xref: /netbsd-src/sys/kern/kern_tc.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1 /* $NetBSD: kern_tc.c,v 1.61 2021/04/08 06:20:47 simonb Exp $ */
2 
3 /*-
4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * ----------------------------------------------------------------------------
34  * "THE BEER-WARE LICENSE" (Revision 42):
35  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
36  * can do whatever you want with this stuff. If we meet some day, and you think
37  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
38  * ---------------------------------------------------------------------------
39  */
40 
41 #include <sys/cdefs.h>
42 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
43 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.61 2021/04/08 06:20:47 simonb Exp $");
44 
45 #ifdef _KERNEL_OPT
46 #include "opt_ntp.h"
47 #endif
48 
49 #include <sys/param.h>
50 #include <sys/atomic.h>
51 #include <sys/evcnt.h>
52 #include <sys/kauth.h>
53 #include <sys/kernel.h>
54 #include <sys/mutex.h>
55 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
56 #include <sys/sysctl.h>
57 #include <sys/syslog.h>
58 #include <sys/systm.h>
59 #include <sys/timepps.h>
60 #include <sys/timetc.h>
61 #include <sys/timex.h>
62 #include <sys/xcall.h>
63 
64 /*
65  * A large step happens on boot.  This constant detects such steps.
66  * It is relatively small so that ntp_update_second gets called enough
67  * in the typical 'missed a couple of seconds' case, but doesn't loop
68  * forever when the time step is large.
69  */
70 #define LARGE_STEP	200
71 
72 /*
73  * Implement a dummy timecounter which we can use until we get a real one
74  * in the air.  This allows the console and other early stuff to use
75  * time services.
76  */
77 
78 static u_int
79 dummy_get_timecount(struct timecounter *tc)
80 {
81 	static u_int now;
82 
83 	return ++now;
84 }
85 
86 static struct timecounter dummy_timecounter = {
87 	.tc_get_timecount	= dummy_get_timecount,
88 	.tc_counter_mask	= ~0u,
89 	.tc_frequency		= 1000000,
90 	.tc_name		= "dummy",
91 	.tc_quality		= -1000000,
92 	.tc_priv		= NULL,
93 };
94 
95 struct timehands {
96 	/* These fields must be initialized by the driver. */
97 	struct timecounter	*th_counter;     /* active timecounter */
98 	int64_t			th_adjustment;   /* frequency adjustment */
99 						 /* (NTP/adjtime) */
100 	uint64_t		th_scale;        /* scale factor (counter */
101 						 /* tick->time) */
102 	uint64_t 		th_offset_count; /* offset at last time */
103 						 /* update (tc_windup()) */
104 	struct bintime		th_offset;       /* bin (up)time at windup */
105 	struct timeval		th_microtime;    /* cached microtime */
106 	struct timespec		th_nanotime;     /* cached nanotime */
107 	/* Fields not to be copied in tc_windup start with th_generation. */
108 	volatile u_int		th_generation;   /* current genration */
109 	struct timehands	*th_next;        /* next timehand */
110 };
111 
112 static struct timehands th0;
113 static struct timehands th9 = { .th_next = &th0, };
114 static struct timehands th8 = { .th_next = &th9, };
115 static struct timehands th7 = { .th_next = &th8, };
116 static struct timehands th6 = { .th_next = &th7, };
117 static struct timehands th5 = { .th_next = &th6, };
118 static struct timehands th4 = { .th_next = &th5, };
119 static struct timehands th3 = { .th_next = &th4, };
120 static struct timehands th2 = { .th_next = &th3, };
121 static struct timehands th1 = { .th_next = &th2, };
122 static struct timehands th0 = {
123 	.th_counter = &dummy_timecounter,
124 	.th_scale = (uint64_t)-1 / 1000000,
125 	.th_offset = { .sec = 1, .frac = 0 },
126 	.th_generation = 1,
127 	.th_next = &th1,
128 };
129 
130 static struct timehands *volatile timehands = &th0;
131 struct timecounter *timecounter = &dummy_timecounter;
132 static struct timecounter *timecounters = &dummy_timecounter;
133 
134 volatile time_t time_second __cacheline_aligned = 1;
135 volatile time_t time_uptime __cacheline_aligned = 1;
136 
137 static struct bintime timebasebin;
138 
139 static int timestepwarnings;
140 
141 kmutex_t timecounter_lock;
142 static u_int timecounter_mods;
143 static volatile int timecounter_removals = 1;
144 static u_int timecounter_bad;
145 
146 /*
147  * sysctl helper routine for kern.timercounter.hardware
148  */
149 static int
150 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
151 {
152 	struct sysctlnode node;
153 	int error;
154 	char newname[MAX_TCNAMELEN];
155 	struct timecounter *newtc, *tc;
156 
157 	tc = timecounter;
158 
159 	strlcpy(newname, tc->tc_name, sizeof(newname));
160 
161 	node = *rnode;
162 	node.sysctl_data = newname;
163 	node.sysctl_size = sizeof(newname);
164 
165 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
166 
167 	if (error ||
168 	    newp == NULL ||
169 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
170 		return error;
171 
172 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
173 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
174 	    NULL, NULL)) != 0)
175 		return error;
176 
177 	if (!cold)
178 		mutex_spin_enter(&timecounter_lock);
179 	error = EINVAL;
180 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
181 		if (strcmp(newname, newtc->tc_name) != 0)
182 			continue;
183 		/* Warm up new timecounter. */
