xref: /netbsd-src/sys/kern/kern_tc.c (revision c0179c282a5968435315a82f4128c61372c68fc3)
1 /* $NetBSD: kern_tc.c,v 1.16 2006/11/01 10:17:58 yamt Exp $ */
2 
3 /*-
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ---------------------------------------------------------------------------
10  */
11 
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.16 2006/11/01 10:17:58 yamt Exp $");
15 
16 #include "opt_ntp.h"
17 
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER	/* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28 #include <sys/evcnt.h>
29 #include <sys/kauth.h>
30 
31 /*
32  * A large step happens on boot.  This constant detects such steps.
33  * It is relatively small so that ntp_update_second gets called enough
34  * in the typical 'missed a couple of seconds' case, but doesn't loop
35  * forever when the time step is large.
36  */
37 #define LARGE_STEP	200
38 
39 /*
40  * Implement a dummy timecounter which we can use until we get a real one
41  * in the air.  This allows the console and other early stuff to use
42  * time services.
43  */
44 
45 static u_int
46 dummy_get_timecount(struct timecounter *tc)
47 {
48 	static u_int now;
49 
50 	return (++now);
51 }
52 
53 static struct timecounter dummy_timecounter = {
54 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
55 };
56 
57 struct timehands {
58 	/* These fields must be initialized by the driver. */
59 	struct timecounter	*th_counter;
60 	int64_t			th_adjustment;
61 	u_int64_t		th_scale;
62 	u_int	 		th_offset_count;
63 	struct bintime		th_offset;
64 	struct timeval		th_microtime;
65 	struct timespec		th_nanotime;
66 	/* Fields not to be copied in tc_windup start with th_generation. */
67 	volatile u_int		th_generation;
68 	struct timehands	*th_next;
69 };
70 
71 static struct timehands th0;
72 static struct timehands th9 = { .th_next = &th0, };
73 static struct timehands th8 = { .th_next = &th9, };
74 static struct timehands th7 = { .th_next = &th8, };
75 static struct timehands th6 = { .th_next = &th7, };
76 static struct timehands th5 = { .th_next = &th6, };
77 static struct timehands th4 = { .th_next = &th5, };
78 static struct timehands th3 = { .th_next = &th4, };
79 static struct timehands th2 = { .th_next = &th3, };
80 static struct timehands th1 = { .th_next = &th2, };
81 static struct timehands th0 = {
82 	.th_counter = &dummy_timecounter,
83 	.th_scale = (uint64_t)-1 / 1000000,
84 	.th_offset = { .sec = 1, .frac = 0 },
85 	.th_generation = 1,
86 	.th_next = &th1,
87 };
88 
89 static struct timehands *volatile timehands = &th0;
90 struct timecounter *timecounter = &dummy_timecounter;
91 static struct timecounter *timecounters = &dummy_timecounter;
92 
93 time_t time_second = 1;
94 time_t time_uptime = 1;
95 
96 static struct bintime timebasebin;
97 
98 static int timestepwarnings;
99 
100 #ifdef __FreeBSD__
101 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
102     &timestepwarnings, 0, "");
103 #endif /* __FreeBSD__ */
104 
105 /*
106  * sysctl helper routine for kern.timercounter.current
107  */
108 static int
109 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
110 {
111 	struct sysctlnode node;
112 	int error;
113 	char newname[MAX_TCNAMELEN];
114 	struct timecounter *newtc, *tc;
115 
116 	tc = timecounter;
117 
118 	strlcpy(newname, tc->tc_name, sizeof(newname));
119 
120 	node = *rnode;
121 	node.sysctl_data = newname;
122 	node.sysctl_size = sizeof(newname);
123 
124 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
125 
126 	if (error ||
127 	    newp == NULL ||
128 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
129 		return error;
130 
131 	if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
132 	    KAUTH_GENERIC_ISSUSER, &l->l_acflag)) != 0)
133 		return (error);
134 
135 	/* XXX locking */
136 
137 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
