xref: /netbsd-src/sys/kern/kern_tc.c (revision 0df165c04d0a9ca1adde9ed2b890344c937954a6)
1 /* $NetBSD: kern_tc.c,v 1.26 2007/11/23 16:03:48 elad Exp $ */
2 
3 /*-
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ---------------------------------------------------------------------------
10  */
11 
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.26 2007/11/23 16:03:48 elad Exp $");
15 
16 #include "opt_ntp.h"
17 
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER	/* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28 #include <sys/evcnt.h>
29 #include <sys/kauth.h>
30 #include <sys/mutex.h>
31 
32 /*
33  * A large step happens on boot.  This constant detects such steps.
34  * It is relatively small so that ntp_update_second gets called enough
35  * in the typical 'missed a couple of seconds' case, but doesn't loop
36  * forever when the time step is large.
37  */
38 #define LARGE_STEP	200
39 
40 /*
41  * Implement a dummy timecounter which we can use until we get a real one
42  * in the air.  This allows the console and other early stuff to use
43  * time services.
44  */
45 
46 static u_int
47 dummy_get_timecount(struct timecounter *tc)
48 {
49 	static u_int now;
50 
51 	return (++now);
52 }
53 
54 static struct timecounter dummy_timecounter = {
55 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
56 };
57 
58 struct timehands {
59 	/* These fields must be initialized by the driver. */
60 	struct timecounter	*th_counter;
61 	int64_t			th_adjustment;
62 	u_int64_t		th_scale;
63 	u_int	 		th_offset_count;
64 	struct bintime		th_offset;
65 	struct timeval		th_microtime;
66 	struct timespec		th_nanotime;
67 	/* Fields not to be copied in tc_windup start with th_generation. */
68 	volatile u_int		th_generation;
69 	struct timehands	*th_next;
70 };
71 
72 static struct timehands th0;
73 static struct timehands th9 = { .th_next = &th0, };
74 static struct timehands th8 = { .th_next = &th9, };
75 static struct timehands th7 = { .th_next = &th8, };
76 static struct timehands th6 = { .th_next = &th7, };
77 static struct timehands th5 = { .th_next = &th6, };
78 static struct timehands th4 = { .th_next = &th5, };
79 static struct timehands th3 = { .th_next = &th4, };
80 static struct timehands th2 = { .th_next = &th3, };
81 static struct timehands th1 = { .th_next = &th2, };
82 static struct timehands th0 = {
83 	.th_counter = &dummy_timecounter,
84 	.th_scale = (uint64_t)-1 / 1000000,
85 	.th_offset = { .sec = 1, .frac = 0 },
86 	.th_generation = 1,
87 	.th_next = &th1,
88 };
89 
90 static struct timehands *volatile timehands = &th0;
91 struct timecounter *timecounter = &dummy_timecounter;
92 static struct timecounter *timecounters = &dummy_timecounter;
93 
94 time_t time_second = 1;
95 time_t time_uptime = 1;
96 
97 static struct bintime timebasebin;
98 
99 static int timestepwarnings;
100 
101 extern kmutex_t time_lock;
102 
103 #ifdef __FreeBSD__
104 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
105     &timestepwarnings, 0, "");
106 #endif /* __FreeBSD__ */
107 
108 /*
109  * sysctl helper routine for kern.timercounter.current
110  */
111 static int
112 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
113 {
114 	struct sysctlnode node;
115 	int error;
116 	char newname[MAX_TCNAMELEN];
117 	struct timecounter *newtc, *tc;
118 
119 	tc = timecounter;
120 
121 	strlcpy(newname, tc->tc_name, sizeof(newname));
122 
123 	node = *rnode;
124 	node.sysctl_data = newname;
125 	node.sysctl_size = sizeof(newname);
126 
127 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
128 
129 	if (error ||
130 	    newp == NULL ||
131 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
132 		return error;
133 
134 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
135 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
136 	    NULL, NULL)) != 0)
137 		return (error);
138 
139 	if (!cold)
140 		mutex_enter(&time_lock);
141 	error = EINVAL;