184 		(void)newtc->tc_get_timecount(newtc);
185 		(void)newtc->tc_get_timecount(newtc);
186 		timecounter = newtc;
187 		error = 0;
188 		break;
189 	}
190 	if (!cold)
191 		mutex_spin_exit(&timecounter_lock);
192 	return error;
193 }
194 
195 static int
196 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
197 {
198 	char buf[MAX_TCNAMELEN+48];
199 	char *where;
200 	const char *spc;
201 	struct timecounter *tc;
202 	size_t needed, left, slen;
203 	int error, mods;
204 
205 	if (newp != NULL)
206 		return EPERM;
207 	if (namelen != 0)
208 		return EINVAL;
209 
210 	mutex_spin_enter(&timecounter_lock);
211  retry:
212 	spc = "";
213 	error = 0;
214 	needed = 0;
215 	left = *oldlenp;
216 	where = oldp;
217 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
218 		if (where == NULL) {
219 			needed += sizeof(buf);  /* be conservative */
220 		} else {
221 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
222 					" Hz)", spc, tc->tc_name, tc->tc_quality,
223 					tc->tc_frequency);
224 			if (left < slen + 1)
225 				break;
226 		 	mods = timecounter_mods;
227 			mutex_spin_exit(&timecounter_lock);
228 			error = copyout(buf, where, slen + 1);
229 			mutex_spin_enter(&timecounter_lock);
230 			if (mods != timecounter_mods) {
231 				goto retry;
232 			}
233 			spc = " ";
234 			where += slen;
235 			needed += slen;
236 			left -= slen;
237 		}
238 	}
239 	mutex_spin_exit(&timecounter_lock);
240 
241 	*oldlenp = needed;
242 	return error;
243 }
244 
245 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
246 {
247 	const struct sysctlnode *node;
248 
249 	sysctl_createv(clog, 0, NULL, &node,
250 		       CTLFLAG_PERMANENT,
251 		       CTLTYPE_NODE, "timecounter",
252 		       SYSCTL_DESCR("time counter information"),
253 		       NULL, 0, NULL, 0,
254 		       CTL_KERN, CTL_CREATE, CTL_EOL);
255 
256 	if (node != NULL) {
257 		sysctl_createv(clog, 0, NULL, NULL,
258 			       CTLFLAG_PERMANENT,
259 			       CTLTYPE_STRING, "choice",
260 			       SYSCTL_DESCR("available counters"),
261 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
262 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
263 
264 		sysctl_createv(clog, 0, NULL, NULL,
265 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
266 			       CTLTYPE_STRING, "hardware",
267 			       SYSCTL_DESCR("currently active time counter"),
268 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
269 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
270 
271 		sysctl_createv(clog, 0, NULL, NULL,
272 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
273 			       CTLTYPE_INT, "timestepwarnings",
274 			       SYSCTL_DESCR("log time steps"),
275 			       NULL, 0, &timestepwarnings, 0,
276 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
277 	}
278 }
279 
280 #ifdef TC_COUNTERS
281 #define	TC_STATS(name)							\
282 static struct evcnt n##name =						\
283     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
284 EVCNT_ATTACH_STATIC(n##name)
285 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
286 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
287 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
288 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
289 TC_STATS(setclock);
290 #define	TC_COUNT(var)	var.ev_count++
291 #undef TC_STATS
292 #else
293 #define	TC_COUNT(var)	/* nothing */
294 #endif	/* TC_COUNTERS */
295 
296 static void tc_windup(void);
297 
298 /*
299  * Return the difference between the timehands' counter value now and what
300  * was when we copied it to the timehands' offset_count.
301  */
302 static inline u_int
303 tc_delta(struct timehands *th)
304 {
305 	struct timecounter *tc;
306 
307 	tc = th->th_counter;
308 	return (tc->tc_get_timecount(tc) -
309 		 th->th_offset_count) & tc->tc_counter_mask;
310 }
311 
312 /*
313  * Functions for reading the time.  We have to loop until we are sure that
314  * the timehands that we operated on was not updated under our feet.  See
315  * the comment in <sys/timevar.h> for a description of these 12 functions.
316  */
317 
318 void
319 binuptime(struct bintime *bt)
320 {
321 	struct timehands *th;
322 	lwp_t *l;
323 	u_int lgen, gen;
324 
325 	TC_COUNT(nbinuptime);
326 
327 	/*
328 	 * Provide exclusion against tc_detach().
329 	 *
330 	 * We record the number of timecounter removals before accessing
331 	 * timecounter state.  Note that the LWP can be using multiple
332 	 * "generations" at once, due to interrupts (interrupted while in
333 	 * this function).  Hardware interrupts will borrow the interrupted
334 	 * LWP's l_tcgen value for this purpose, and can themselves be
335 	 * interrupted by higher priority interrupts.  In this case we need
336 	 * to ensure that the oldest generation in use is recorded.
337 	 *
338 	 * splsched() is too expensive to use, so we take care to structure
339 	 * this code in such a way that it is not required.  Likewise, we
340 	 * do not disable preemption.
341 	 *
342 	 * Memory barriers are also too expensive to use for such a
343 	 * performance critical function.  The good news is that we do not
344 	 * need memory barriers for this type of exclusion, as the thread
345 	 * updating timecounter_removals will issue a broadcast cross call
346 	 * before inspecting our l_tcgen value (this elides memory ordering
347 	 * issues).
