xref: /netbsd-src/sys/kern/kern_tc.c (revision 7c192b2a5e1093666e67801684f930ef49b3b363)
1 /* $NetBSD: kern_tc.c,v 1.47 2017/06/09 01:16:33 chs Exp $ */
2 
3 /*-
4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * ----------------------------------------------------------------------------
34  * "THE BEER-WARE LICENSE" (Revision 42):
35  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
36  * can do whatever you want with this stuff. If we meet some day, and you think
37  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
38  * ---------------------------------------------------------------------------
39  */
40 
41 #include <sys/cdefs.h>
42 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
43 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.47 2017/06/09 01:16:33 chs Exp $");
44 
45 #ifdef _KERNEL_OPT
46 #include "opt_ntp.h"
47 #endif
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/systm.h>
55 #include <sys/timepps.h>
56 #include <sys/timetc.h>
57 #include <sys/timex.h>
58 #include <sys/evcnt.h>
59 #include <sys/kauth.h>
60 #include <sys/mutex.h>
61 #include <sys/atomic.h>
62 #include <sys/xcall.h>
63 
64 /*
65  * A large step happens on boot.  This constant detects such steps.
66  * It is relatively small so that ntp_update_second gets called enough
67  * in the typical 'missed a couple of seconds' case, but doesn't loop
68  * forever when the time step is large.
69  */
70 #define LARGE_STEP	200
71 
72 /*
73  * Implement a dummy timecounter which we can use until we get a real one
74  * in the air.  This allows the console and other early stuff to use
75  * time services.
76  */
77 
78 static u_int
79 dummy_get_timecount(struct timecounter *tc)
80 {
81 	static u_int now;
82 
83 	return (++now);
84 }
85 
86 static struct timecounter dummy_timecounter = {
87 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
88 };
89 
90 struct timehands {
91 	/* These fields must be initialized by the driver. */
92 	struct timecounter	*th_counter;     /* active timecounter */
93 	int64_t			th_adjustment;   /* frequency adjustment */
94 						 /* (NTP/adjtime) */
95 	u_int64_t		th_scale;        /* scale factor (counter */
96 						 /* tick->time) */
97 	u_int64_t 		th_offset_count; /* offset at last time */
98 						 /* update (tc_windup()) */
99 	struct bintime		th_offset;       /* bin (up)time at windup */
100 	struct timeval		th_microtime;    /* cached microtime */
101 	struct timespec		th_nanotime;     /* cached nanotime */
102 	/* Fields not to be copied in tc_windup start with th_generation. */
103 	volatile u_int		th_generation;   /* current genration */
104 	struct timehands	*th_next;        /* next timehand */
105 };
106 
107 static struct timehands th0;
108 static struct timehands th9 = { .th_next = &th0, };
109 static struct timehands th8 = { .th_next = &th9, };
110 static struct timehands th7 = { .th_next = &th8, };
111 static struct timehands th6 = { .th_next = &th7, };
112 static struct timehands th5 = { .th_next = &th6, };
113 static struct timehands th4 = { .th_next = &th5, };
114 static struct timehands th3 = { .th_next = &th4, };
115 static struct timehands th2 = { .th_next = &th3, };
116 static struct timehands th1 = { .th_next = &th2, };
117 static struct timehands th0 = {
118 	.th_counter = &dummy_timecounter,
119 	.th_scale = (uint64_t)-1 / 1000000,
120 	.th_offset = { .sec = 1, .frac = 0 },
121 	.th_generation = 1,
122 	.th_next = &th1,
123 };
124 
125 static struct timehands *volatile timehands = &th0;
126 struct timecounter *timecounter = &dummy_timecounter;
127 static struct timecounter *timecounters = &dummy_timecounter;
128 
129 volatile time_t time_second = 1;
130 volatile time_t time_uptime = 1;
131 
132 static struct bintime timebasebin;
133 
134 static int timestepwarnings;
135 
136 kmutex_t timecounter_lock;
137 static u_int timecounter_mods;
138 static volatile int timecounter_removals = 1;
139 static u_int timecounter_bad;
140 
141 #ifdef __FreeBSD__
142 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
143     &timestepwarnings, 0, "");
144 #endif /* __FreeBSD__ */
145 
146 /*
147  * sysctl helper routine for kern.timercounter.hardware
148  */
149 static int
150 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
151 {
152 	struct sysctlnode node;
153 	int error;
154 	char newname[MAX_TCNAMELEN];
155 	struct timecounter *newtc, *tc;
156 
157 	tc = timecounter;
158 
159 	strlcpy(newname, tc->tc_name, sizeof(newname));
160 
161 	node = *rnode;
162 	node.sysctl_data = newname;
163 	node.sysctl_size = sizeof(newname);
164 
165 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
166 
167 	if (error ||
168 	    newp == NULL ||
169 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
170 		return error;
171 
172 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
173 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
174 	    NULL, NULL)) != 0)
175 		return (error);
176 
177 	if (!cold)
178 		mutex_spin_enter(&timecounter_lock);
179 	error = EINVAL;
180 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
181 		if (strcmp(newname, newtc->tc_name) != 0)
182 			continue;
183 		/* Warm up new timecounter. */
184 		(void)newtc->tc_get_timecount(newtc);
185 		(void)newtc->tc_get_timecount(newtc);