138 		if (strcmp(newname, newtc->tc_name) != 0)
139 			continue;
140 
141 		/* Warm up new timecounter. */
142 		(void)newtc->tc_get_timecount(newtc);
143 		(void)newtc->tc_get_timecount(newtc);
144 
145 		timecounter = newtc;
146 
147 		/* XXX unlock */
148 
149 		return (0);
150 	}
151 
152 	/* XXX unlock */
153 
154 	return (EINVAL);
155 }
156 
157 static int
158 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
159 {
160 	char buf[MAX_TCNAMELEN+48];
161 	char *where = oldp;
162 	const char *spc;
163 	struct timecounter *tc;
164 	size_t needed, left, slen;
165 	int error;
166 
167 	if (newp != NULL)
168 		return (EPERM);
169 	if (namelen != 0)
170 		return (EINVAL);
171 
172 	spc = "";
173 	error = 0;
174 	needed = 0;
175 	left = *oldlenp;
176 
177 	/* XXX locking */
178 
179 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
180 		if (where == NULL) {
181 			needed += sizeof(buf);  /* be conservative */
182 		} else {
183 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
184 					" Hz)", spc, tc->tc_name, tc->tc_quality,
185 					tc->tc_frequency);
186 			if (left < slen + 1)
187 				break;
188 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
189 			error = copyout(buf, where, slen + 1);
190 			spc = " ";
191 			where += slen;
192 			needed += slen;
193 			left -= slen;
194 		}
195 	}
196 
197 	/* XXX unlock */
198 
199 	*oldlenp = needed;
200 	return (error);
201 }
202 
203 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
204 {
205 	const struct sysctlnode *node;
206 
207 	sysctl_createv(clog, 0, NULL, &node,
208 		       CTLFLAG_PERMANENT,
209 		       CTLTYPE_NODE, "timecounter",
210 		       SYSCTL_DESCR("time counter information"),
211 		       NULL, 0, NULL, 0,
212 		       CTL_KERN, CTL_CREATE, CTL_EOL);
213 
214 	if (node != NULL) {
215 		sysctl_createv(clog, 0, NULL, NULL,
216 			       CTLFLAG_PERMANENT,
217 			       CTLTYPE_STRING, "choice",
218 			       SYSCTL_DESCR("available counters"),
219 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
220 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
221 
222 		sysctl_createv(clog, 0, NULL, NULL,
223 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
224 			       CTLTYPE_STRING, "hardware",
225 			       SYSCTL_DESCR("currently active time counter"),
226 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
227 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
228 
229 		sysctl_createv(clog, 0, NULL, NULL,
230 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
231 			       CTLTYPE_INT, "timestepwarnings",
232 			       SYSCTL_DESCR("log time steps"),
233 			       NULL, 0, &timestepwarnings, 0,
234 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
235 	}
236 }
237 
238 #define	TC_STATS(name)							\
239 static struct evcnt n##name =						\
240     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
241 EVCNT_ATTACH_STATIC(n##name)
242 
243 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
244 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
245 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
246 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
247 TC_STATS(setclock);
248 
249 #undef TC_STATS
250 
251 static void tc_windup(void);
252 
253 /*
254  * Return the difference between the timehands' counter value now and what
255  * was when we copied it to the timehands' offset_count.
256  */
257 static __inline u_int
258 tc_delta(struct timehands *th)
259 {
260 	struct timecounter *tc;
261 
262 	tc = th->th_counter;
263 	return ((tc->tc_get_timecount(tc) -
264 		 th->th_offset_count) & tc->tc_counter_mask);
265 }
266 
267 /*
268  * Functions for reading the time.  We have to loop until we are sure that
269  * the timehands that we operated on was not updated under our feet.  See
270  * the comment in <sys/time.h> for a description of these 12 functions.