348 	 */
349 	l = curlwp;
350 	lgen = l->l_tcgen;
351 	if (__predict_true(lgen == 0)) {
352 		l->l_tcgen = timecounter_removals;
353 	}
354 	__insn_barrier();
355 
356 	do {
357 		th = timehands;
358 		gen = th->th_generation;
359 		*bt = th->th_offset;
360 		bintime_addx(bt, th->th_scale * tc_delta(th));
361 	} while (gen == 0 || gen != th->th_generation);
362 
363 	__insn_barrier();
364 	l->l_tcgen = lgen;
365 }
366 
367 void
368 nanouptime(struct timespec *tsp)
369 {
370 	struct bintime bt;
371 
372 	TC_COUNT(nnanouptime);
373 	binuptime(&bt);
374 	bintime2timespec(&bt, tsp);
375 }
376 
377 void
378 microuptime(struct timeval *tvp)
379 {
380 	struct bintime bt;
381 
382 	TC_COUNT(nmicrouptime);
383 	binuptime(&bt);
384 	bintime2timeval(&bt, tvp);
385 }
386 
387 void
388 bintime(struct bintime *bt)
389 {
390 
391 	TC_COUNT(nbintime);
392 	binuptime(bt);
393 	bintime_add(bt, &timebasebin);
394 }
395 
396 void
397 nanotime(struct timespec *tsp)
398 {
399 	struct bintime bt;
400 
401 	TC_COUNT(nnanotime);
402 	bintime(&bt);
403 	bintime2timespec(&bt, tsp);
404 }
405 
406 void
407 microtime(struct timeval *tvp)
408 {
409 	struct bintime bt;
410 
411 	TC_COUNT(nmicrotime);
412 	bintime(&bt);
413 	bintime2timeval(&bt, tvp);
414 }
415 
416 void
417 getbinuptime(struct bintime *bt)
418 {
419 	struct timehands *th;
420 	u_int gen;
421 
422 	TC_COUNT(ngetbinuptime);
423 	do {
424 		th = timehands;
425 		gen = th->th_generation;
426 		*bt = th->th_offset;
427 	} while (gen == 0 || gen != th->th_generation);
428 }
429 
430 void
431 getnanouptime(struct timespec *tsp)
432 {
433 	struct timehands *th;
434 	u_int gen;
435 
436 	TC_COUNT(ngetnanouptime);
437 	do {
438 		th = timehands;
439 		gen = th->th_generation;
440 		bintime2timespec(&th->th_offset, tsp);
441 	} while (gen == 0 || gen != th->th_generation);
442 }
443 
444 void
445 getmicrouptime(struct timeval *tvp)
446 {
447 	struct timehands *th;
448 	u_int gen;
449 
450 	TC_COUNT(ngetmicrouptime);
451 	do {
452 		th = timehands;
453 		gen = th->th_generation;
454 		bintime2timeval(&th->th_offset, tvp);
455 	} while (gen == 0 || gen != th->th_generation);
456 }
457 
458 void
459 getbintime(struct bintime *bt)
460 {
461 	struct timehands *th;
462 	u_int gen;
463 
464 	TC_COUNT(ngetbintime);
465 	do {
466 		th = timehands;
467 		gen = th->th_generation;
468 		*bt = th->th_offset;
469 	} while (gen == 0 || gen != th->th_generation);
470 	bintime_add(bt, &timebasebin);
471 }
472 
473 static inline void
474 dogetnanotime(struct timespec *tsp)
475 {
476 	struct timehands *th;
477 	u_int gen;
478 
479 	TC_COUNT(ngetnanotime);
480 	do {
481 		th = timehands;
482 		gen = th->th_generation;
483 		*tsp = th->th_nanotime;
484 	} while (gen == 0 || gen != th->th_generation);
485 }
486 
487 void
488 getnanotime(struct timespec *tsp)
489 {
490 
491 	dogetnanotime(tsp);
492 }
493 
494 void dtrace_getnanotime(struct timespec *tsp);
495 
496 void
497 dtrace_getnanotime(struct timespec *tsp)
498 {
499 
500 	dogetnanotime(tsp);
501 }
502 
503 void
504 getmicrotime(struct timeval *tvp)
505 {
506 	struct timehands *th;
507 	u_int gen;
508 
509 	TC_COUNT(ngetmicrotime);
510 	do {
511 		th = timehands;
512 		gen = th->th_generation;
513 		*tvp = th->th_microtime;
514 	} while (gen == 0 || gen != th->th_generation);
515 }
516 
517 void
518 getnanoboottime(struct timespec *tsp)
519 {
520 	struct bintime bt;
521 
522 	getbinboottime(&bt);
523 	bintime2timespec(&bt, tsp);
524 }
525 
526 void
527 getmicroboottime(struct timeval *tvp)
528 {
529 	struct bintime bt;
530 
531 	getbinboottime(&bt);
532 	bintime2timeval(&bt, tvp);
533 }
534 
535 void
536 getbinboottime(struct bintime *bt)
537 {
538 
539 	/*
540 	 * XXX Need lockless read synchronization around timebasebin
541 	 * (and not just here).
542 	 */
543 	*bt = timebasebin;
544 }
545 
546 /*
547  * Initialize a new timecounter and possibly use it.
548  */
549 void
550 tc_init(struct timecounter *tc)
551 {
552 	u_int u;
553 
554 	KASSERTMSG(tc->tc_next == NULL, "timecounter %s already initialised",
555 	    tc->tc_name);
556 
557 	u = tc->tc_frequency / tc->tc_counter_mask;
558 	/* XXX: We need some margin here, 10% is a guess */
559 	u *= 11;
560 	u /= 10;
561 	if (u > hz && tc->tc_quality >= 0) {
562 		tc->tc_quality = -2000;
563 		aprint_verbose(
564 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
565 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
566 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
567 	} else if (tc->tc_quality >= 0 || bootverbose) {
568 		aprint_verbose(
569 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
570 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
571 		    tc->tc_quality);
572 	}
573 
574 	mutex_spin_enter(&timecounter_lock);
575 	tc->tc_next = timecounters;
576 	timecounters = tc;
577 	timecounter_mods++;
578 	/*
579 	 * Never automatically use a timecounter with negative quality.
