xref: /netbsd-src/sys/kern/kern_tc.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /* $NetBSD: kern_tc.c,v 1.59 2020/05/27 09:09:50 rin Exp $ */
2 
3 /*-
4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * ----------------------------------------------------------------------------
34  * "THE BEER-WARE LICENSE" (Revision 42):
35  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
36  * can do whatever you want with this stuff. If we meet some day, and you think
37  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
38  * ---------------------------------------------------------------------------
39  */
40 
41 #include <sys/cdefs.h>
42 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
43 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.59 2020/05/27 09:09:50 rin Exp $");
44 
45 #ifdef _KERNEL_OPT
46 #include "opt_ntp.h"
47 #endif
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/systm.h>
55 #include <sys/timepps.h>
56 #include <sys/timetc.h>
57 #include <sys/timex.h>
58 #include <sys/evcnt.h>
59 #include <sys/kauth.h>
60 #include <sys/mutex.h>
61 #include <sys/atomic.h>
62 #include <sys/xcall.h>
63 
64 /*
65  * A large step happens on boot.  This constant detects such steps.
66  * It is relatively small so that ntp_update_second gets called enough
67  * in the typical 'missed a couple of seconds' case, but doesn't loop
68  * forever when the time step is large.
69  */
70 #define LARGE_STEP	200
71 
72 /*
73  * Implement a dummy timecounter which we can use until we get a real one
74  * in the air.  This allows the console and other early stuff to use
75  * time services.
76  */
77 
78 static u_int
79 dummy_get_timecount(struct timecounter *tc)
80 {
81 	static u_int now;
82 
83 	return ++now;
84 }
85 
86 static struct timecounter dummy_timecounter = {
87 	.tc_get_timecount	= dummy_get_timecount,
88 	.tc_counter_mask	= ~0u,
89 	.tc_frequency		= 1000000,
90 	.tc_name		= "dummy",
91 	.tc_quality		= -1000000,
92 	.tc_priv		= NULL,
93 };
94 
95 struct timehands {
96 	/* These fields must be initialized by the driver. */
97 	struct timecounter	*th_counter;     /* active timecounter */
98 	int64_t			th_adjustment;   /* frequency adjustment */
99 						 /* (NTP/adjtime) */
100 	uint64_t		th_scale;        /* scale factor (counter */
101 						 /* tick->time) */
102 	uint64_t 		th_offset_count; /* offset at last time */
103 						 /* update (tc_windup()) */
104 	struct bintime		th_offset;       /* bin (up)time at windup */
105 	struct timeval		th_microtime;    /* cached microtime */
106 	struct timespec		th_nanotime;     /* cached nanotime */
107 	/* Fields not to be copied in tc_windup start with th_generation. */
108 	volatile u_int		th_generation;   /* current genration */
109 	struct timehands	*th_next;        /* next timehand */
110 };
111 
112 static struct timehands th0;
113 static struct timehands th9 = { .th_next = &th0, };
114 static struct timehands th8 = { .th_next = &th9, };
115 static struct timehands th7 = { .th_next = &th8, };
116 static struct timehands th6 = { .th_next = &th7, };
117 static struct timehands th5 = { .th_next = &th6, };
118 static struct timehands th4 = { .th_next = &th5, };
119 static struct timehands th3 = { .th_next = &th4, };
120 static struct timehands th2 = { .th_next = &th3, };
121 static struct timehands th1 = { .th_next = &th2, };
122 static struct timehands th0 = {
123 	.th_counter = &dummy_timecounter,
124 	.th_scale = (uint64_t)-1 / 1000000,
125 	.th_offset = { .sec = 1, .frac = 0 },
126 	.th_generation = 1,
127 	.th_next = &th1,
128 };
129 
130 static struct timehands *volatile timehands = &th0;
131 struct timecounter *timecounter = &dummy_timecounter;
132 static struct timecounter *timecounters = &dummy_timecounter;
133 
134 volatile time_t time_second __cacheline_aligned = 1;
135 volatile time_t time_uptime __cacheline_aligned = 1;
136 
137 static struct bintime timebasebin;
138 
139 static int timestepwarnings;
140 
141 kmutex_t timecounter_lock;
142 static u_int timecounter_mods;
143 static volatile int timecounter_removals = 1;
144 static u_int timecounter_bad;
145 
146 /*
147  * sysctl helper routine for kern.timercounter.hardware
148  */
149 static int
150 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
151 {
152 	struct sysctlnode node;
153 	int error;
154 	char newname[MAX_TCNAMELEN];
155 	struct timecounter *newtc, *tc;
156 
157 	tc = timecounter;
158 
159 	strlcpy(newname, tc->tc_name, sizeof(newname));
160 
161 	node = *rnode;
162 	node.sysctl_data = newname;
163 	node.sysctl_size = sizeof(newname);
164 
165 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
166 
167 	if (error ||
168 	    newp == NULL ||
169 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
170 		return error;
171 
172 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
173 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
174 	    NULL, NULL)) != 0)
175 		return error;
176 
177 	if (!cold)
178 		mutex_spin_enter(&timecounter_lock);
179 	error = EINVAL;
180 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
181 		if (strcmp(newname, newtc->tc_name) != 0)
182 			continue;
183 		/* Warm up new timecounter. */
184 		(void)newtc->tc_get_timecount(newtc);
185 		(void)newtc->tc_get_timecount(newtc);