142 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
143 		if (strcmp(newname, newtc->tc_name) != 0)
144 			continue;
145 		/* Warm up new timecounter. */
146 		(void)newtc->tc_get_timecount(newtc);
147 		(void)newtc->tc_get_timecount(newtc);
148 		timecounter = newtc;
149 		error = 0;
150 		break;
151 	}
152 	if (!cold)
153 		mutex_exit(&time_lock);
154 	return error;
155 }
156 
157 static int
158 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
159 {
160 	char buf[MAX_TCNAMELEN+48];
161 	char *where = oldp;
162 	const char *spc;
163 	struct timecounter *tc;
164 	size_t needed, left, slen;
165 	int error;
166 
167 	if (newp != NULL)
168 		return (EPERM);
169 	if (namelen != 0)
170 		return (EINVAL);
171 
172 	spc = "";
173 	error = 0;
174 	needed = 0;
175 	left = *oldlenp;
176 
177 	mutex_enter(&time_lock);
178 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
179 		if (where == NULL) {
180 			needed += sizeof(buf);  /* be conservative */
181 		} else {
182 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
183 					" Hz)", spc, tc->tc_name, tc->tc_quality,
184 					tc->tc_frequency);
185 			if (left < slen + 1)
186 				break;
187 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
188 			/* XXX copyout with held lock. */
189 			error = copyout(buf, where, slen + 1);
190 			spc = " ";
191 			where += slen;
192 			needed += slen;
193 			left -= slen;
194 		}
195 	}
196 	mutex_exit(&time_lock);
197 
198 	*oldlenp = needed;
199 	return (error);
200 }
201 
202 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
203 {
204 	const struct sysctlnode *node;
205 
206 	sysctl_createv(clog, 0, NULL, &node,
207 		       CTLFLAG_PERMANENT,
208 		       CTLTYPE_NODE, "timecounter",
209 		       SYSCTL_DESCR("time counter information"),
210 		       NULL, 0, NULL, 0,
211 		       CTL_KERN, CTL_CREATE, CTL_EOL);
212 
213 	if (node != NULL) {
214 		sysctl_createv(clog, 0, NULL, NULL,
215 			       CTLFLAG_PERMANENT,
216 			       CTLTYPE_STRING, "choice",
217 			       SYSCTL_DESCR("available counters"),
218 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
219 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
220 
221 		sysctl_createv(clog, 0, NULL, NULL,
222 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
223 			       CTLTYPE_STRING, "hardware",
224 			       SYSCTL_DESCR("currently active time counter"),
225 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
226 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
227 
228 		sysctl_createv(clog, 0, NULL, NULL,
229 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
230 			       CTLTYPE_INT, "timestepwarnings",
231 			       SYSCTL_DESCR("log time steps"),
232 			       NULL, 0, &timestepwarnings, 0,
233 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
234 	}
235 }
236 
237 #define	TC_STATS(name)							\
238 static struct evcnt n##name =						\
239     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
240 EVCNT_ATTACH_STATIC(n##name)
241 
242 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
243 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
244 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
245 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
246 TC_STATS(setclock);
247 
248 #undef TC_STATS
249 
250 static void tc_windup(void);
251 
252 /*
253  * Return the difference between the timehands' counter value now and what
254  * was when we copied it to the timehands' offset_count.
255  */
256 static __inline u_int
257 tc_delta(struct timehands *th)
258 {
259 	struct timecounter *tc;
260 
261 	tc = th->th_counter;
262 	return ((tc->tc_get_timecount(tc) -
263 		 th->th_offset_count) & tc->tc_counter_mask);
264 }
265 
266 /*
267  * Functions for reading the time.  We have to loop until we are sure that
268  * the timehands that we operated on was not updated under our feet.  See
269  * the comment in <sys/timevar.h> for a description of these 12 functions.