271  */
272 
273 void
274 binuptime(struct bintime *bt)
275 {
276 	struct timehands *th;
277 	u_int gen;
278 
279 	nbinuptime.ev_count++;
280 	do {
281 		th = timehands;
282 		gen = th->th_generation;
283 		*bt = th->th_offset;
284 		bintime_addx(bt, th->th_scale * tc_delta(th));
285 	} while (gen == 0 || gen != th->th_generation);
286 }
287 
288 void
289 nanouptime(struct timespec *tsp)
290 {
291 	struct bintime bt;
292 
293 	nnanouptime.ev_count++;
294 	binuptime(&bt);
295 	bintime2timespec(&bt, tsp);
296 }
297 
298 void
299 microuptime(struct timeval *tvp)
300 {
301 	struct bintime bt;
302 
303 	nmicrouptime.ev_count++;
304 	binuptime(&bt);
305 	bintime2timeval(&bt, tvp);
306 }
307 
308 void
309 bintime(struct bintime *bt)
310 {
311 
312 	nbintime.ev_count++;
313 	binuptime(bt);
314 	bintime_add(bt, &timebasebin);
315 }
316 
317 void
318 nanotime(struct timespec *tsp)
319 {
320 	struct bintime bt;
321 
322 	nnanotime.ev_count++;
323 	bintime(&bt);
324 	bintime2timespec(&bt, tsp);
325 }
326 
327 void
328 microtime(struct timeval *tvp)
329 {
330 	struct bintime bt;
331 
332 	nmicrotime.ev_count++;
333 	bintime(&bt);
334 	bintime2timeval(&bt, tvp);
335 }
336 
337 void
338 getbinuptime(struct bintime *bt)
339 {
340 	struct timehands *th;
341 	u_int gen;
342 
343 	ngetbinuptime.ev_count++;
344 	do {
345 		th = timehands;
346 		gen = th->th_generation;
347 		*bt = th->th_offset;
348 	} while (gen == 0 || gen != th->th_generation);
349 }
350 
351 void
352 getnanouptime(struct timespec *tsp)
353 {
354 	struct timehands *th;
355 	u_int gen;
356 
357 	ngetnanouptime.ev_count++;
358 	do {
359 		th = timehands;
360 		gen = th->th_generation;
361 		bintime2timespec(&th->th_offset, tsp);
362 	} while (gen == 0 || gen != th->th_generation);
363 }
364 
365 void
366 getmicrouptime(struct timeval *tvp)
367 {
368 	struct timehands *th;
369 	u_int gen;
370 
371 	ngetmicrouptime.ev_count++;
372 	do {
373 		th = timehands;
374 		gen = th->th_generation;
375 		bintime2timeval(&th->th_offset, tvp);
376 	} while (gen == 0 || gen != th->th_generation);
377 }
378 
379 void
380 getbintime(struct bintime *bt)
381 {
382 	struct timehands *th;
383 	u_int gen;
384 
385 	ngetbintime.ev_count++;
386 	do {
387 		th = timehands;
388 		gen = th->th_generation;
389 		*bt = th->th_offset;
390 	} while (gen == 0 || gen != th->th_generation);
391 	bintime_add(bt, &timebasebin);
392 }
393 
394 void
395 getnanotime(struct timespec *tsp)
396 {
397 	struct timehands *th;
398 	u_int gen;
399 
400 	ngetnanotime.ev_count++;
401 	do {
402 		th = timehands;
403 		gen = th->th_generation;
404 		*tsp = th->th_nanotime;
405 	} while (gen == 0 || gen != th->th_generation);
406 }
407 
408 void
409 getmicrotime(struct timeval *tvp)
410 {
411 	struct timehands *th;
412 	u_int gen;
413 
414 	ngetmicrotime.ev_count++;
415 	do {
416 		th = timehands;
417 		gen = th->th_generation;
418 		*tvp = th->th_microtime;
419 	} while (gen == 0 || gen != th->th_generation);
420 }
421 
422 /*
423  * Initialize a new timecounter and possibly use it.