186 		timecounter = newtc;
187 		error = 0;
188 		break;
189 	}
190 	if (!cold)
191 		mutex_spin_exit(&timecounter_lock);
192 	return error;
193 }
194 
195 static int
196 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
197 {
198 	char buf[MAX_TCNAMELEN+48];
199 	char *where;
200 	const char *spc;
201 	struct timecounter *tc;
202 	size_t needed, left, slen;
203 	int error, mods;
204 
205 	if (newp != NULL)
206 		return EPERM;
207 	if (namelen != 0)
208 		return EINVAL;
209 
210 	mutex_spin_enter(&timecounter_lock);
211  retry:
212 	spc = "";
213 	error = 0;
214 	needed = 0;
215 	left = *oldlenp;
216 	where = oldp;
217 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
218 		if (where == NULL) {
219 			needed += sizeof(buf);  /* be conservative */
220 		} else {
221 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
222 					" Hz)", spc, tc->tc_name, tc->tc_quality,
223 					tc->tc_frequency);
224 			if (left < slen + 1)
225 				break;
226 		 	mods = timecounter_mods;
227 			mutex_spin_exit(&timecounter_lock);
228 			error = copyout(buf, where, slen + 1);
229 			mutex_spin_enter(&timecounter_lock);
230 			if (mods != timecounter_mods) {
231 				goto retry;
232 			}
233 			spc = " ";
234 			where += slen;
235 			needed += slen;
236 			left -= slen;
237 		}
238 	}
239 	mutex_spin_exit(&timecounter_lock);
240 
241 	*oldlenp = needed;
242 	return error;
243 }
244 
245 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
246 {
247 	const struct sysctlnode *node;
248 
249 	sysctl_createv(clog, 0, NULL, &node,
250 		       CTLFLAG_PERMANENT,
251 		       CTLTYPE_NODE, "timecounter",
252 		       SYSCTL_DESCR("time counter information"),
253 		       NULL, 0, NULL, 0,
254 		       CTL_KERN, CTL_CREATE, CTL_EOL);
255 
256 	if (node != NULL) {
257 		sysctl_createv(clog, 0, NULL, NULL,
258 			       CTLFLAG_PERMANENT,
259 			       CTLTYPE_STRING, "choice",
260 			       SYSCTL_DESCR("available counters"),
261 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
262 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
263 
264 		sysctl_createv(clog, 0, NULL, NULL,
265 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
266 			       CTLTYPE_STRING, "hardware",
267 			       SYSCTL_DESCR("currently active time counter"),
268 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
269 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
270 
271 		sysctl_createv(clog, 0, NULL, NULL,
272 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
273 			       CTLTYPE_INT, "timestepwarnings",
274 			       SYSCTL_DESCR("log time steps"),
275 			       NULL, 0, &timestepwarnings, 0,
276 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
277 	}
278 }
279 
280 #ifdef TC_COUNTERS
281 #define	TC_STATS(name)							\
282 static struct evcnt n##name =						\
283     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
284 EVCNT_ATTACH_STATIC(n##name)
285 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
286 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
287 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
288 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
289 TC_STATS(setclock);
290 #define	TC_COUNT(var)	var.ev_count++
291 #undef TC_STATS
292 #else
293 #define	TC_COUNT(var)	/* nothing */
294 #endif	/* TC_COUNTERS */
295 
296 static void tc_windup(void);
297 
298 /*
299  * Return the difference between the timehands' counter value now and what
300  * was when we copied it to the timehands' offset_count.
301  */
302 static inline u_int
303 tc_delta(struct timehands *th)
304 {
305 	struct timecounter *tc;
306 
307 	tc = th->th_counter;
308 	return (tc->tc_get_timecount(tc) -
309 		 th->th_offset_count) & tc->tc_counter_mask;
310 }
311 
312 /*
313  * Functions for reading the time.  We have to loop until we are sure that
314  * the timehands that we operated on was not updated under our feet.  See
315  * the comment in <sys/timevar.h> for a description of these 12 functions.
316  */
317 
318 void
319 binuptime(struct bintime *bt)
320 {
321 	struct timehands *th;
322 	lwp_t *l;
323 	u_int lgen, gen;
324 
325 	TC_COUNT(nbinuptime);
326 
327 	/*
328 	 * Provide exclusion against tc_detach().
329 	 *
330 	 * We record the number of timecounter removals before accessing
331 	 * timecounter state.  Note that the LWP can be using multiple
332 	 * "generations" at once, due to interrupts (interrupted while in
333 	 * this function).  Hardware interrupts will borrow the interrupted
334 	 * LWP's l_tcgen value for this purpose, and can themselves be
335 	 * interrupted by higher priority interrupts.  In this case we need
336 	 * to ensure that the oldest generation in use is recorded.
337 	 *
338 	 * splsched() is too expensive to use, so we take care to structure
339 	 * this code in such a way that it is not required.  Likewise, we
340 	 * do not disable preemption.
341 	 *
342 	 * Memory barriers are also too expensive to use for such a
343 	 * performance critical function.  The good news is that we do not
344 	 * need memory barriers for this type of exclusion, as the thread
345 	 * updating timecounter_removals will issue a broadcast cross call
346 	 * before inspecting our l_tcgen value (this elides memory ordering
347 	 * issues).