580 	 * Even though we run on the dummy counter, switching here may be
581 	 * worse since this timecounter may not be monotonous.
582 	 */
583 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
584 	    (tc->tc_quality == timecounter->tc_quality &&
585 	    tc->tc_frequency > timecounter->tc_frequency))) {
586 		(void)tc->tc_get_timecount(tc);
587 		(void)tc->tc_get_timecount(tc);
588 		timecounter = tc;
589 		tc_windup();
590 	}
591 	mutex_spin_exit(&timecounter_lock);
592 }
593 
594 /*
595  * Pick a new timecounter due to the existing counter going bad.
596  */
597 static void
598 tc_pick(void)
599 {
600 	struct timecounter *best, *tc;
601 
602 	KASSERT(mutex_owned(&timecounter_lock));
603 
604 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
605 		if (tc->tc_quality > best->tc_quality)
606 			best = tc;
607 		else if (tc->tc_quality < best->tc_quality)
608 			continue;
609 		else if (tc->tc_frequency > best->tc_frequency)
610 			best = tc;
611 	}
612 	(void)best->tc_get_timecount(best);
613 	(void)best->tc_get_timecount(best);
614 	timecounter = best;
615 }
616 
617 /*
618  * A timecounter has gone bad, arrange to pick a new one at the next
619  * clock tick.
620  */
621 void
622 tc_gonebad(struct timecounter *tc)
623 {
624 
625 	tc->tc_quality = -100;
626 	membar_producer();
627 	atomic_inc_uint(&timecounter_bad);
628 }
629 
630 /*
631  * Stop using a timecounter and remove it from the timecounters list.
632  */
633 int
634 tc_detach(struct timecounter *target)
635 {
636 	struct timecounter *tc;
637 	struct timecounter **tcp = NULL;
638 	int removals;
639 	lwp_t *l;
640 
641 	/* First, find the timecounter. */
642 	mutex_spin_enter(&timecounter_lock);
643 	for (tcp = &timecounters, tc = timecounters;
644 	     tc != NULL;
645 	     tcp = &tc->tc_next, tc = tc->tc_next) {
646 		if (tc == target)
647 			break;
648 	}
649 	if (tc == NULL) {
650 		mutex_spin_exit(&timecounter_lock);
651 		return ESRCH;
652 	}
653 
654 	/* And now, remove it. */
655 	*tcp = tc->tc_next;
656 	if (timecounter == target) {
657 		tc_pick();
658 		tc_windup();
659 	}
660 	timecounter_mods++;
661 	removals = timecounter_removals++;
662 	mutex_spin_exit(&timecounter_lock);
663 
664 	/*
665 	 * We now have to determine if any threads in the system are still
666 	 * making use of this timecounter.
667 	 *
668 	 * We issue a broadcast cross call to elide memory ordering issues,
669 	 * then scan all LWPs in the system looking at each's timecounter
670 	 * generation number.  We need to see a value of zero (not actively
671 	 * using a timecounter) or a value greater than our removal value.
672 	 *
673 	 * We may race with threads that read `timecounter_removals' and
674 	 * and then get preempted before updating `l_tcgen'.  This is not
675 	 * a problem, since it means that these threads have not yet started
676 	 * accessing timecounter state.  All we do need is one clean
677 	 * snapshot of the system where every thread appears not to be using
678 	 * old timecounter state.
679 	 */
680 	for (;;) {
681 		xc_barrier(0);
682 
683 		mutex_enter(&proc_lock);
684 		LIST_FOREACH(l, &alllwp, l_list) {
685 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
686 				/*
687 				 * Not using timecounter or old timecounter
688 				 * state at time of our xcall or later.
689 				 */
690 				continue;
691 			}
692 			break;
693 		}
694 		mutex_exit(&proc_lock);
695 
696 		/*
697 		 * If the timecounter is still in use, wait at least 10ms
698 		 * before retrying.
699 		 */
700 		if (l == NULL) {
701 			return 0;
702 		}
703 		(void)kpause("tcdetach", false, mstohz(10), NULL);
704 	}
705 }
706 
707 /* Report the frequency of the current timecounter. */
708 uint64_t
709 tc_getfrequency(void)
710 {
711 
712 	return timehands->th_counter->tc_frequency;
713 }
714 
715 /*
716  * Step our concept of UTC.  This is done by modifying our estimate of
717  * when we booted.
718  */
719 void
720 tc_setclock(const struct timespec *ts)
721 {
722 	struct timespec ts2;
723 	struct bintime bt, bt2;
724 
725 	mutex_spin_enter(&timecounter_lock);
726 	TC_COUNT(nsetclock);
727 	binuptime(&bt2);
728 	timespec2bintime(ts, &bt);
729 	bintime_sub(&bt, &bt2);
730 	bintime_add(&bt2, &timebasebin);
731 	timebasebin = bt;
732 	tc_windup();
733 	mutex_spin_exit(&timecounter_lock);
734 
735 	if (timestepwarnings) {
736 		bintime2timespec(&bt2, &ts2);
737 		log(LOG_INFO,
738 		    "Time stepped from %lld.%09ld to %lld.%09ld\n",
739 		    (long long)ts2.tv_sec, ts2.tv_nsec,
740 		    (long long)ts->tv_sec, ts->tv_nsec);
741 	}
742 }
743 
744 /*
745  * Initialize the next struct timehands in the ring and make
746  * it the active timehands.  Along the way we might switch to a different
747  * timecounter and/or do seconds processing in NTP.  Slightly magic.