424  */
425 void
426 tc_init(struct timecounter *tc)
427 {
428 	u_int u;
429 	int s;
430 
431 	u = tc->tc_frequency / tc->tc_counter_mask;
432 	/* XXX: We need some margin here, 10% is a guess */
433 	u *= 11;
434 	u /= 10;
435 	if (u > hz && tc->tc_quality >= 0) {
436 		tc->tc_quality = -2000;
437 		if (bootverbose) {
438 			printf("timecounter: Timecounter \"%s\" frequency %ju Hz",
439 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
440 			printf(" -- Insufficient hz, needs at least %u\n", u);
441 		}
442 	} else if (tc->tc_quality >= 0 || bootverbose) {
443 		printf("timecounter: Timecounter \"%s\" frequency %ju Hz quality %d\n",
444 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
445 		    tc->tc_quality);
446 	}
447 
448 	s = splclock();
449 
450 	tc->tc_next = timecounters;
451 	timecounters = tc;
452 	/*
453 	 * Never automatically use a timecounter with negative quality.
454 	 * Even though we run on the dummy counter, switching here may be
455 	 * worse since this timecounter may not be monotonous.
456 	 */
457 	if (tc->tc_quality < 0)
458 		goto out;
459 	if (tc->tc_quality < timecounter->tc_quality)
460 		goto out;
461 	if (tc->tc_quality == timecounter->tc_quality &&
462 	    tc->tc_frequency < timecounter->tc_frequency)
463 		goto out;
464 	(void)tc->tc_get_timecount(tc);
465 	(void)tc->tc_get_timecount(tc);
466 	timecounter = tc;
467 	tc_windup();
468 
469  out:
470 	splx(s);
471 }
472 
473 /* Report the frequency of the current timecounter. */
474 u_int64_t
475 tc_getfrequency(void)
476 {
477 
478 	return (timehands->th_counter->tc_frequency);
479 }
480 
481 /*
482  * Step our concept of UTC.  This is done by modifying our estimate of
483  * when we booted.
484  * XXX: not locked.
485  */
486 void
487 tc_setclock(struct timespec *ts)
488 {
489 	struct timespec ts2;
490 	struct bintime bt, bt2;
491 
492 	nsetclock.ev_count++;
493 	binuptime(&bt2);
494 	timespec2bintime(ts, &bt);
495 	bintime_sub(&bt, &bt2);
496 	bintime_add(&bt2, &timebasebin);
497 	timebasebin = bt;
498 
499 	/* XXX fiddle all the little crinkly bits around the fiords... */
500 	tc_windup();
501 	if (timestepwarnings) {
502 		bintime2timespec(&bt2, &ts2);
503 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
504 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
505 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
506 	}
507 }
508 
509 /*
510  * Initialize the next struct timehands in the ring and make
511  * it the active timehands.  Along the way we might switch to a different
512  * timecounter and/or do seconds processing in NTP.  Slightly magic.
513  */
514 static void
515 tc_windup(void)
516 {
517 	struct bintime bt;
518 	struct timehands *th, *tho;
519 	u_int64_t scale;
520 	u_int delta, ncount, ogen;
521 	int i, s_update;
522 	time_t t;
523 
524 	s_update = 0;
525 	/*
526 	 * Make the next timehands a copy of the current one, but do not
527 	 * overwrite the generation or next pointer.  While we update
528 	 * the contents, the generation must be zero.
529 	 */
530 	tho = timehands;
531 	th = tho->th_next;
532 	ogen = th->th_generation;
533 	th->th_generation = 0;
534 	bcopy(tho, th, offsetof(struct timehands, th_generation));
535 
536 	/*
537 	 * Capture a timecounter delta on the current timecounter and if
538 	 * changing timecounters, a counter value from the new timecounter.
539 	 * Update the offset fields accordingly.
540 	 */
541 	delta = tc_delta(th);
542 	if (th->th_counter != timecounter)
543 		ncount = timecounter->tc_get_timecount(timecounter);
544 	else
545 		ncount = 0;
546 	th->th_offset_count += delta;
547 	th->th_offset_count &= th->th_counter->tc_counter_mask;
548 	bintime_addx(&th->th_offset, th->th_scale * delta);
549 
550 	/*
551 	 * Hardware latching timecounters may not generate interrupts on
552 	 * PPS events, so instead we poll them.  There is a finite risk that
553 	 * the hardware might capture a count which is later than the one we
554 	 * got above, and therefore possibly in the next NTP second which might
555 	 * have a different rate than the current NTP second.  It doesn't
556 	 * matter in practice.