348 	 */
349 	l = curlwp;
350 	lgen = l->l_tcgen;
351 	if (__predict_true(lgen == 0)) {
352 		l->l_tcgen = timecounter_removals;
353 	}
354 	__insn_barrier();
355 
356 	do {
357 		th = timehands;
358 		gen = th->th_generation;
359 		*bt = th->th_offset;
360 		bintime_addx(bt, th->th_scale * tc_delta(th));
361 	} while (gen == 0 || gen != th->th_generation);
362 
363 	__insn_barrier();
364 	l->l_tcgen = lgen;
365 }
366 
367 void
368 nanouptime(struct timespec *tsp)
369 {
370 	struct bintime bt;
371 
372 	TC_COUNT(nnanouptime);
373 	binuptime(&bt);
374 	bintime2timespec(&bt, tsp);
375 }
376 
377 void
378 microuptime(struct timeval *tvp)
379 {
380 	struct bintime bt;
381 
382 	TC_COUNT(nmicrouptime);
383 	binuptime(&bt);
384 	bintime2timeval(&bt, tvp);
385 }
386 
387 void
388 bintime(struct bintime *bt)
389 {
390 
391 	TC_COUNT(nbintime);
392 	binuptime(bt);
393 	bintime_add(bt, &timebasebin);
394 }
395 
396 void
397 nanotime(struct timespec *tsp)
398 {
399 	struct bintime bt;
400 
401 	TC_COUNT(nnanotime);
402 	bintime(&bt);
403 	bintime2timespec(&bt, tsp);
404 }
405 
406 void
407 microtime(struct timeval *tvp)
408 {
409 	struct bintime bt;
410 
411 	TC_COUNT(nmicrotime);
412 	bintime(&bt);
413 	bintime2timeval(&bt, tvp);
414 }
415 
416 void
417 getbinuptime(struct bintime *bt)
418 {
419 	struct timehands *th;
420 	u_int gen;
421 
422 	TC_COUNT(ngetbinuptime);
423 	do {
424 		th = timehands;
425 		gen = th->th_generation;
426 		*bt = th->th_offset;
427 	} while (gen == 0 || gen != th->th_generation);
428 }
429 
430 void
431 getnanouptime(struct timespec *tsp)
432 {
433 	struct timehands *th;
434 	u_int gen;
435 
436 	TC_COUNT(ngetnanouptime);
437 	do {
438 		th = timehands;
439 		gen = th->th_generation;
440 		bintime2timespec(&th->th_offset, tsp);
441 	} while (gen == 0 || gen != th->th_generation);
442 }
443 
444 void
445 getmicrouptime(struct timeval *tvp)
446 {
447 	struct timehands *th;
448 	u_int gen;
449 
450 	TC_COUNT(ngetmicrouptime);
451 	do {
452 		th = timehands;
453 		gen = th->th_generation;
454 		bintime2timeval(&th->th_offset, tvp);
455 	} while (gen == 0 || gen != th->th_generation);
456 }
457 
458 void
459 getbintime(struct bintime *bt)
460 {
461 	struct timehands *th;
462 	u_int gen;
463 
464 	TC_COUNT(ngetbintime);
465 	do {
466 		th = timehands;
467 		gen = th->th_generation;
468 		*bt = th->th_offset;
469 	} while (gen == 0 || gen != th->th_generation);
470 	bintime_add(bt, &timebasebin);
471 }
472 
473 static inline void
474 dogetnanotime(struct timespec *tsp)
475 {
476 	struct timehands *th;
477 	u_int gen;
478 
479 	TC_COUNT(ngetnanotime);
480 	do {
481 		th = timehands;
482 		gen = th->th_generation;
483 		*tsp = th->th_nanotime;
484 	} while (gen == 0 || gen != th->th_generation);
485 }
486 
487 void
488 getnanotime(struct timespec *tsp)
489 {
490 
491 	dogetnanotime(tsp);
492 }
493 
494 void dtrace_getnanotime(struct timespec *tsp);
495 
496 void
497 dtrace_getnanotime(struct timespec *tsp)
498 {
499 
500 	dogetnanotime(tsp);
501 }
502 
503 void
504 getmicrotime(struct timeval *tvp)
505 {
506 	struct timehands *th;
507 	u_int gen;
508 
509 	TC_COUNT(ngetmicrotime);
510 	do {
511 		th = timehands;
512 		gen = th->th_generation;
513 		*tvp = th->th_microtime;
514 	} while (gen == 0 || gen != th->th_generation);
515 }
516 
517 void
518 getnanoboottime(struct timespec *tsp)
519 {
520 	struct bintime bt;
521 
522 	getbinboottime(&bt);
523 	bintime2timespec(&bt, tsp);
524 }
525 
526 void
527 getmicroboottime(struct timeval *tvp)
528 {
529 	struct bintime bt;
530 
531 	getbinboottime(&bt);
532 	bintime2timeval(&bt, tvp);
533 }
534 
535 void
536 getbinboottime(struct bintime *bt)
537 {
538 
539 	/*
540 	 * XXX Need lockless read synchronization around timebasebin
541 	 * (and not just here).
542 	 */
543 	*bt = timebasebin;
544 }
545 
546 /*
547  * Initialize a new timecounter and possibly use it.
548  */
549 void
550 tc_init(struct timecounter *tc)
551 {
552 	u_int u;
553 
554 	u = tc->tc_frequency / tc->tc_counter_mask;
555 	/* XXX: We need some margin here, 10% is a guess */
556 	u *= 11;
557 	u /= 10;
558 	if (u > hz && tc->tc_quality >= 0) {
559 		tc->tc_quality = -2000;
560 		aprint_verbose(
561 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
562 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
563 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
564 	} else if (tc->tc_quality >= 0 || bootverbose) {
565 		aprint_verbose(
566 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
567 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
568 		    tc->tc_quality);
569 	}
570 
571 	mutex_spin_enter(&timecounter_lock);
572 	tc->tc_next = timecounters;
573 	timecounters = tc;
574 	timecounter_mods++;
575 	/*
576 	 * Never automatically use a timecounter with negative quality.