748  */
749 static void
750 tc_windup(void)
751 {
752 	struct bintime bt;
753 	struct timehands *th, *tho;
754 	uint64_t scale;
755 	u_int delta, ncount, ogen;
756 	int i, s_update;
757 	time_t t;
758 
759 	KASSERT(mutex_owned(&timecounter_lock));
760 
761 	s_update = 0;
762 
763 	/*
764 	 * Make the next timehands a copy of the current one, but do not
765 	 * overwrite the generation or next pointer.  While we update
766 	 * the contents, the generation must be zero.  Ensure global
767 	 * visibility of the generation before proceeding.
768 	 */
769 	tho = timehands;
770 	th = tho->th_next;
771 	ogen = th->th_generation;
772 	th->th_generation = 0;
773 	membar_producer();
774 	bcopy(tho, th, offsetof(struct timehands, th_generation));
775 
776 	/*
777 	 * Capture a timecounter delta on the current timecounter and if
778 	 * changing timecounters, a counter value from the new timecounter.
779 	 * Update the offset fields accordingly.
780 	 */
781 	delta = tc_delta(th);
782 	if (th->th_counter != timecounter)
783 		ncount = timecounter->tc_get_timecount(timecounter);
784 	else
785 		ncount = 0;
786 	th->th_offset_count += delta;
787 	bintime_addx(&th->th_offset, th->th_scale * delta);
788 
789 	/*
790 	 * Hardware latching timecounters may not generate interrupts on
791 	 * PPS events, so instead we poll them.  There is a finite risk that
792 	 * the hardware might capture a count which is later than the one we
793 	 * got above, and therefore possibly in the next NTP second which might
794 	 * have a different rate than the current NTP second.  It doesn't
795 	 * matter in practice.
796 	 */
797 	if (tho->th_counter->tc_poll_pps)
798 		tho->th_counter->tc_poll_pps(tho->th_counter);
799 
800 	/*
801 	 * Deal with NTP second processing.  The for loop normally
802 	 * iterates at most once, but in extreme situations it might
803 	 * keep NTP sane if timeouts are not run for several seconds.
804 	 * At boot, the time step can be large when the TOD hardware
805 	 * has been read, so on really large steps, we call
806 	 * ntp_update_second only twice.  We need to call it twice in
807 	 * case we missed a leap second.
808 	 * If NTP is not compiled in ntp_update_second still calculates
809 	 * the adjustment resulting from adjtime() calls.
810 	 */
811 	bt = th->th_offset;
812 	bintime_add(&bt, &timebasebin);
813 	i = bt.sec - tho->th_microtime.tv_sec;
814 	if (i > LARGE_STEP)
815 		i = 2;
816 	for (; i > 0; i--) {
817 		t = bt.sec;
818 		ntp_update_second(&th->th_adjustment, &bt.sec);
819 		s_update = 1;
820 		if (bt.sec != t)
821 			timebasebin.sec += bt.sec - t;
822 	}
823 
824 	/* Update the UTC timestamps used by the get*() functions. */
825 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
826 	bintime2timeval(&bt, &th->th_microtime);
827 	bintime2timespec(&bt, &th->th_nanotime);
828 	/* Now is a good time to change timecounters. */
829 	if (th->th_counter != timecounter) {
830 		th->th_counter = timecounter;
831 		th->th_offset_count = ncount;
832 		s_update = 1;
833 	}
834 
835 	/*-
836 	 * Recalculate the scaling factor.  We want the number of 1/2^64
837 	 * fractions of a second per period of the hardware counter, taking
838 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
839 	 * processing provides us with.
840 	 *
841 	 * The th_adjustment is nanoseconds per second with 32 bit binary
842 	 * fraction and we want 64 bit binary fraction of second:
843 	 *
844 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
845 	 *
846 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
847 	 * we can only multiply by about 850 without overflowing, but that
848 	 * leaves suitably precise fractions for multiply before divide.
849 	 *
850 	 * Divide before multiply with a fraction of 2199/512 results in a
851 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
852 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
853  	 *
854 	 * We happily sacrifice the lowest of the 64 bits of our result
855 	 * to the goddess of code clarity.
856 	 *
857 	 */
858 	if (s_update) {
859 		scale = (uint64_t)1 << 63;
860 		scale += (th->th_adjustment / 1024) * 2199;
861 		scale /= th->th_counter->tc_frequency;
862 		th->th_scale = scale * 2;
863 	}
864 	/*
865 	 * Now that the struct timehands is again consistent, set the new
866 	 * generation number, making sure to not make it zero.  Ensure
867 	 * changes are globally visible before changing.
868 	 */
869 	if (++ogen == 0)
870 		ogen = 1;
871 	membar_producer();
872 	th->th_generation = ogen;
873 
874 	/*
875 	 * Go live with the new struct timehands.  Ensure changes are
876 	 * globally visible before changing.
877 	 */
878 	time_second = th->th_microtime.tv_sec;
879 	time_uptime = th->th_offset.sec;
880 	membar_producer();
881 	timehands = th;
882 
883 	/*
884 	 * Force users of the old timehand to move on.  This is
885 	 * necessary for MP systems; we need to ensure that the
886 	 * consumers will move away from the old timehand before
887 	 * we begin updating it again when we eventually wrap
888 	 * around.