186 		timecounter = newtc;
187 		error = 0;
188 		break;
189 	}
190 	if (!cold)
191 		mutex_spin_exit(&timecounter_lock);
192 	return error;
193 }
194 
195 static int
196 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
197 {
198 	char buf[MAX_TCNAMELEN+48];
199 	char *where;
200 	const char *spc;
201 	struct timecounter *tc;
202 	size_t needed, left, slen;
203 	int error, mods;
204 
205 	if (newp != NULL)
206 		return (EPERM);
207 	if (namelen != 0)
208 		return (EINVAL);
209 
210 	mutex_spin_enter(&timecounter_lock);
211  retry:
212 	spc = "";
213 	error = 0;
214 	needed = 0;
215 	left = *oldlenp;
216 	where = oldp;
217 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
218 		if (where == NULL) {
219 			needed += sizeof(buf);  /* be conservative */
220 		} else {
221 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
222 					" Hz)", spc, tc->tc_name, tc->tc_quality,
223 					tc->tc_frequency);
224 			if (left < slen + 1)
225 				break;
226 		 	mods = timecounter_mods;
227 			mutex_spin_exit(&timecounter_lock);
228 			error = copyout(buf, where, slen + 1);
229 			mutex_spin_enter(&timecounter_lock);
230 			if (mods != timecounter_mods) {
231 				goto retry;
232 			}
233 			spc = " ";
234 			where += slen;
235 			needed += slen;
236 			left -= slen;
237 		}
238 	}
239 	mutex_spin_exit(&timecounter_lock);
240 
241 	*oldlenp = needed;
242 	return (error);
243 }
244 
245 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
246 {
247 	const struct sysctlnode *node;
248 
249 	sysctl_createv(clog, 0, NULL, &node,
250 		       CTLFLAG_PERMANENT,
251 		       CTLTYPE_NODE, "timecounter",
252 		       SYSCTL_DESCR("time counter information"),
253 		       NULL, 0, NULL, 0,
254 		       CTL_KERN, CTL_CREATE, CTL_EOL);
255 
256 	if (node != NULL) {
257 		sysctl_createv(clog, 0, NULL, NULL,
258 			       CTLFLAG_PERMANENT,
259 			       CTLTYPE_STRING, "choice",
260 			       SYSCTL_DESCR("available counters"),
261 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
262 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
263 
264 		sysctl_createv(clog, 0, NULL, NULL,
265 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
266 			       CTLTYPE_STRING, "hardware",
267 			       SYSCTL_DESCR("currently active time counter"),
268 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
269 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
270 
271 		sysctl_createv(clog, 0, NULL, NULL,
272 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
273 			       CTLTYPE_INT, "timestepwarnings",
274 			       SYSCTL_DESCR("log time steps"),
275 			       NULL, 0, &timestepwarnings, 0,
276 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
277 	}
278 }
279 
280 #ifdef TC_COUNTERS
281 #define	TC_STATS(name)							\
282 static struct evcnt n##name =						\
283     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
284 EVCNT_ATTACH_STATIC(n##name)
285 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
286 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
287 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
288 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
289 TC_STATS(setclock);
290 #define	TC_COUNT(var)	var.ev_count++
291 #undef TC_STATS
292 #else
293 #define	TC_COUNT(var)	/* nothing */
294 #endif	/* TC_COUNTERS */
295 
296 static void tc_windup(void);
297 
298 /*
299  * Return the difference between the timehands' counter value now and what
300  * was when we copied it to the timehands' offset_count.
301  */
302 static inline u_int
303 tc_delta(struct timehands *th)
304 {
305 	struct timecounter *tc;
306 
307 	tc = th->th_counter;
308 	return ((tc->tc_get_timecount(tc) -
309 		 th->th_offset_count) & tc->tc_counter_mask);
310 }
311 
312 /*
313  * Functions for reading the time.  We have to loop until we are sure that
314  * the timehands that we operated on was not updated under our feet.  See
315  * the comment in <sys/timevar.h> for a description of these 12 functions.
316  */
317 
318 void
319 binuptime(struct bintime *bt)
320 {
321 	struct timehands *th;
322 	lwp_t *l;
323 	u_int lgen, gen;
324 
325 	TC_COUNT(nbinuptime);
326 
327 	/*
328 	 * Provide exclusion against tc_detach().
329 	 *
330 	 * We record the number of timecounter removals before accessing
331 	 * timecounter state.  Note that the LWP can be using multiple
332 	 * "generations" at once, due to interrupts (interrupted while in
333 	 * this function).  Hardware interrupts will borrow the interrupted
334 	 * LWP's l_tcgen value for this purpose, and can themselves be
335 	 * interrupted by higher priority interrupts.  In this case we need
336 	 * to ensure that the oldest generation in use is recorded.
337 	 *
338 	 * splsched() is too expensive to use, so we take care to structure
339 	 * this code in such a way that it is not required.  Likewise, we
340 	 * do not disable preemption.
341 	 *
342 	 * Memory barriers are also too expensive to use for such a
343 	 * performance critical function.  The good news is that we do not
344 	 * need memory barriers for this type of exclusion, as the thread
345 	 * updating timecounter_removals will issue a broadcast cross call
346 	 * before inspecting our l_tcgen value (this elides memory ordering
347 	 * issues).