577 	 * Even though we run on the dummy counter, switching here may be
578 	 * worse since this timecounter may not be monotonous.
579 	 */
580 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
581 	    (tc->tc_quality == timecounter->tc_quality &&
582 	    tc->tc_frequency > timecounter->tc_frequency))) {
583 		(void)tc->tc_get_timecount(tc);
584 		(void)tc->tc_get_timecount(tc);
585 		timecounter = tc;
586 		tc_windup();
587 	}
588 	mutex_spin_exit(&timecounter_lock);
589 }
590 
591 /*
592  * Pick a new timecounter due to the existing counter going bad.
593  */
594 static void
595 tc_pick(void)
596 {
597 	struct timecounter *best, *tc;
598 
599 	KASSERT(mutex_owned(&timecounter_lock));
600 
601 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
602 		if (tc->tc_quality > best->tc_quality)
603 			best = tc;
604 		else if (tc->tc_quality < best->tc_quality)
605 			continue;
606 		else if (tc->tc_frequency > best->tc_frequency)
607 			best = tc;
608 	}
609 	(void)best->tc_get_timecount(best);
610 	(void)best->tc_get_timecount(best);
611 	timecounter = best;
612 }
613 
614 /*
615  * A timecounter has gone bad, arrange to pick a new one at the next
616  * clock tick.
617  */
618 void
619 tc_gonebad(struct timecounter *tc)
620 {
621 
622 	tc->tc_quality = -100;
623 	membar_producer();
624 	atomic_inc_uint(&timecounter_bad);
625 }
626 
627 /*
628  * Stop using a timecounter and remove it from the timecounters list.
629  */
630 int
631 tc_detach(struct timecounter *target)
632 {
633 	struct timecounter *tc;
634 	struct timecounter **tcp = NULL;
635 	int removals;
636 	lwp_t *l;
637 
638 	/* First, find the timecounter. */
639 	mutex_spin_enter(&timecounter_lock);
640 	for (tcp = &timecounters, tc = timecounters;
641 	     tc != NULL;
642 	     tcp = &tc->tc_next, tc = tc->tc_next) {
643 		if (tc == target)
644 			break;
645 	}
646 	if (tc == NULL) {
647 		mutex_spin_exit(&timecounter_lock);
648 		return ESRCH;
649 	}
650 
651 	/* And now, remove it. */
652 	*tcp = tc->tc_next;
653 	if (timecounter == target) {
654 		tc_pick();
655 		tc_windup();
656 	}
657 	timecounter_mods++;
658 	removals = timecounter_removals++;
659 	mutex_spin_exit(&timecounter_lock);
660 
661 	/*
662 	 * We now have to determine if any threads in the system are still
663 	 * making use of this timecounter.
664 	 *
665 	 * We issue a broadcast cross call to elide memory ordering issues,
666 	 * then scan all LWPs in the system looking at each's timecounter
667 	 * generation number.  We need to see a value of zero (not actively
668 	 * using a timecounter) or a value greater than our removal value.
669 	 *
670 	 * We may race with threads that read `timecounter_removals' and
671 	 * and then get preempted before updating `l_tcgen'.  This is not
672 	 * a problem, since it means that these threads have not yet started
673 	 * accessing timecounter state.  All we do need is one clean
674 	 * snapshot of the system where every thread appears not to be using
675 	 * old timecounter state.
676 	 */
677 	for (;;) {
678 		xc_barrier(0);
679 
680 		mutex_enter(&proc_lock);
681 		LIST_FOREACH(l, &alllwp, l_list) {
682 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
683 				/*
684 				 * Not using timecounter or old timecounter
685 				 * state at time of our xcall or later.
686 				 */
687 				continue;
688 			}
689 			break;
690 		}
691 		mutex_exit(&proc_lock);
692 
693 		/*
694 		 * If the timecounter is still in use, wait at least 10ms
695 		 * before retrying.
696 		 */
697 		if (l == NULL) {
698 			return 0;
699 		}
700 		(void)kpause("tcdetach", false, mstohz(10), NULL);
701 	}
702 }
703 
704 /* Report the frequency of the current timecounter. */
705 uint64_t
706 tc_getfrequency(void)
707 {
708 
709 	return timehands->th_counter->tc_frequency;
710 }
711 
712 /*
713  * Step our concept of UTC.  This is done by modifying our estimate of
714  * when we booted.
715  */
716 void
717 tc_setclock(const struct timespec *ts)
718 {
719 	struct timespec ts2;
720 	struct bintime bt, bt2;
721 
722 	mutex_spin_enter(&timecounter_lock);
723 	TC_COUNT(nsetclock);
724 	binuptime(&bt2);
725 	timespec2bintime(ts, &bt);
726 	bintime_sub(&bt, &bt2);
727 	bintime_add(&bt2, &timebasebin);
728 	timebasebin = bt;
729 	tc_windup();
730 	mutex_spin_exit(&timecounter_lock);
731 
732 	if (timestepwarnings) {
733 		bintime2timespec(&bt2, &ts2);
734 		log(LOG_INFO,
735 		    "Time stepped from %lld.%09ld to %lld.%09ld\n",
736 		    (long long)ts2.tv_sec, ts2.tv_nsec,
737 		    (long long)ts->tv_sec, ts->tv_nsec);
738 	}
739 }
740 
741 /*
742  * Initialize the next struct timehands in the ring and make
743  * it the active timehands.  Along the way we might switch to a different
744  * timecounter and/or do seconds processing in NTP.  Slightly magic.