889 	 */
890 	if (++tho->th_generation == 0)
891 		tho->th_generation = 1;
892 }
893 
894 /*
895  * RFC 2783 PPS-API implementation.
896  */
897 
898 int
899 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
900 {
901 	pps_params_t *app;
902 	pps_info_t *pipi;
903 #ifdef PPS_SYNC
904 	int *epi;
905 #endif
906 
907 	KASSERT(mutex_owned(&timecounter_lock));
908 
909 	KASSERT(pps != NULL);
910 
911 	switch (cmd) {
912 	case PPS_IOC_CREATE:
913 		return 0;
914 	case PPS_IOC_DESTROY:
915 		return 0;
916 	case PPS_IOC_SETPARAMS:
917 		app = (pps_params_t *)data;
918 		if (app->mode & ~pps->ppscap)
919 			return EINVAL;
920 		pps->ppsparam = *app;
921 		return 0;
922 	case PPS_IOC_GETPARAMS:
923 		app = (pps_params_t *)data;
924 		*app = pps->ppsparam;
925 		app->api_version = PPS_API_VERS_1;
926 		return 0;
927 	case PPS_IOC_GETCAP:
928 		*(int*)data = pps->ppscap;
929 		return 0;
930 	case PPS_IOC_FETCH:
931 		pipi = (pps_info_t *)data;
932 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
933 		*pipi = pps->ppsinfo;
934 		return 0;
935 	case PPS_IOC_KCBIND:
936 #ifdef PPS_SYNC
937 		epi = (int *)data;
938 		/* XXX Only root should be able to do this */
939 		if (*epi & ~pps->ppscap)
940 			return EINVAL;
941 		pps->kcmode = *epi;
942 		return 0;
943 #else
944 		return EOPNOTSUPP;
945 #endif
946 	default:
947 		return EPASSTHROUGH;
948 	}
949 }
950 
951 void
952 pps_init(struct pps_state *pps)
953 {
954 
955 	KASSERT(mutex_owned(&timecounter_lock));
956 
957 	pps->ppscap |= PPS_TSFMT_TSPEC;
958 	if (pps->ppscap & PPS_CAPTUREASSERT)
959 		pps->ppscap |= PPS_OFFSETASSERT;
960 	if (pps->ppscap & PPS_CAPTURECLEAR)
961 		pps->ppscap |= PPS_OFFSETCLEAR;
962 }
963 
964 /*
965  * capture a timetamp in the pps structure
966  */
967 void
968 pps_capture(struct pps_state *pps)
969 {
970 	struct timehands *th;
971 
972 	KASSERT(mutex_owned(&timecounter_lock));
973 	KASSERT(pps != NULL);
974 
975 	th = timehands;
976 	pps->capgen = th->th_generation;
977 	pps->capth = th;
978 	pps->capcount = (uint64_t)tc_delta(th) + th->th_offset_count;
979 	if (pps->capgen != th->th_generation)
980 		pps->capgen = 0;
981 }
982 
983 #ifdef PPS_DEBUG
984 int ppsdebug = 0;
985 #endif
986 
987 /*
988  * process a pps_capture()ed event
989  */
990 void
991 pps_event(struct pps_state *pps, int event)
992 {
993 	pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
994 }
995 
996 /*
997  * extended pps api /  kernel pll/fll entry point
998  *
999  * feed reference time stamps to PPS engine
1000  *
1001  * will simulate a PPS event and feed
1002  * the NTP PLL/FLL if requested.
1003  *
1004  * the ref time stamps should be roughly once
1005  * a second but do not need to be exactly in phase
1006  * with the UTC second but should be close to it.
1007  * this relaxation of requirements allows callout
1008  * driven timestamping mechanisms to feed to pps
1009  * capture/kernel pll logic.
1010  *
1011  * calling pattern is:
1012  *  pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
1013  *  read timestamp from reference source
1014  *  pps_ref_event()
1015  *
1016  * supported refmodes:
1017  *  PPS_REFEVNT_CAPTURE
1018  *    use system timestamp of pps_capture()
1019  *  PPS_REFEVNT_CURRENT
1020  *    use system timestamp of this call
1021  *  PPS_REFEVNT_CAPCUR
1022  *    use average of read capture and current system time stamp
1023  *  PPS_REFEVNT_PPS
1024  *    assume timestamp on second mark - ref_ts is ignored
1025  *
1026  */
1027 
1028 void
1029 pps_ref_event(struct pps_state *pps,
1030 	      int event,
1031 	      struct bintime *ref_ts,
1032 	      int refmode
1033 	)
1034 {
1035 	struct bintime bt;	/* current time */
1036 	struct bintime btd;	/* time difference */
1037 	struct bintime bt_ref;	/* reference time */
1038 	struct timespec ts, *tsp, *osp;
1039 	struct timehands *th;
1040 	uint64_t tcount, acount, dcount, *pcount;
1041 	int foff, gen;
1042 #ifdef PPS_SYNC
1043 	int fhard;
1044 #endif
1045 	pps_seq_t *pseq;
1046 
1047 	KASSERT(mutex_owned(&timecounter_lock));
1048 
1049 	KASSERT(pps != NULL);
1050 
1051         /* pick up current time stamp if needed */
1052 	if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
1053 		/* pick up current time stamp */
1054 		th = timehands;
1055 		gen = th->th_generation;
1056 		tcount = (uint64_t)tc_delta(th) + th->th_offset_count;
1057 		if (gen != th->th_generation)
1058 			gen = 0;
1059 
1060 		/* If the timecounter was wound up underneath us, bail out. */
1061 		if (pps->capgen == 0 ||
1062 		    pps->capgen != pps->capth->th_generation ||
1063 		    gen == 0 ||
1064 		    gen != pps->capgen) {
1065 #ifdef PPS_DEBUG
1066 			if (ppsdebug & 0x1) {
1067 				log(LOG_DEBUG,
1068 				    "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
1069 				    pps, event);
1070 			}
1071 #endif