348 	 */
349 	l = curlwp;
350 	lgen = l->l_tcgen;
351 	if (__predict_true(lgen == 0)) {
352 		l->l_tcgen = timecounter_removals;
353 	}
354 	__insn_barrier();
355 
356 	do {
357 		th = timehands;
358 		gen = th->th_generation;
359 		*bt = th->th_offset;
360 		bintime_addx(bt, th->th_scale * tc_delta(th));
361 	} while (gen == 0 || gen != th->th_generation);
362 
363 	__insn_barrier();
364 	l->l_tcgen = lgen;
365 }
366 
367 void
368 nanouptime(struct timespec *tsp)
369 {
370 	struct bintime bt;
371 
372 	TC_COUNT(nnanouptime);
373 	binuptime(&bt);
374 	bintime2timespec(&bt, tsp);
375 }
376 
377 void
378 microuptime(struct timeval *tvp)
379 {
380 	struct bintime bt;
381 
382 	TC_COUNT(nmicrouptime);
383 	binuptime(&bt);
384 	bintime2timeval(&bt, tvp);
385 }
386 
387 void
388 bintime(struct bintime *bt)
389 {
390 
391 	TC_COUNT(nbintime);
392 	binuptime(bt);
393 	bintime_add(bt, &timebasebin);
394 }
395 
396 void
397 nanotime(struct timespec *tsp)
398 {
399 	struct bintime bt;
400 
401 	TC_COUNT(nnanotime);
402 	bintime(&bt);
403 	bintime2timespec(&bt, tsp);
404 }
405 
406 void
407 microtime(struct timeval *tvp)
408 {
409 	struct bintime bt;
410 
411 	TC_COUNT(nmicrotime);
412 	bintime(&bt);
413 	bintime2timeval(&bt, tvp);
414 }
415 
416 void
417 getbinuptime(struct bintime *bt)
418 {
419 	struct timehands *th;
420 	u_int gen;
421 
422 	TC_COUNT(ngetbinuptime);
423 	do {
424 		th = timehands;
425 		gen = th->th_generation;
426 		*bt = th->th_offset;
427 	} while (gen == 0 || gen != th->th_generation);
428 }
429 
430 void
431 getnanouptime(struct timespec *tsp)
432 {
433 	struct timehands *th;
434 	u_int gen;
435 
436 	TC_COUNT(ngetnanouptime);
437 	do {
438 		th = timehands;
439 		gen = th->th_generation;
440 		bintime2timespec(&th->th_offset, tsp);
441 	} while (gen == 0 || gen != th->th_generation);
442 }
443 
444 void
445 getmicrouptime(struct timeval *tvp)
446 {
447 	struct timehands *th;
448 	u_int gen;
449 
450 	TC_COUNT(ngetmicrouptime);
451 	do {
452 		th = timehands;
453 		gen = th->th_generation;
454 		bintime2timeval(&th->th_offset, tvp);
455 	} while (gen == 0 || gen != th->th_generation);
456 }
457 
458 void
459 getbintime(struct bintime *bt)
460 {
461 	struct timehands *th;
462 	u_int gen;
463 
464 	TC_COUNT(ngetbintime);
465 	do {
466 		th = timehands;
467 		gen = th->th_generation;
468 		*bt = th->th_offset;
469 	} while (gen == 0 || gen != th->th_generation);
470 	bintime_add(bt, &timebasebin);
471 }
472 
473 static inline void
474 dogetnanotime(struct timespec *tsp)
475 {
476 	struct timehands *th;
477 	u_int gen;
478 
479 	TC_COUNT(ngetnanotime);
480 	do {
481 		th = timehands;
482 		gen = th->th_generation;
483 		*tsp = th->th_nanotime;
484 	} while (gen == 0 || gen != th->th_generation);
485 }
486 
487 void
488 getnanotime(struct timespec *tsp)
489 {
490 
491 	dogetnanotime(tsp);
492 }
493 
494 void dtrace_getnanotime(struct timespec *tsp);
495 
496 void
497 dtrace_getnanotime(struct timespec *tsp)
498 {
499 
500 	dogetnanotime(tsp);
501 }
502 
503 void
504 getmicrotime(struct timeval *tvp)
505 {
506 	struct timehands *th;
507 	u_int gen;
508 
509 	TC_COUNT(ngetmicrotime);
510 	do {
511 		th = timehands;
512 		gen = th->th_generation;
513 		*tvp = th->th_microtime;
514 	} while (gen == 0 || gen != th->th_generation);
515 }
516 
517 /*
518  * Initialize a new timecounter and possibly use it.
519  */
520 void
521 tc_init(struct timecounter *tc)
522 {
523 	u_int u;
524 
525 	u = tc->tc_frequency / tc->tc_counter_mask;
526 	/* XXX: We need some margin here, 10% is a guess */
527 	u *= 11;
528 	u /= 10;
529 	if (u > hz && tc->tc_quality >= 0) {
530 		tc->tc_quality = -2000;
531 		aprint_verbose(
532 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
533 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
534 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
535 	} else if (tc->tc_quality >= 0 || bootverbose) {
536 		aprint_verbose(
537 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
538 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
539 		    tc->tc_quality);
540 	}
541 
542 	mutex_spin_enter(&timecounter_lock);
543 	tc->tc_next = timecounters;
544 	timecounters = tc;
545 	timecounter_mods++;
546 	/*
547 	 * Never automatically use a timecounter with negative quality.
548 	 * Even though we run on the dummy counter, switching here may be
549 	 * worse since this timecounter may not be monotonous.