745  */
746 static void
747 tc_windup(void)
748 {
749 	struct bintime bt;
750 	struct timehands *th, *tho;
751 	uint64_t scale;
752 	u_int delta, ncount, ogen;
753 	int i, s_update;
754 	time_t t;
755 
756 	KASSERT(mutex_owned(&timecounter_lock));
757 
758 	s_update = 0;
759 
760 	/*
761 	 * Make the next timehands a copy of the current one, but do not
762 	 * overwrite the generation or next pointer.  While we update
763 	 * the contents, the generation must be zero.  Ensure global
764 	 * visibility of the generation before proceeding.
765 	 */
766 	tho = timehands;
767 	th = tho->th_next;
768 	ogen = th->th_generation;
769 	th->th_generation = 0;
770 	membar_producer();
771 	bcopy(tho, th, offsetof(struct timehands, th_generation));
772 
773 	/*
774 	 * Capture a timecounter delta on the current timecounter and if
775 	 * changing timecounters, a counter value from the new timecounter.
776 	 * Update the offset fields accordingly.
777 	 */
778 	delta = tc_delta(th);
779 	if (th->th_counter != timecounter)
780 		ncount = timecounter->tc_get_timecount(timecounter);
781 	else
782 		ncount = 0;
783 	th->th_offset_count += delta;
784 	bintime_addx(&th->th_offset, th->th_scale * delta);
785 
786 	/*
787 	 * Hardware latching timecounters may not generate interrupts on
788 	 * PPS events, so instead we poll them.  There is a finite risk that
789 	 * the hardware might capture a count which is later than the one we
790 	 * got above, and therefore possibly in the next NTP second which might
791 	 * have a different rate than the current NTP second.  It doesn't
792 	 * matter in practice.
793 	 */
794 	if (tho->th_counter->tc_poll_pps)
795 		tho->th_counter->tc_poll_pps(tho->th_counter);
796 
797 	/*
798 	 * Deal with NTP second processing.  The for loop normally
799 	 * iterates at most once, but in extreme situations it might
800 	 * keep NTP sane if timeouts are not run for several seconds.
801 	 * At boot, the time step can be large when the TOD hardware
802 	 * has been read, so on really large steps, we call
803 	 * ntp_update_second only twice.  We need to call it twice in
804 	 * case we missed a leap second.
805 	 * If NTP is not compiled in ntp_update_second still calculates
806 	 * the adjustment resulting from adjtime() calls.
807 	 */
808 	bt = th->th_offset;
809 	bintime_add(&bt, &timebasebin);
810 	i = bt.sec - tho->th_microtime.tv_sec;
811 	if (i > LARGE_STEP)
812 		i = 2;
813 	for (; i > 0; i--) {
814 		t = bt.sec;
815 		ntp_update_second(&th->th_adjustment, &bt.sec);
816 		s_update = 1;
817 		if (bt.sec != t)
818 			timebasebin.sec += bt.sec - t;
819 	}
820 
821 	/* Update the UTC timestamps used by the get*() functions. */
822 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
823 	bintime2timeval(&bt, &th->th_microtime);
824 	bintime2timespec(&bt, &th->th_nanotime);
825 	/* Now is a good time to change timecounters. */
826 	if (th->th_counter != timecounter) {
827 		th->th_counter = timecounter;
828 		th->th_offset_count = ncount;
829 		s_update = 1;
830 	}
831 
832 	/*-
833 	 * Recalculate the scaling factor.  We want the number of 1/2^64
834 	 * fractions of a second per period of the hardware counter, taking
835 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
836 	 * processing provides us with.
837 	 *
838 	 * The th_adjustment is nanoseconds per second with 32 bit binary
839 	 * fraction and we want 64 bit binary fraction of second:
840 	 *
841 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
842 	 *
843 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
844 	 * we can only multiply by about 850 without overflowing, but that
845 	 * leaves suitably precise fractions for multiply before divide.
846 	 *
847 	 * Divide before multiply with a fraction of 2199/512 results in a
848 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
849 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
850  	 *
851 	 * We happily sacrifice the lowest of the 64 bits of our result
852 	 * to the goddess of code clarity.
853 	 *
854 	 */
855 	if (s_update) {
856 		scale = (uint64_t)1 << 63;
857 		scale += (th->th_adjustment / 1024) * 2199;
858 		scale /= th->th_counter->tc_frequency;
859 		th->th_scale = scale * 2;
860 	}
861 	/*
862 	 * Now that the struct timehands is again consistent, set the new
863 	 * generation number, making sure to not make it zero.  Ensure
864 	 * changes are globally visible before changing.
865 	 */
866 	if (++ogen == 0)
867 		ogen = 1;
868 	membar_producer();
869 	th->th_generation = ogen;
870 
871 	/*
872 	 * Go live with the new struct timehands.  Ensure changes are
873 	 * globally visible before changing.
874 	 */
875 	time_second = th->th_microtime.tv_sec;
876 	time_uptime = th->th_offset.sec;
877 	membar_producer();
878 	timehands = th;
879 
880 	/*
881 	 * Force users of the old timehand to move on.  This is
882 	 * necessary for MP systems; we need to ensure that the
883 	 * consumers will move away from the old timehand before
884 	 * we begin updating it again when we eventually wrap
885 	 * around.
886 	 */
887 	if (++tho->th_generation == 0)
888 		tho->th_generation = 1;
889 }
890 
891 /*
892  * RFC 2783 PPS-API implementation.