1072 			return;
1073 		}
1074 	} else {
1075 		tcount = 0;	/* keep GCC happy */
1076 	}
1077 
1078 #ifdef PPS_DEBUG
1079 	if (ppsdebug & 0x1) {
1080 		struct timespec tmsp;
1081 
1082 		if (ref_ts == NULL) {
1083 			tmsp.tv_sec = 0;
1084 			tmsp.tv_nsec = 0;
1085 		} else {
1086 			bintime2timespec(ref_ts, &tmsp);
1087 		}
1088 
1089 		log(LOG_DEBUG,
1090 		    "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
1091 		    ".%09"PRIi32", refmode=0x%1x)\n",
1092 		    pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
1093 	}
1094 #endif
1095 
1096 	/* setup correct event references */
1097 	if (event == PPS_CAPTUREASSERT) {
1098 		tsp = &pps->ppsinfo.assert_timestamp;
1099 		osp = &pps->ppsparam.assert_offset;
1100 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1101 #ifdef PPS_SYNC
1102 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1103 #endif
1104 		pcount = &pps->ppscount[0];
1105 		pseq = &pps->ppsinfo.assert_sequence;
1106 	} else {
1107 		tsp = &pps->ppsinfo.clear_timestamp;
1108 		osp = &pps->ppsparam.clear_offset;
1109 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1110 #ifdef PPS_SYNC
1111 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1112 #endif
1113 		pcount = &pps->ppscount[1];
1114 		pseq = &pps->ppsinfo.clear_sequence;
1115 	}
1116 
1117 	/* determine system time stamp according to refmode */
1118 	dcount = 0;		/* keep GCC happy */
1119 	switch (refmode & PPS_REFEVNT_RMASK) {
1120 	case PPS_REFEVNT_CAPTURE:
1121 		acount = pps->capcount;	/* use capture timestamp */
1122 		break;
1123 
1124 	case PPS_REFEVNT_CURRENT:
1125 		acount = tcount; /* use current timestamp */
1126 		break;
1127 
1128 	case PPS_REFEVNT_CAPCUR:
1129 		/*
1130 		 * calculate counter value between pps_capture() and
1131 		 * pps_ref_event()
1132 		 */
1133 		dcount = tcount - pps->capcount;
1134 		acount = (dcount / 2) + pps->capcount;
1135 		break;
1136 
1137 	default:		/* ignore call error silently */
1138 		return;
1139 	}
1140 
1141 	/*
1142 	 * If the timecounter changed, we cannot compare the count values, so
1143 	 * we have to drop the rest of the PPS-stuff until the next event.
1144 	 */
1145 	if (pps->ppstc != pps->capth->th_counter) {
1146 		pps->ppstc = pps->capth->th_counter;
1147 		pps->capcount = acount;
1148 		*pcount = acount;
1149 		pps->ppscount[2] = acount;
1150 #ifdef PPS_DEBUG
1151 		if (ppsdebug & 0x1) {
1152 			log(LOG_DEBUG,
1153 			    "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
1154 			    pps, event);
1155 		}
1156 #endif
1157 		return;
1158 	}
1159 
1160 	pps->capcount = acount;
1161 
1162 	/* Convert the count to a bintime. */
1163 	bt = pps->capth->th_offset;
1164 	bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
1165 	bintime_add(&bt, &timebasebin);
1166 
1167 	if ((refmode & PPS_REFEVNT_PPS) == 0) {
1168 		/* determine difference to reference time stamp */
1169 		bt_ref = *ref_ts;
1170 
1171 		btd = bt;
1172 		bintime_sub(&btd, &bt_ref);
1173 
1174 		/*
1175 		 * simulate a PPS timestamp by dropping the fraction
1176 		 * and applying the offset
1177 		 */
1178 		if (bt.frac >= (uint64_t)1<<63)	/* skip to nearest second */
1179 			bt.sec++;
1180 		bt.frac = 0;
1181 		bintime_add(&bt, &btd);
1182 	} else {
1183 		/*
1184 		 * create ref_ts from current time -
1185 		 * we are supposed to be called on
1186 		 * the second mark
1187 		 */
1188 		bt_ref = bt;
1189 		if (bt_ref.frac >= (uint64_t)1<<63)	/* skip to nearest second */
1190 			bt_ref.sec++;
1191 		bt_ref.frac = 0;
1192 	}
1193 
1194 	/* convert bintime to timestamp */
1195 	bintime2timespec(&bt, &ts);
1196 
1197 	/* If the timecounter was wound up underneath us, bail out. */
1198 	if (pps->capgen != pps->capth->th_generation)
1199 		return;
1200 
1201 	/* store time stamp */
1202 	*pcount = pps->capcount;
1203 	(*pseq)++;
1204 	*tsp = ts;
1205 
1206 	/* add offset correction */
1207 	if (foff) {
1208 		timespecadd(tsp, osp, tsp);
1209 		if (tsp->tv_nsec < 0) {
1210 			tsp->tv_nsec += 1000000000;
1211 			tsp->tv_sec -= 1;
1212 		}
1213 	}
1214 
1215 #ifdef PPS_DEBUG
1216 	if (ppsdebug & 0x2) {
1217 		struct timespec ts2;
1218 		struct timespec ts3;
1219 
1220 		bintime2timespec(&bt_ref, &ts2);
1221 
1222 		bt.sec = 0;
1223 		bt.frac = 0;
1224 
1225 		if (refmode & PPS_REFEVNT_CAPCUR) {
1226 			    bintime_addx(&bt, pps->capth->th_scale * dcount);
1227 		}
1228 		bintime2timespec(&bt, &ts3);
1229 
1230 		log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
1231 		    ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
1232 		    ts2.tv_sec, (int32_t)ts2.tv_nsec,
1233 		    tsp->tv_sec, (int32_t)tsp->tv_nsec,
1234 		    timespec2ns(&ts3));
1235 	}
1236 #endif
1237 
1238 #ifdef PPS_SYNC
1239 	if (fhard) {
1240 		uint64_t scale;
1241 		uint64_t div;
1242 
1243 		/*
1244 		 * Feed the NTP PLL/FLL.