550 	 */
551 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
552 	    (tc->tc_quality == timecounter->tc_quality &&
553 	    tc->tc_frequency > timecounter->tc_frequency))) {
554 		(void)tc->tc_get_timecount(tc);
555 		(void)tc->tc_get_timecount(tc);
556 		timecounter = tc;
557 		tc_windup();
558 	}
559 	mutex_spin_exit(&timecounter_lock);
560 }
561 
562 /*
563  * Pick a new timecounter due to the existing counter going bad.
564  */
565 static void
566 tc_pick(void)
567 {
568 	struct timecounter *best, *tc;
569 
570 	KASSERT(mutex_owned(&timecounter_lock));
571 
572 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
573 		if (tc->tc_quality > best->tc_quality)
574 			best = tc;
575 		else if (tc->tc_quality < best->tc_quality)
576 			continue;
577 		else if (tc->tc_frequency > best->tc_frequency)
578 			best = tc;
579 	}
580 	(void)best->tc_get_timecount(best);
581 	(void)best->tc_get_timecount(best);
582 	timecounter = best;
583 }
584 
585 /*
586  * A timecounter has gone bad, arrange to pick a new one at the next
587  * clock tick.
588  */
589 void
590 tc_gonebad(struct timecounter *tc)
591 {
592 
593 	tc->tc_quality = -100;
594 	membar_producer();
595 	atomic_inc_uint(&timecounter_bad);
596 }
597 
598 /*
599  * Stop using a timecounter and remove it from the timecounters list.
600  */
601 int
602 tc_detach(struct timecounter *target)
603 {
604 	struct timecounter *tc;
605 	struct timecounter **tcp = NULL;
606 	int removals;
607 	uint64_t where;
608 	lwp_t *l;
609 
610 	/* First, find the timecounter. */
611 	mutex_spin_enter(&timecounter_lock);
612 	for (tcp = &timecounters, tc = timecounters;
613 	     tc != NULL;
614 	     tcp = &tc->tc_next, tc = tc->tc_next) {
615 		if (tc == target)
616 			break;
617 	}
618 	if (tc == NULL) {
619 		mutex_spin_exit(&timecounter_lock);
620 		return ESRCH;
621 	}
622 
623 	/* And now, remove it. */
624 	*tcp = tc->tc_next;
625 	if (timecounter == target) {
626 		tc_pick();
627 		tc_windup();
628 	}
629 	timecounter_mods++;
630 	removals = timecounter_removals++;
631 	mutex_spin_exit(&timecounter_lock);
632 
633 	/*
634 	 * We now have to determine if any threads in the system are still
635 	 * making use of this timecounter.
636 	 *
637 	 * We issue a broadcast cross call to elide memory ordering issues,
638 	 * then scan all LWPs in the system looking at each's timecounter
639 	 * generation number.  We need to see a value of zero (not actively
640 	 * using a timecounter) or a value greater than our removal value.
641 	 *
642 	 * We may race with threads that read `timecounter_removals' and
643 	 * and then get preempted before updating `l_tcgen'.  This is not
644 	 * a problem, since it means that these threads have not yet started
645 	 * accessing timecounter state.  All we do need is one clean
646 	 * snapshot of the system where every thread appears not to be using
647 	 * old timecounter state.
648 	 */
649 	for (;;) {
650 		where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
651 		xc_wait(where);
652 
653 		mutex_enter(proc_lock);
654 		LIST_FOREACH(l, &alllwp, l_list) {
655 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
656 				/*
657 				 * Not using timecounter or old timecounter
658 				 * state at time of our xcall or later.
659 				 */
660 				continue;
661 			}
662 			break;
663 		}
664 		mutex_exit(proc_lock);
665 
666 		/*
667 		 * If the timecounter is still in use, wait at least 10ms
668 		 * before retrying.
669 		 */
670 		if (l == NULL) {
671 			return 0;
672 		}
673 		(void)kpause("tcdetach", false, mstohz(10), NULL);
674 	}
675 }
676 
677 /* Report the frequency of the current timecounter. */
678 u_int64_t
679 tc_getfrequency(void)
680 {
681 
682 	return (timehands->th_counter->tc_frequency);
683 }
684 
685 /*
686  * Step our concept of UTC.  This is done by modifying our estimate of
687  * when we booted.
688  */
689 void
690 tc_setclock(const struct timespec *ts)
691 {
692 	struct timespec ts2;
693 	struct bintime bt, bt2;
694 
695 	mutex_spin_enter(&timecounter_lock);
696 	TC_COUNT(nsetclock);
697 	binuptime(&bt2);
698 	timespec2bintime(ts, &bt);
699 	bintime_sub(&bt, &bt2);
700 	bintime_add(&bt2, &timebasebin);
701 	timebasebin = bt;
702 	tc_windup();
703 	mutex_spin_exit(&timecounter_lock);
704 
705 	if (timestepwarnings) {
706 		bintime2timespec(&bt2, &ts2);
707 		log(LOG_INFO,
708 		    "Time stepped from %lld.%09ld to %lld.%09ld\n",
709 		    (long long)ts2.tv_sec, ts2.tv_nsec,
710 		    (long long)ts->tv_sec, ts->tv_nsec);
711 	}
712 }
713 
714 /*
715  * Initialize the next struct timehands in the ring and make
716  * it the active timehands.  Along the way we might switch to a different
717  * timecounter and/or do seconds processing in NTP.  Slightly magic.