893  */
894 
895 int
896 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
897 {
898 	pps_params_t *app;
899 	pps_info_t *pipi;
900 #ifdef PPS_SYNC
901 	int *epi;
902 #endif
903 
904 	KASSERT(mutex_owned(&timecounter_lock));
905 
906 	KASSERT(pps != NULL);
907 
908 	switch (cmd) {
909 	case PPS_IOC_CREATE:
910 		return 0;
911 	case PPS_IOC_DESTROY:
912 		return 0;
913 	case PPS_IOC_SETPARAMS:
914 		app = (pps_params_t *)data;
915 		if (app->mode & ~pps->ppscap)
916 			return EINVAL;
917 		pps->ppsparam = *app;
918 		return 0;
919 	case PPS_IOC_GETPARAMS:
920 		app = (pps_params_t *)data;
921 		*app = pps->ppsparam;
922 		app->api_version = PPS_API_VERS_1;
923 		return 0;
924 	case PPS_IOC_GETCAP:
925 		*(int*)data = pps->ppscap;
926 		return 0;
927 	case PPS_IOC_FETCH:
928 		pipi = (pps_info_t *)data;
929 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
930 		*pipi = pps->ppsinfo;
931 		return 0;
932 	case PPS_IOC_KCBIND:
933 #ifdef PPS_SYNC
934 		epi = (int *)data;
935 		/* XXX Only root should be able to do this */
936 		if (*epi & ~pps->ppscap)
937 			return EINVAL;
938 		pps->kcmode = *epi;
939 		return 0;
940 #else
941 		return EOPNOTSUPP;
942 #endif
943 	default:
944 		return EPASSTHROUGH;
945 	}
946 }
947 
948 void
949 pps_init(struct pps_state *pps)
950 {
951 
952 	KASSERT(mutex_owned(&timecounter_lock));
953 
954 	pps->ppscap |= PPS_TSFMT_TSPEC;
955 	if (pps->ppscap & PPS_CAPTUREASSERT)
956 		pps->ppscap |= PPS_OFFSETASSERT;
957 	if (pps->ppscap & PPS_CAPTURECLEAR)
958 		pps->ppscap |= PPS_OFFSETCLEAR;
959 }
960 
961 /*
962  * capture a timetamp in the pps structure
963  */
964 void
965 pps_capture(struct pps_state *pps)
966 {
967 	struct timehands *th;
968 
969 	KASSERT(mutex_owned(&timecounter_lock));
970 	KASSERT(pps != NULL);
971 
972 	th = timehands;
973 	pps->capgen = th->th_generation;
974 	pps->capth = th;
975 	pps->capcount = (uint64_t)tc_delta(th) + th->th_offset_count;
976 	if (pps->capgen != th->th_generation)
977 		pps->capgen = 0;
978 }
979 
980 #ifdef PPS_DEBUG
981 int ppsdebug = 0;
982 #endif
983 
984 /*
985  * process a pps_capture()ed event
986  */
987 void
988 pps_event(struct pps_state *pps, int event)
989 {
990 	pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
991 }
992 
993 /*
994  * extended pps api /  kernel pll/fll entry point
995  *
996  * feed reference time stamps to PPS engine
997  *
998  * will simulate a PPS event and feed
999  * the NTP PLL/FLL if requested.
1000  *
1001  * the ref time stamps should be roughly once
1002  * a second but do not need to be exactly in phase
1003  * with the UTC second but should be close to it.
1004  * this relaxation of requirements allows callout
1005  * driven timestamping mechanisms to feed to pps
1006  * capture/kernel pll logic.
1007  *
1008  * calling pattern is:
1009  *  pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
1010  *  read timestamp from reference source
1011  *  pps_ref_event()
1012  *
1013  * supported refmodes:
1014  *  PPS_REFEVNT_CAPTURE
1015  *    use system timestamp of pps_capture()
1016  *  PPS_REFEVNT_CURRENT
1017  *    use system timestamp of this call
1018  *  PPS_REFEVNT_CAPCUR
1019  *    use average of read capture and current system time stamp
1020  *  PPS_REFEVNT_PPS
1021  *    assume timestamp on second mark - ref_ts is ignored
1022  *
1023  */
1024 
1025 void
1026 pps_ref_event(struct pps_state *pps,
1027 	      int event,
1028 	      struct bintime *ref_ts,
1029 	      int refmode
1030 	)
1031 {
1032 	struct bintime bt;	/* current time */
1033 	struct bintime btd;	/* time difference */
1034 	struct bintime bt_ref;	/* reference time */
1035 	struct timespec ts, *tsp, *osp;
1036 	struct timehands *th;
1037 	uint64_t tcount, acount, dcount, *pcount;
1038 	int foff, gen;
1039 #ifdef PPS_SYNC
1040 	int fhard;
1041 #endif
1042 	pps_seq_t *pseq;
1043 
1044 	KASSERT(mutex_owned(&timecounter_lock));
1045 
1046 	KASSERT(pps != NULL);
1047 
1048         /* pick up current time stamp if needed */
1049 	if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
1050 		/* pick up current time stamp */
1051 		th = timehands;
1052 		gen = th->th_generation;
1053 		tcount = (uint64_t)tc_delta(th) + th->th_offset_count;
1054 		if (gen != th->th_generation)
1055 			gen = 0;
1056 
1057 		/* If the timecounter was wound up underneath us, bail out. */
1058 		if (pps->capgen == 0 ||
1059 		    pps->capgen != pps->capth->th_generation ||
1060 		    gen == 0 ||
1061 		    gen != pps->capgen) {
1062 #ifdef PPS_DEBUG
1063 			if (ppsdebug & 0x1) {
1064 				log(LOG_DEBUG,
1065 				    "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
1066 				    pps, event);
1067 			}
1068 #endif
1069 			return;
1070 		}
1071 	} else {
1072 		tcount = 0;	/* keep GCC happy */