1245 		 * The FLL wants to know how many (hardware) nanoseconds
1246 		 * elapsed since the previous event (mod 1 second) thus
1247 		 * we are actually looking at the frequency difference scaled
1248 		 * in nsec.
1249 		 * As the counter time stamps are not truly at 1Hz
1250 		 * we need to scale the count by the elapsed
1251 		 * reference time.
1252 		 * valid sampling interval: [0.5..2[ sec
1253 		 */
1254 
1255 		/* calculate elapsed raw count */
1256 		tcount = pps->capcount - pps->ppscount[2];
1257 		pps->ppscount[2] = pps->capcount;
1258 		tcount &= pps->capth->th_counter->tc_counter_mask;
1259 
1260 		/* calculate elapsed ref time */
1261 		btd = bt_ref;
1262 		bintime_sub(&btd, &pps->ref_time);
1263 		pps->ref_time = bt_ref;
1264 
1265 		/* check that we stay below 2 sec */
1266 		if (btd.sec < 0 || btd.sec > 1)
1267 			return;
1268 
1269 		/* we want at least 0.5 sec between samples */
1270 		if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
1271 			return;
1272 
1273 		/*
1274 		 * calculate cycles per period by multiplying
1275 		 * the frequency with the elapsed period
1276 		 * we pick a fraction of 30 bits
1277 		 * ~1ns resolution for elapsed time
1278 		 */
1279 		div   = (uint64_t)btd.sec << 30;
1280 		div  |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
1281 		div  *= pps->capth->th_counter->tc_frequency;
1282 		div >>= 30;
1283 
1284 		if (div == 0)	/* safeguard */
1285 			return;
1286 
1287 		scale = (uint64_t)1 << 63;
1288 		scale /= div;
1289 		scale *= 2;
1290 
1291 		bt.sec = 0;
1292 		bt.frac = 0;
1293 		bintime_addx(&bt, scale * tcount);
1294 		bintime2timespec(&bt, &ts);
1295 
1296 #ifdef PPS_DEBUG
1297 		if (ppsdebug & 0x4) {
1298 			struct timespec ts2;
1299 			int64_t df;
1300 
1301 			bintime2timespec(&bt_ref, &ts2);
1302 			df = timespec2ns(&ts);
1303 			if (df > 500000000)
1304 				df -= 1000000000;
1305 			log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
1306 			    ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
1307 			    ", freqdiff=%"PRIi64" ns/s\n",
1308 			    ts2.tv_sec, (int32_t)ts2.tv_nsec,
1309 			    tsp->tv_sec, (int32_t)tsp->tv_nsec,
1310 			    df);
1311 		}
1312 #endif
1313 
1314 		hardpps(tsp, timespec2ns(&ts));
1315 	}
1316 #endif
1317 }
1318 
1319 /*
1320  * Timecounters need to be updated every so often to prevent the hardware
1321  * counter from overflowing.  Updating also recalculates the cached values
1322  * used by the get*() family of functions, so their precision depends on
1323  * the update frequency.
1324  */
1325 
1326 static int tc_tick;
1327 
1328 void
1329 tc_ticktock(void)
1330 {
1331 	static int count;
1332 
1333 	if (++count < tc_tick)
1334 		return;
1335 	count = 0;
1336 	mutex_spin_enter(&timecounter_lock);
1337 	if (__predict_false(timecounter_bad != 0)) {
1338 		/* An existing timecounter has gone bad, pick a new one. */
1339 		(void)atomic_swap_uint(&timecounter_bad, 0);
1340 		if (timecounter->tc_quality < 0) {
1341 			tc_pick();
1342 		}
1343 	}
1344 	tc_windup();
1345 	mutex_spin_exit(&timecounter_lock);
1346 }
1347 
1348 void
1349 inittimecounter(void)
1350 {
1351 	u_int p;
1352 
1353 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
1354 
1355 	/*
1356 	 * Set the initial timeout to
1357 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1358 	 * People should probably not use the sysctl to set the timeout
1359 	 * to smaller than its initial value, since that value is the
1360 	 * smallest reasonable one.  If they want better timestamps they
1361 	 * should use the non-"get"* functions.
1362 	 */
1363 	if (hz > 1000)
1364 		tc_tick = (hz + 500) / 1000;
1365 	else
1366 		tc_tick = 1;
1367 	p = (tc_tick * 1000000) / hz;
1368 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
1369 	    p / 1000, p % 1000);
1370 
1371 	/* warm up new timecounter (again) and get rolling. */
1372 	(void)timecounter->tc_get_timecount(timecounter);
1373 	(void)timecounter->tc_get_timecount(timecounter);
1374 }
1375