718  */
719 static void
720 tc_windup(void)
721 {
722 	struct bintime bt;
723 	struct timehands *th, *tho;
724 	u_int64_t scale;
725 	u_int delta, ncount, ogen;
726 	int i, s_update;
727 	time_t t;
728 
729 	KASSERT(mutex_owned(&timecounter_lock));
730 
731 	s_update = 0;
732 
733 	/*
734 	 * Make the next timehands a copy of the current one, but do not
735 	 * overwrite the generation or next pointer.  While we update
736 	 * the contents, the generation must be zero.  Ensure global
737 	 * visibility of the generation before proceeding.
738 	 */
739 	tho = timehands;
740 	th = tho->th_next;
741 	ogen = th->th_generation;
742 	th->th_generation = 0;
743 	membar_producer();
744 	bcopy(tho, th, offsetof(struct timehands, th_generation));
745 
746 	/*
747 	 * Capture a timecounter delta on the current timecounter and if
748 	 * changing timecounters, a counter value from the new timecounter.
749 	 * Update the offset fields accordingly.
750 	 */
751 	delta = tc_delta(th);
752 	if (th->th_counter != timecounter)
753 		ncount = timecounter->tc_get_timecount(timecounter);
754 	else
755 		ncount = 0;
756 	th->th_offset_count += delta;
757 	bintime_addx(&th->th_offset, th->th_scale * delta);
758 
759 	/*
760 	 * Hardware latching timecounters may not generate interrupts on
761 	 * PPS events, so instead we poll them.  There is a finite risk that
762 	 * the hardware might capture a count which is later than the one we
763 	 * got above, and therefore possibly in the next NTP second which might
764 	 * have a different rate than the current NTP second.  It doesn't
765 	 * matter in practice.
766 	 */
767 	if (tho->th_counter->tc_poll_pps)
768 		tho->th_counter->tc_poll_pps(tho->th_counter);
769 
770 	/*
771 	 * Deal with NTP second processing.  The for loop normally
772 	 * iterates at most once, but in extreme situations it might
773 	 * keep NTP sane if timeouts are not run for several seconds.
774 	 * At boot, the time step can be large when the TOD hardware
775 	 * has been read, so on really large steps, we call
776 	 * ntp_update_second only twice.  We need to call it twice in
777 	 * case we missed a leap second.
778 	 * If NTP is not compiled in ntp_update_second still calculates
779 	 * the adjustment resulting from adjtime() calls.
780 	 */
781 	bt = th->th_offset;
782 	bintime_add(&bt, &timebasebin);
783 	i = bt.sec - tho->th_microtime.tv_sec;
784 	if (i > LARGE_STEP)
785 		i = 2;
786 	for (; i > 0; i--) {
787 		t = bt.sec;
788 		ntp_update_second(&th->th_adjustment, &bt.sec);
789 		s_update = 1;
790 		if (bt.sec != t)
791 			timebasebin.sec += bt.sec - t;
792 	}
793 
794 	/* Update the UTC timestamps used by the get*() functions. */
795 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
796 	bintime2timeval(&bt, &th->th_microtime);
797 	bintime2timespec(&bt, &th->th_nanotime);
798 	/* Now is a good time to change timecounters. */
799 	if (th->th_counter != timecounter) {
800 		th->th_counter = timecounter;
801 		th->th_offset_count = ncount;
802 		s_update = 1;
803 	}
804 
805 	/*-
806 	 * Recalculate the scaling factor.  We want the number of 1/2^64
807 	 * fractions of a second per period of the hardware counter, taking
808 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
809 	 * processing provides us with.
810 	 *
811 	 * The th_adjustment is nanoseconds per second with 32 bit binary
812 	 * fraction and we want 64 bit binary fraction of second:
813 	 *
814 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
815 	 *
816 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
817 	 * we can only multiply by about 850 without overflowing, but that
818 	 * leaves suitably precise fractions for multiply before divide.
819 	 *
820 	 * Divide before multiply with a fraction of 2199/512 results in a
821 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
822 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
823  	 *
824 	 * We happily sacrifice the lowest of the 64 bits of our result
825 	 * to the goddess of code clarity.
826 	 *
827 	 */
828 	if (s_update) {
829 		scale = (u_int64_t)1 << 63;
830 		scale += (th->th_adjustment / 1024) * 2199;
831 		scale /= th->th_counter->tc_frequency;
832 		th->th_scale = scale * 2;
833 	}
834 	/*
835 	 * Now that the struct timehands is again consistent, set the new
836 	 * generation number, making sure to not make it zero.  Ensure
837 	 * changes are globally visible before changing.
838 	 */
839 	if (++ogen == 0)
840 		ogen = 1;
841 	membar_producer();
842 	th->th_generation = ogen;
843 
844 	/*
845 	 * Go live with the new struct timehands.  Ensure changes are
846 	 * globally visible before changing.
847 	 */
848 	time_second = th->th_microtime.tv_sec;
849 	time_uptime = th->th_offset.sec;
850 	membar_producer();
851 	timehands = th;
852 
853 	/*
854 	 * Force users of the old timehand to move on.  This is
855 	 * necessary for MP systems; we need to ensure that the
856 	 * consumers will move away from the old timehand before
857 	 * we begin updating it again when we eventually wrap
858 	 * around.
859 	 */
860 	if (++tho->th_generation == 0)
861 		tho->th_generation = 1;
862 }
863 
864 /*
865  * RFC 2783 PPS-API implementation.