1073 	}
1074 
1075 #ifdef PPS_DEBUG
1076 	if (ppsdebug & 0x1) {
1077 		struct timespec tmsp;
1078 
1079 		if (ref_ts == NULL) {
1080 			tmsp.tv_sec = 0;
1081 			tmsp.tv_nsec = 0;
1082 		} else {
1083 			bintime2timespec(ref_ts, &tmsp);
1084 		}
1085 
1086 		log(LOG_DEBUG,
1087 		    "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
1088 		    ".%09"PRIi32", refmode=0x%1x)\n",
1089 		    pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
1090 	}
1091 #endif
1092 
1093 	/* setup correct event references */
1094 	if (event == PPS_CAPTUREASSERT) {
1095 		tsp = &pps->ppsinfo.assert_timestamp;
1096 		osp = &pps->ppsparam.assert_offset;
1097 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1098 #ifdef PPS_SYNC
1099 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1100 #endif
1101 		pcount = &pps->ppscount[0];
1102 		pseq = &pps->ppsinfo.assert_sequence;
1103 	} else {
1104 		tsp = &pps->ppsinfo.clear_timestamp;
1105 		osp = &pps->ppsparam.clear_offset;
1106 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1107 #ifdef PPS_SYNC
1108 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1109 #endif
1110 		pcount = &pps->ppscount[1];
1111 		pseq = &pps->ppsinfo.clear_sequence;
1112 	}
1113 
1114 	/* determine system time stamp according to refmode */
1115 	dcount = 0;		/* keep GCC happy */
1116 	switch (refmode & PPS_REFEVNT_RMASK) {
1117 	case PPS_REFEVNT_CAPTURE:
1118 		acount = pps->capcount;	/* use capture timestamp */
1119 		break;
1120 
1121 	case PPS_REFEVNT_CURRENT:
1122 		acount = tcount; /* use current timestamp */
1123 		break;
1124 
1125 	case PPS_REFEVNT_CAPCUR:
1126 		/*
1127 		 * calculate counter value between pps_capture() and
1128 		 * pps_ref_event()
1129 		 */
1130 		dcount = tcount - pps->capcount;
1131 		acount = (dcount / 2) + pps->capcount;
1132 		break;
1133 
1134 	default:		/* ignore call error silently */
1135 		return;
1136 	}
1137 
1138 	/*
1139 	 * If the timecounter changed, we cannot compare the count values, so
1140 	 * we have to drop the rest of the PPS-stuff until the next event.
1141 	 */
1142 	if (pps->ppstc != pps->capth->th_counter) {
1143 		pps->ppstc = pps->capth->th_counter;
1144 		pps->capcount = acount;
1145 		*pcount = acount;
1146 		pps->ppscount[2] = acount;
1147 #ifdef PPS_DEBUG
1148 		if (ppsdebug & 0x1) {
1149 			log(LOG_DEBUG,
1150 			    "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
1151 			    pps, event);
1152 		}
1153 #endif
1154 		return;
1155 	}
1156 
1157 	pps->capcount = acount;
1158 
1159 	/* Convert the count to a bintime. */
1160 	bt = pps->capth->th_offset;
1161 	bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
1162 	bintime_add(&bt, &timebasebin);
1163 
1164 	if ((refmode & PPS_REFEVNT_PPS) == 0) {
1165 		/* determine difference to reference time stamp */
1166 		bt_ref = *ref_ts;
1167 
1168 		btd = bt;
1169 		bintime_sub(&btd, &bt_ref);
1170 
1171 		/*
1172 		 * simulate a PPS timestamp by dropping the fraction
1173 		 * and applying the offset
1174 		 */
1175 		if (bt.frac >= (uint64_t)1<<63)	/* skip to nearest second */
1176 			bt.sec++;
1177 		bt.frac = 0;
1178 		bintime_add(&bt, &btd);
1179 	} else {
1180 		/*
1181 		 * create ref_ts from current time -
1182 		 * we are supposed to be called on
1183 		 * the second mark
1184 		 */
1185 		bt_ref = bt;
1186 		if (bt_ref.frac >= (uint64_t)1<<63)	/* skip to nearest second */
1187 			bt_ref.sec++;
1188 		bt_ref.frac = 0;
1189 	}
1190 
1191 	/* convert bintime to timestamp */
1192 	bintime2timespec(&bt, &ts);
1193 
1194 	/* If the timecounter was wound up underneath us, bail out. */
1195 	if (pps->capgen != pps->capth->th_generation)
1196 		return;
1197 
1198 	/* store time stamp */
1199 	*pcount = pps->capcount;
1200 	(*pseq)++;
1201 	*tsp = ts;
1202 
1203 	/* add offset correction */
1204 	if (foff) {
1205 		timespecadd(tsp, osp, tsp);
1206 		if (tsp->tv_nsec < 0) {
1207 			tsp->tv_nsec += 1000000000;
1208 			tsp->tv_sec -= 1;
1209 		}
1210 	}
1211 
1212 #ifdef PPS_DEBUG
1213 	if (ppsdebug & 0x2) {
1214 		struct timespec ts2;
1215 		struct timespec ts3;
1216 
1217 		bintime2timespec(&bt_ref, &ts2);
1218 
1219 		bt.sec = 0;
1220 		bt.frac = 0;
1221 
1222 		if (refmode & PPS_REFEVNT_CAPCUR) {
1223 			    bintime_addx(&bt, pps->capth->th_scale * dcount);
1224 		}
1225 		bintime2timespec(&bt, &ts3);
1226 
1227 		log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
1228 		    ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
1229 		    ts2.tv_sec, (int32_t)ts2.tv_nsec,
1230 		    tsp->tv_sec, (int32_t)tsp->tv_nsec,
1231 		    timespec2ns(&ts3));
1232 	}
1233 #endif
1234 
1235 #ifdef PPS_SYNC
1236 	if (fhard) {
1237 		uint64_t scale;
1238 		uint64_t div;
1239 
1240 		/*
1241 		 * Feed the NTP PLL/FLL.