557 	 */
558 	if (tho->th_counter->tc_poll_pps)
559 		tho->th_counter->tc_poll_pps(tho->th_counter);
560 
561 	/*
562 	 * Deal with NTP second processing.  The for loop normally
563 	 * iterates at most once, but in extreme situations it might
564 	 * keep NTP sane if timeouts are not run for several seconds.
565 	 * At boot, the time step can be large when the TOD hardware
566 	 * has been read, so on really large steps, we call
567 	 * ntp_update_second only twice.  We need to call it twice in
568 	 * case we missed a leap second.
569 	 * If NTP is not compiled in ntp_update_second still calculates
570 	 * the adjustment resulting from adjtime() calls.
571 	 */
572 	bt = th->th_offset;
573 	bintime_add(&bt, &timebasebin);
574 	i = bt.sec - tho->th_microtime.tv_sec;
575 	if (i > LARGE_STEP)
576 		i = 2;
577 	for (; i > 0; i--) {
578 		t = bt.sec;
579 		ntp_update_second(&th->th_adjustment, &bt.sec);
580 		s_update = 1;
581 		if (bt.sec != t)
582 			timebasebin.sec += bt.sec - t;
583 	}
584 
585 	/* Update the UTC timestamps used by the get*() functions. */
586 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
587 	bintime2timeval(&bt, &th->th_microtime);
588 	bintime2timespec(&bt, &th->th_nanotime);
589 
590 	/* Now is a good time to change timecounters. */
591 	if (th->th_counter != timecounter) {
592 		th->th_counter = timecounter;
593 		th->th_offset_count = ncount;
594 		s_update = 1;
595 	}
596 
597 	/*-
598 	 * Recalculate the scaling factor.  We want the number of 1/2^64
599 	 * fractions of a second per period of the hardware counter, taking
600 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
601 	 * processing provides us with.
602 	 *
603 	 * The th_adjustment is nanoseconds per second with 32 bit binary
604 	 * fraction and we want 64 bit binary fraction of second:
605 	 *
606 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
607 	 *
608 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
609 	 * we can only multiply by about 850 without overflowing, but that
610 	 * leaves suitably precise fractions for multiply before divide.
611 	 *
612 	 * Divide before multiply with a fraction of 2199/512 results in a
613 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
614 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
615  	 *
616 	 * We happily sacrifice the lowest of the 64 bits of our result
617 	 * to the goddess of code clarity.
618 	 *
619 	 */
620 	if (s_update) {
621 		scale = (u_int64_t)1 << 63;
622 		scale += (th->th_adjustment / 1024) * 2199;
623 		scale /= th->th_counter->tc_frequency;
624 		th->th_scale = scale * 2;
625 	}
626 	/*
627 	 * Now that the struct timehands is again consistent, set the new
628 	 * generation number, making sure to not make it zero.
629 	 */
630 	if (++ogen == 0)
631 		ogen = 1;
632 	th->th_generation = ogen;
633 
634 	/* Go live with the new struct timehands. */
635 	time_second = th->th_microtime.tv_sec;
636 	time_uptime = th->th_offset.sec;
637 	timehands = th;
638 }
639 
640 #ifdef __FreeBSD__
641 /* Report or change the active timecounter hardware. */
642 static int
643 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
644 {
645 	char newname[32];
646 	struct timecounter *newtc, *tc;
647 	int error;
648 
649 	tc = timecounter;
650 	strlcpy(newname, tc->tc_name, sizeof(newname));
651 
652 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
653 	if (error != 0 || req->newptr == NULL ||
654 	    strcmp(newname, tc->tc_name) == 0)
655 		return (error);
656 
657 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
658 		if (strcmp(newname, newtc->tc_name) != 0)
659 			continue;
660 
661 		/* Warm up new timecounter. */
662 		(void)newtc->tc_get_timecount(newtc);
663 		(void)newtc->tc_get_timecount(newtc);
664 
665 		timecounter = newtc;
666 		return (0);
667 	}
668 	return (EINVAL);
669 }
670 
671 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
672     0, 0, sysctl_kern_timecounter_hardware, "A", "");
673 
674 
675 /* Report or change the active timecounter hardware. */
676 static int
677 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
678 {
679 	char buf[32], *spc;
680 	struct timecounter *tc;
681 	int error;
682 
683 	spc = "";
684 	error = 0;
685 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
686 		sprintf(buf, "%s%s(%d)",
687 		    spc, tc->tc_name, tc->tc_quality);
688 		error = SYSCTL_OUT(req, buf, strlen(buf));
689 		spc = " ";
690 	}
691 	return (error);
692 }
693 
694 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
695     0, 0, sysctl_kern_timecounter_choice, "A", "");
696 #endif /* __FreeBSD__ */
697 
698 /*
699  * RFC 2783 PPS-API implementation.