866  */
867 
868 int
869 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
870 {
871 	pps_params_t *app;
872 	pps_info_t *pipi;
873 #ifdef PPS_SYNC
874 	int *epi;
875 #endif
876 
877 	KASSERT(mutex_owned(&timecounter_lock));
878 
879 	KASSERT(pps != NULL);
880 
881 	switch (cmd) {
882 	case PPS_IOC_CREATE:
883 		return (0);
884 	case PPS_IOC_DESTROY:
885 		return (0);
886 	case PPS_IOC_SETPARAMS:
887 		app = (pps_params_t *)data;
888 		if (app->mode & ~pps->ppscap)
889 			return (EINVAL);
890 		pps->ppsparam = *app;
891 		return (0);
892 	case PPS_IOC_GETPARAMS:
893 		app = (pps_params_t *)data;
894 		*app = pps->ppsparam;
895 		app->api_version = PPS_API_VERS_1;
896 		return (0);
897 	case PPS_IOC_GETCAP:
898 		*(int*)data = pps->ppscap;
899 		return (0);
900 	case PPS_IOC_FETCH:
901 		pipi = (pps_info_t *)data;
902 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
903 		*pipi = pps->ppsinfo;
904 		return (0);
905 	case PPS_IOC_KCBIND:
906 #ifdef PPS_SYNC
907 		epi = (int *)data;
908 		/* XXX Only root should be able to do this */
909 		if (*epi & ~pps->ppscap)
910 			return (EINVAL);
911 		pps->kcmode = *epi;
912 		return (0);
913 #else
914 		return (EOPNOTSUPP);
915 #endif
916 	default:
917 		return (EPASSTHROUGH);
918 	}
919 }
920 
921 void
922 pps_init(struct pps_state *pps)
923 {
924 
925 	KASSERT(mutex_owned(&timecounter_lock));
926 
927 	pps->ppscap |= PPS_TSFMT_TSPEC;
928 	if (pps->ppscap & PPS_CAPTUREASSERT)
929 		pps->ppscap |= PPS_OFFSETASSERT;
930 	if (pps->ppscap & PPS_CAPTURECLEAR)
931 		pps->ppscap |= PPS_OFFSETCLEAR;
932 }
933 
934 /*
935  * capture a timetamp in the pps structure
936  */
937 void
938 pps_capture(struct pps_state *pps)
939 {
940 	struct timehands *th;
941 
942 	KASSERT(mutex_owned(&timecounter_lock));
943 	KASSERT(pps != NULL);
944 
945 	th = timehands;
946 	pps->capgen = th->th_generation;
947 	pps->capth = th;
948 	pps->capcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
949 	if (pps->capgen != th->th_generation)
950 		pps->capgen = 0;
951 }
952 
953 #ifdef PPS_DEBUG
954 int ppsdebug = 0;
955 #endif
956 
957 /*
958  * process a pps_capture()ed event
959  */
960 void
961 pps_event(struct pps_state *pps, int event)
962 {
963 	pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
964 }
965 
966 /*
967  * extended pps api /  kernel pll/fll entry point
968  *
969  * feed reference time stamps to PPS engine
970  *
971  * will simulate a PPS event and feed
972  * the NTP PLL/FLL if requested.
973  *
974  * the ref time stamps should be roughly once
975  * a second but do not need to be exactly in phase
976  * with the UTC second but should be close to it.
977  * this relaxation of requirements allows callout
978  * driven timestamping mechanisms to feed to pps
979  * capture/kernel pll logic.
980  *
981  * calling pattern is:
982  *  pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
983  *  read timestamp from reference source
984  *  pps_ref_event()
985  *
986  * supported refmodes:
987  *  PPS_REFEVNT_CAPTURE
988  *    use system timestamp of pps_capture()
989  *  PPS_REFEVNT_CURRENT
990  *    use system timestamp of this call
991  *  PPS_REFEVNT_CAPCUR
992  *    use average of read capture and current system time stamp
993  *  PPS_REFEVNT_PPS
994  *    assume timestamp on second mark - ref_ts is ignored
995  *
996  */
997 
998 void
999 pps_ref_event(struct pps_state *pps,
1000 	      int event,
1001 	      struct bintime *ref_ts,
1002 	      int refmode
1003 	)
1004 {
1005 	struct bintime bt;	/* current time */
1006 	struct bintime btd;	/* time difference */
1007 	struct bintime bt_ref;	/* reference time */
1008 	struct timespec ts, *tsp, *osp;
1009 	struct timehands *th;
1010 	u_int64_t tcount, acount, dcount, *pcount;
1011 	int foff, gen;
1012 #ifdef PPS_SYNC
1013 	int fhard;
1014 #endif
1015 	pps_seq_t *pseq;
1016 
1017 	KASSERT(mutex_owned(&timecounter_lock));
1018 
1019 	KASSERT(pps != NULL);
1020 
1021         /* pick up current time stamp if needed */
1022 	if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
1023 		/* pick up current time stamp */
1024 		th = timehands;
1025 		gen = th->th_generation;
1026 		tcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
1027 		if (gen != th->th_generation)
1028 			gen = 0;
1029 
1030 		/* If the timecounter was wound up underneath us, bail out. */
1031 		if (pps->capgen == 0 ||
1032 		    pps->capgen != pps->capth->th_generation ||
1033 		    gen == 0 ||
1034 		    gen != pps->capgen) {
1035 #ifdef PPS_DEBUG
1036 			if (ppsdebug & 0x1) {
1037 				log(LOG_DEBUG,
1038 				    "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
1039 				    pps, event);
1040 			}
1041 #endif
1042 			return;
1043 		}
1044 	} else {
1045 		tcount = 0;	/* keep GCC happy */
