
849 	 * If the timecounter changed, we cannot compare the count values, so
850 	 * we have to drop the rest of the PPS-stuff until the next event.
851 	 */
852 	if (pps->ppstc != pps->capth->th_counter) {
853 		pps->ppstc = pps->capth->th_counter;
854 		*pcount = pps->capcount;
855 		pps->ppscount[2] = pps->capcount;
856 		return;
857 	}
858 
859 	/* Convert the count to a timespec. */
860 	tcount = pps->capcount - pps->capth->th_offset_count;
861 	tcount &= pps->capth->th_counter->tc_counter_mask;
862 	bt = pps->capth->th_offset;
863 	bintime_addx(&bt, pps->capth->th_scale * tcount);
864 	bintime_add(&bt, &timebasebin);
865 	bintime2timespec(&bt, &ts);
866 
867 	/* If the timecounter was wound up underneath us, bail out. */
868 	if (pps->capgen != pps->capth->th_generation)
869 		return;
870 
871 	*pcount = pps->capcount;
872 	(*pseq)++;
873 	*tsp = ts;
874 
875 	if (foff) {
876 		timespecadd(tsp, osp, tsp);
877 		if (tsp->tv_nsec < 0) {
878 			tsp->tv_nsec += 1000000000;
879 			tsp->tv_sec -= 1;
880 		}
881 	}
882 #ifdef PPS_SYNC
883 	if (fhard) {
884 		u_int64_t scale;
885 
886 		/*
887 		 * Feed the NTP PLL/FLL.
888 		 * The FLL wants to know how many (hardware) nanoseconds
889 		 * elapsed since the previous event.
890 		 */
891 		tcount = pps->capcount - pps->ppscount[2];
892 		pps->ppscount[2] = pps->capcount;
893 		tcount &= pps->capth->th_counter->tc_counter_mask;
894 		scale = (u_int64_t)1 << 63;
895 		scale /= pps->capth->th_counter->tc_frequency;
896 		scale *= 2;
897 		bt.sec = 0;
898 		bt.frac = 0;
899 		bintime_addx(&bt, scale * tcount);
900 		bintime2timespec(&bt, &ts);
901 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
902 	}
903 #endif
904 }
905 
906 /*
907  * Timecounters need to be updated every so often to prevent the hardware
908  * counter from overflowing.  Updating also recalculates the cached values
909  * used by the get*() family of functions, so their precision depends on
910  * the update frequency.
911  */
912 
913 static int tc_tick;
914 
915 void
916 tc_ticktock(void)
917 {
918 	static int count;
919 
920 	if (++count < tc_tick)
921 		return;
922 	count = 0;
923 	mutex_spin_enter(&timecounter_lock);
924 	tc_windup();
925 	mutex_spin_exit(&timecounter_lock);
926 }
927 
928 void
929 inittimecounter(void)
930 {
931 	u_int p;
932 
933 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_SCHED);
934 
935 	/*
936 	 * Set the initial timeout to
937 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
938 	 * People should probably not use the sysctl to set the timeout
939 	 * to smaller than its inital value, since that value is the
940 	 * smallest reasonable one.  If they want better timestamps they
941 	 * should use the non-"get"* functions.
942 	 */
943 	if (hz > 1000)
944 		tc_tick = (hz + 500) / 1000;
945 	else
946 		tc_tick = 1;
947 	p = (tc_tick * 1000000) / hz;
948 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
949 	    p / 1000, p % 1000);
950 
951 	/* warm up new timecounter (again) and get rolling. */
952 	(void)timecounter->tc_get_timecount(timecounter);
953 	(void)timecounter->tc_get_timecount(timecounter);
954 }
955