700  */
701 
702 int
703 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
704 {
705 	pps_params_t *app;
706 	pps_info_t *pipi;
707 #ifdef PPS_SYNC
708 	int *epi;
709 #endif
710 
711 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
712 	switch (cmd) {
713 	case PPS_IOC_CREATE:
714 		return (0);
715 	case PPS_IOC_DESTROY:
716 		return (0);
717 	case PPS_IOC_SETPARAMS:
718 		app = (pps_params_t *)data;
719 		if (app->mode & ~pps->ppscap)
720 			return (EINVAL);
721 		pps->ppsparam = *app;
722 		return (0);
723 	case PPS_IOC_GETPARAMS:
724 		app = (pps_params_t *)data;
725 		*app = pps->ppsparam;
726 		app->api_version = PPS_API_VERS_1;
727 		return (0);
728 	case PPS_IOC_GETCAP:
729 		*(int*)data = pps->ppscap;
730 		return (0);
731 	case PPS_IOC_FETCH:
732 		pipi = (pps_info_t *)data;
733 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
734 		*pipi = pps->ppsinfo;
735 		return (0);
736 	case PPS_IOC_KCBIND:
737 #ifdef PPS_SYNC
738 		epi = (int *)data;
739 		/* XXX Only root should be able to do this */
740 		if (*epi & ~pps->ppscap)
741 			return (EINVAL);
742 		pps->kcmode = *epi;
743 		return (0);
744 #else
745 		return (EOPNOTSUPP);
746 #endif
747 	default:
748 		return (EPASSTHROUGH);
749 	}
750 }
751 
752 void
753 pps_init(struct pps_state *pps)
754 {
755 	pps->ppscap |= PPS_TSFMT_TSPEC;
756 	if (pps->ppscap & PPS_CAPTUREASSERT)
757 		pps->ppscap |= PPS_OFFSETASSERT;
758 	if (pps->ppscap & PPS_CAPTURECLEAR)
759 		pps->ppscap |= PPS_OFFSETCLEAR;
760 }
761 
762 void
763 pps_capture(struct pps_state *pps)
764 {
765 	struct timehands *th;
766 
767 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
768 	th = timehands;
769 	pps->capgen = th->th_generation;
770 	pps->capth = th;
771 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
772 	if (pps->capgen != th->th_generation)
773 		pps->capgen = 0;
774 }
775 
776 void
777 pps_event(struct pps_state *pps, int event)
778 {
779 	struct bintime bt;
780 	struct timespec ts, *tsp, *osp;
781 	u_int tcount, *pcount;
782 	int foff, fhard;
783 	pps_seq_t *pseq;
784 
785 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
786 	/* If the timecounter was wound up underneath us, bail out. */
787 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
788 		return;
789 
790 	/* Things would be easier with arrays. */
791 	if (event == PPS_CAPTUREASSERT) {
792 		tsp = &pps->ppsinfo.assert_timestamp;
793 		osp = &pps->ppsparam.assert_offset;
794 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
795 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
796 		pcount = &pps->ppscount[0];
797 		pseq = &pps->ppsinfo.assert_sequence;
798 	} else {
799 		tsp = &pps->ppsinfo.clear_timestamp;
800 		osp = &pps->ppsparam.clear_offset;
801 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
802 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
803 		pcount = &pps->ppscount[1];
804 		pseq = &pps->ppsinfo.clear_sequence;
805 	}
806 
807 	/*
808 	 * If the timecounter changed, we cannot compare the count values, so
809 	 * we have to drop the rest of the PPS-stuff until the next event.