1046 	}
1047 
1048 #ifdef PPS_DEBUG
1049 	if (ppsdebug & 0x1) {
1050 		struct timespec tmsp;
1051 
1052 		if (ref_ts == NULL) {
1053 			tmsp.tv_sec = 0;
1054 			tmsp.tv_nsec = 0;
1055 		} else {
1056 			bintime2timespec(ref_ts, &tmsp);
1057 		}
1058 
1059 		log(LOG_DEBUG,
1060 		    "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
1061 		    ".%09"PRIi32", refmode=0x%1x)\n",
1062 		    pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
1063 	}
1064 #endif
1065 
1066 	/* setup correct event references */
1067 	if (event == PPS_CAPTUREASSERT) {
1068 		tsp = &pps->ppsinfo.assert_timestamp;
1069 		osp = &pps->ppsparam.assert_offset;
1070 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1071 #ifdef PPS_SYNC
1072 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1073 #endif
1074 		pcount = &pps->ppscount[0];
1075 		pseq = &pps->ppsinfo.assert_sequence;
1076 	} else {
1077 		tsp = &pps->ppsinfo.clear_timestamp;
1078 		osp = &pps->ppsparam.clear_offset;
1079 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1080 #ifdef PPS_SYNC
1081 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1082 #endif
1083 		pcount = &pps->ppscount[1];
1084 		pseq = &pps->ppsinfo.clear_sequence;
1085 	}
1086 
1087 	/* determine system time stamp according to refmode */
1088 	dcount = 0;		/* keep GCC happy */
1089 	switch (refmode & PPS_REFEVNT_RMASK) {
1090 	case PPS_REFEVNT_CAPTURE:
1091 		acount = pps->capcount;	/* use capture timestamp */
1092 		break;
1093 
1094 	case PPS_REFEVNT_CURRENT:
1095 		acount = tcount; /* use current timestamp */
1096 		break;
1097 
1098 	case PPS_REFEVNT_CAPCUR:
1099 		/*
1100 		 * calculate counter value between pps_capture() and
1101 		 * pps_ref_event()
1102 		 */
1103 		dcount = tcount - pps->capcount;
1104 		acount = (dcount / 2) + pps->capcount;
1105 		break;
1106 
1107 	default:		/* ignore call error silently */
1108 		return;
1109 	}
1110 
1111 	/*
1112 	 * If the timecounter changed, we cannot compare the count values, so
1113 	 * we have to drop the rest of the PPS-stuff until the next event.
1114 	 */
1115 	if (pps->ppstc != pps->capth->th_counter) {
1116 		pps->ppstc = pps->capth->th_counter;
1117 		pps->capcount = acount;
1118 		*pcount = acount;
1119 		pps->ppscount[2] = acount;
1120 #ifdef PPS_DEBUG
1121 		if (ppsdebug & 0x1) {
1122 			log(LOG_DEBUG,
1123 			    "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
1124 			    pps, event);
1125 		}
1126 #endif
1127 		return;
1128 	}
1129 
1130 	pps->capcount = acount;
1131 
1132 	/* Convert the count to a bintime. */
1133 	bt = pps->capth->th_offset;
1134 	bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
1135 	bintime_add(&bt, &timebasebin);
1136 
1137 	if ((refmode & PPS_REFEVNT_PPS) == 0) {
1138 		/* determine difference to reference time stamp */
1139 		bt_ref = *ref_ts;
1140 
1141 		btd = bt;
1142 		bintime_sub(&btd, &bt_ref);
1143 
1144 		/*
1145 		 * simulate a PPS timestamp by dropping the fraction
1146 		 * and applying the offset
1147 		 */
1148 		if (bt.frac >= (uint64_t)1<<63)	/* skip to nearest second */
1149 			bt.sec++;
1150 		bt.frac = 0;
1151 		bintime_add(&bt, &btd);
1152 	} else {
1153 		/*
1154 		 * create ref_ts from current time -
1155 		 * we are supposed to be called on
1156 		 * the second mark
1157 		 */
1158 		bt_ref = bt;
1159 		if (bt_ref.frac >= (uint64_t)1<<63)	/* skip to nearest second */
1160 			bt_ref.sec++;
1161 		bt_ref.frac = 0;
1162 	}
1163 
1164 	/* convert bintime to timestamp */
1165 	bintime2timespec(&bt, &ts);
1166 
1167 	/* If the timecounter was wound up underneath us, bail out. */
1168 	if (pps->capgen != pps->capth->th_generation)
1169 		return;
1170 
1171 	/* store time stamp */
1172 	*pcount = pps->capcount;
1173 	(*pseq)++;
1174 	*tsp = ts;
1175 
1176 	/* add offset correction */
1177 	if (foff) {
1178 		timespecadd(tsp, osp, tsp);
1179 		if (tsp->tv_nsec < 0) {
1180 			tsp->tv_nsec += 1000000000;
1181 			tsp->tv_sec -= 1;
1182 		}
1183 	}
1184 
1185 #ifdef PPS_DEBUG
1186 	if (ppsdebug & 0x2) {
1187 		struct timespec ts2;
1188 		struct timespec ts3;
1189 
1190 		bintime2timespec(&bt_ref, &ts2);
1191 
1192 		bt.sec = 0;
1193 		bt.frac = 0;
1194 
1195 		if (refmode & PPS_REFEVNT_CAPCUR) {
1196 			    bintime_addx(&bt, pps->capth->th_scale * dcount);
1197 		}
1198 		bintime2timespec(&bt, &ts3);
1199 
1200 		log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
1201 		    ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
1202 		    ts2.tv_sec, (int32_t)ts2.tv_nsec,
1203 		    tsp->tv_sec, (int32_t)tsp->tv_nsec,
1204 		    timespec2ns(&ts3));
1205 	}
1206 #endif
1207 
1208 #ifdef PPS_SYNC
1209 	if (fhard) {
1210 		uint64_t scale;
1211 		uint64_t div;
1212 
1213 		/*
1214 		 * Feed the NTP PLL/FLL.