1242 		 * The FLL wants to know how many (hardware) nanoseconds
1243 		 * elapsed since the previous event (mod 1 second) thus
1244 		 * we are actually looking at the frequency difference scaled
1245 		 * in nsec.
1246 		 * As the counter time stamps are not truly at 1Hz
1247 		 * we need to scale the count by the elapsed
1248 		 * reference time.
1249 		 * valid sampling interval: [0.5..2[ sec
1250 		 */
1251 
1252 		/* calculate elapsed raw count */
1253 		tcount = pps->capcount - pps->ppscount[2];
1254 		pps->ppscount[2] = pps->capcount;
1255 		tcount &= pps->capth->th_counter->tc_counter_mask;
1256 
1257 		/* calculate elapsed ref time */
1258 		btd = bt_ref;
1259 		bintime_sub(&btd, &pps->ref_time);
1260 		pps->ref_time = bt_ref;
1261 
1262 		/* check that we stay below 2 sec */
1263 		if (btd.sec < 0 || btd.sec > 1)
1264 			return;
1265 
1266 		/* we want at least 0.5 sec between samples */
1267 		if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
1268 			return;
1269 
1270 		/*
1271 		 * calculate cycles per period by multiplying
1272 		 * the frequency with the elapsed period
1273 		 * we pick a fraction of 30 bits
1274 		 * ~1ns resolution for elapsed time
1275 		 */
1276 		div   = (uint64_t)btd.sec << 30;
1277 		div  |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
1278 		div  *= pps->capth->th_counter->tc_frequency;
1279 		div >>= 30;
1280 
1281 		if (div == 0)	/* safeguard */
1282 			return;
1283 
1284 		scale = (uint64_t)1 << 63;
1285 		scale /= div;
1286 		scale *= 2;
1287 
1288 		bt.sec = 0;
1289 		bt.frac = 0;
1290 		bintime_addx(&bt, scale * tcount);
1291 		bintime2timespec(&bt, &ts);
1292 
1293 #ifdef PPS_DEBUG
1294 		if (ppsdebug & 0x4) {
1295 			struct timespec ts2;
1296 			int64_t df;
1297 
1298 			bintime2timespec(&bt_ref, &ts2);
1299 			df = timespec2ns(&ts);
1300 			if (df > 500000000)
1301 				df -= 1000000000;
1302 			log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
1303 			    ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
1304 			    ", freqdiff=%"PRIi64" ns/s\n",
1305 			    ts2.tv_sec, (int32_t)ts2.tv_nsec,
1306 			    tsp->tv_sec, (int32_t)tsp->tv_nsec,
1307 			    df);
1308 		}
1309 #endif
1310 
1311 		hardpps(tsp, timespec2ns(&ts));
1312 	}
1313 #endif
1314 }
1315 
1316 /*
1317  * Timecounters need to be updated every so often to prevent the hardware
1318  * counter from overflowing.  Updating also recalculates the cached values
1319  * used by the get*() family of functions, so their precision depends on
1320  * the update frequency.
1321  */
1322 
1323 static int tc_tick;
1324 
1325 void
1326 tc_ticktock(void)
1327 {
1328 	static int count;
1329 
1330 	if (++count < tc_tick)
1331 		return;
1332 	count = 0;
1333 	mutex_spin_enter(&timecounter_lock);
1334 	if (__predict_false(timecounter_bad != 0)) {
1335 		/* An existing timecounter has gone bad, pick a new one. */
1336 		(void)atomic_swap_uint(&timecounter_bad, 0);
1337 		if (timecounter->tc_quality < 0) {
1338 			tc_pick();
1339 		}
1340 	}
1341 	tc_windup();
1342 	mutex_spin_exit(&timecounter_lock);
1343 }
1344 
1345 void
1346 inittimecounter(void)
1347 {
1348 	u_int p;
1349 
1350 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
1351 
1352 	/*
1353 	 * Set the initial timeout to
1354 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1355 	 * People should probably not use the sysctl to set the timeout
1356 	 * to smaller than its initial value, since that value is the
1357 	 * smallest reasonable one.  If they want better timestamps they
1358 	 * should use the non-"get"* functions.
1359 	 */
1360 	if (hz > 1000)
1361 		tc_tick = (hz + 500) / 1000;
1362 	else
1363 		tc_tick = 1;
1364 	p = (tc_tick * 1000000) / hz;
1365 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
1366 	    p / 1000, p % 1000);
1367 
1368 	/* warm up new timecounter (again) and get rolling. */
1369 	(void)timecounter->tc_get_timecount(timecounter);
1370 	(void)timecounter->tc_get_timecount(timecounter);
1371 }
1372