810 	 */
811 	if (pps->ppstc != pps->capth->th_counter) {
812 		pps->ppstc = pps->capth->th_counter;
813 		*pcount = pps->capcount;
814 		pps->ppscount[2] = pps->capcount;
815 		return;
816 	}
817 
818 	/* Convert the count to a timespec. */
819 	tcount = pps->capcount - pps->capth->th_offset_count;
820 	tcount &= pps->capth->th_counter->tc_counter_mask;
821 	bt = pps->capth->th_offset;
822 	bintime_addx(&bt, pps->capth->th_scale * tcount);
823 	bintime_add(&bt, &timebasebin);
824 	bintime2timespec(&bt, &ts);
825 
826 	/* If the timecounter was wound up underneath us, bail out. */
827 	if (pps->capgen != pps->capth->th_generation)
828 		return;
829 
830 	*pcount = pps->capcount;
831 	(*pseq)++;
832 	*tsp = ts;
833 
834 	if (foff) {
835 		timespecadd(tsp, osp, tsp);
836 		if (tsp->tv_nsec < 0) {
837 			tsp->tv_nsec += 1000000000;
838 			tsp->tv_sec -= 1;
839 		}
840 	}
841 #ifdef PPS_SYNC
842 	if (fhard) {
843 		u_int64_t scale;
844 
845 		/*
846 		 * Feed the NTP PLL/FLL.
847 		 * The FLL wants to know how many (hardware) nanoseconds
848 		 * elapsed since the previous event.
849 		 */
850 		tcount = pps->capcount - pps->ppscount[2];
851 		pps->ppscount[2] = pps->capcount;
852 		tcount &= pps->capth->th_counter->tc_counter_mask;
853 		scale = (u_int64_t)1 << 63;
854 		scale /= pps->capth->th_counter->tc_frequency;
855 		scale *= 2;
856 		bt.sec = 0;
857 		bt.frac = 0;
858 		bintime_addx(&bt, scale * tcount);
859 		bintime2timespec(&bt, &ts);
860 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
861 	}
862 #endif
863 }
864 
865 /*
866  * Timecounters need to be updated every so often to prevent the hardware
867  * counter from overflowing.  Updating also recalculates the cached values
868  * used by the get*() family of functions, so their precision depends on
869  * the update frequency.
870  */
871 
872 static int tc_tick;
873 #ifdef __FreeBSD__
874 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
875 #endif /* __FreeBSD__ */
876 
877 void
878 tc_ticktock(void)
879 {
880 	static int count;
881 
882 	if (++count < tc_tick)
883 		return;
884 	count = 0;
885 	tc_windup();
886 }
887 
888 void
889 inittimecounter(void)
890 {
891 	u_int p;
892 
893 	/*
894 	 * Set the initial timeout to
895 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
896 	 * People should probably not use the sysctl to set the timeout
897 	 * to smaller than its inital value, since that value is the
898 	 * smallest reasonable one.  If they want better timestamps they
899 	 * should use the non-"get"* functions.
900 	 */
901 	if (hz > 1000)
902 		tc_tick = (hz + 500) / 1000;
903 	else
904 		tc_tick = 1;
905 	p = (tc_tick * 1000000) / hz;
906 	printf("timecounter: Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
907 
908 	/* warm up new timecounter (again) and get rolling. */
909 	(void)timecounter->tc_get_timecount(timecounter);
910 	(void)timecounter->tc_get_timecount(timecounter);
911 }
912 
913 #ifdef __FreeBSD__
914 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
915 #endif /* __FreeBSD__ */
916 #endif /* __HAVE_TIMECOUNTER */
917