1215 		 * The FLL wants to know how many (hardware) nanoseconds
1216 		 * elapsed since the previous event (mod 1 second) thus
1217 		 * we are actually looking at the frequency difference scaled
1218 		 * in nsec.
1219 		 * As the counter time stamps are not truly at 1Hz
1220 		 * we need to scale the count by the elapsed
1221 		 * reference time.
1222 		 * valid sampling interval: [0.5..2[ sec
1223 		 */
1224 
1225 		/* calculate elapsed raw count */
1226 		tcount = pps->capcount - pps->ppscount[2];
1227 		pps->ppscount[2] = pps->capcount;
1228 		tcount &= pps->capth->th_counter->tc_counter_mask;
1229 
1230 		/* calculate elapsed ref time */
1231 		btd = bt_ref;
1232 		bintime_sub(&btd, &pps->ref_time);
1233 		pps->ref_time = bt_ref;
1234 
1235 		/* check that we stay below 2 sec */
1236 		if (btd.sec < 0 || btd.sec > 1)
1237 			return;
1238 
1239 		/* we want at least 0.5 sec between samples */
1240 		if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
1241 			return;
1242 
1243 		/*
1244 		 * calculate cycles per period by multiplying
1245 		 * the frequency with the elapsed period
1246 		 * we pick a fraction of 30 bits
1247 		 * ~1ns resolution for elapsed time
1248 		 */
1249 		div   = (uint64_t)btd.sec << 30;
1250 		div  |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
1251 		div  *= pps->capth->th_counter->tc_frequency;
1252 		div >>= 30;
1253 
1254 		if (div == 0)	/* safeguard */
1255 			return;
1256 
1257 		scale = (uint64_t)1 << 63;
1258 		scale /= div;
1259 		scale *= 2;
1260 
1261 		bt.sec = 0;
1262 		bt.frac = 0;
1263 		bintime_addx(&bt, scale * tcount);
1264 		bintime2timespec(&bt, &ts);
1265 
1266 #ifdef PPS_DEBUG
1267 		if (ppsdebug & 0x4) {
1268 			struct timespec ts2;
1269 			int64_t df;
1270 
1271 			bintime2timespec(&bt_ref, &ts2);
1272 			df = timespec2ns(&ts);
1273 			if (df > 500000000)
1274 				df -= 1000000000;
1275 			log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
1276 			    ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
1277 			    ", freqdiff=%"PRIi64" ns/s\n",
1278 			    ts2.tv_sec, (int32_t)ts2.tv_nsec,
1279 			    tsp->tv_sec, (int32_t)tsp->tv_nsec,
1280 			    df);
1281 		}
1282 #endif
1283 
1284 		hardpps(tsp, timespec2ns(&ts));
1285 	}
1286 #endif
1287 }
1288 
1289 /*
1290  * Timecounters need to be updated every so often to prevent the hardware
1291  * counter from overflowing.  Updating also recalculates the cached values
1292  * used by the get*() family of functions, so their precision depends on
1293  * the update frequency.
1294  */
1295 
1296 static int tc_tick;
1297 
1298 void
1299 tc_ticktock(void)
1300 {
1301 	static int count;
1302 
1303 	if (++count < tc_tick)
1304 		return;
1305 	count = 0;
1306 	mutex_spin_enter(&timecounter_lock);
1307 	if (timecounter_bad != 0) {
1308 		/* An existing timecounter has gone bad, pick a new one. */
1309 		(void)atomic_swap_uint(&timecounter_bad, 0);
1310 		if (timecounter->tc_quality < 0) {
1311 			tc_pick();
1312 		}
1313 	}
1314 	tc_windup();
1315 	mutex_spin_exit(&timecounter_lock);
1316 }
1317 
1318 void
1319 inittimecounter(void)
1320 {
1321 	u_int p;
1322 
1323 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
1324 
1325 	/*
1326 	 * Set the initial timeout to
1327 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1328 	 * People should probably not use the sysctl to set the timeout
1329 	 * to smaller than its inital value, since that value is the
1330 	 * smallest reasonable one.  If they want better timestamps they
1331 	 * should use the non-"get"* functions.
1332 	 */
1333 	if (hz > 1000)
1334 		tc_tick = (hz + 500) / 1000;
1335 	else
1336 		tc_tick = 1;
1337 	p = (tc_tick * 1000000) / hz;
1338 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
1339 	    p / 1000, p % 1000);
1340 
1341 	/* warm up new timecounter (again) and get rolling. */
1342 	(void)timecounter->tc_get_timecount(timecounter);
1343 	(void)timecounter->tc_get_timecount(timecounter);
1344 }
1345