270  */
271 
272 void
273 binuptime(struct bintime *bt)
274 {
275 	struct timehands *th;
276 	u_int gen;
277 
278 	nbinuptime.ev_count++;
279 	do {
280 		th = timehands;
281 		gen = th->th_generation;
282 		*bt = th->th_offset;
283 		bintime_addx(bt, th->th_scale * tc_delta(th));
284 	} while (gen == 0 || gen != th->th_generation);
285 }
286 
287 void
288 nanouptime(struct timespec *tsp)
289 {
290 	struct bintime bt;
291 
292 	nnanouptime.ev_count++;
293 	binuptime(&bt);
294 	bintime2timespec(&bt, tsp);
295 }
296 
297 void
298 microuptime(struct timeval *tvp)
299 {
300 	struct bintime bt;
301 
302 	nmicrouptime.ev_count++;
303 	binuptime(&bt);
304 	bintime2timeval(&bt, tvp);
305 }
306 
307 void
308 bintime(struct bintime *bt)
309 {
310 
311 	nbintime.ev_count++;
312 	binuptime(bt);
313 	bintime_add(bt, &timebasebin);
314 }
315 
316 void
317 nanotime(struct timespec *tsp)
318 {
319 	struct bintime bt;
320 
321 	nnanotime.ev_count++;
322 	bintime(&bt);
323 	bintime2timespec(&bt, tsp);
324 }
325 
326 void
327 microtime(struct timeval *tvp)
328 {
329 	struct bintime bt;
330 
331 	nmicrotime.ev_count++;
332 	bintime(&bt);
333 	bintime2timeval(&bt, tvp);
334 }
335 
336 void
337 getbinuptime(struct bintime *bt)
338 {
339 	struct timehands *th;
340 	u_int gen;
341 
342 	ngetbinuptime.ev_count++;
343 	do {
344 		th = timehands;
345 		gen = th->th_generation;
346 		*bt = th->th_offset;
347 	} while (gen == 0 || gen != th->th_generation);
348 }
349 
350 void
351 getnanouptime(struct timespec *tsp)
352 {
353 	struct timehands *th;
354 	u_int gen;
355 
356 	ngetnanouptime.ev_count++;
357 	do {
358 		th = timehands;
359 		gen = th->th_generation;
360 		bintime2timespec(&th->th_offset, tsp);
361 	} while (gen == 0 || gen != th->th_generation);
362 }
363 
364 void
365 getmicrouptime(struct timeval *tvp)
366 {
367 	struct timehands *th;
368 	u_int gen;
369 
370 	ngetmicrouptime.ev_count++;
371 	do {
372 		th = timehands;
373 		gen = th->th_generation;
374 		bintime2timeval(&th->th_offset, tvp);
375 	} while (gen == 0 || gen != th->th_generation);
376 }
377 
378 void
379 getbintime(struct bintime *bt)
380 {
381 	struct timehands *th;
382 	u_int gen;
383 
384 	ngetbintime.ev_count++;
385 	do {
386 		th = timehands;
387 		gen = th->th_generation;
388 		*bt = th->th_offset;
389 	} while (gen == 0 || gen != th->th_generation);
390 	bintime_add(bt, &timebasebin);
391 }
392 
393 void
394 getnanotime(struct timespec *tsp)
395 {
396 	struct timehands *th;
397 	u_int gen;
398 
399 	ngetnanotime.ev_count++;
400 	do {
401 		th = timehands;
402 		gen = th->th_generation;
403 		*tsp = th->th_nanotime;
404 	} while (gen == 0 || gen != th->th_generation);
405 }
406 
407 void
408 getmicrotime(struct timeval *tvp)
409 {
410 	struct timehands *th;
411 	u_int gen;
412 
413 	ngetmicrotime.ev_count++;
414 	do {
415 		th = timehands;
416 		gen = th->th_generation;
417 		*tvp = th->th_microtime;
418 	} while (gen == 0 || gen != th->th_generation);
419 }
420 
421 /*
422  * Initialize a new timecounter and possibly use it.
423  */
424 void
425 tc_init(struct timecounter *tc)
426 {
427 	u_int u;
428 	int s;
429 
430 	u = tc->tc_frequency / tc->tc_counter_mask;
431 	/* XXX: We need some margin here, 10% is a guess */
432 	u *= 11;
433 	u /= 10;
434 	if (u > hz && tc->tc_quality >= 0) {
435 		tc->tc_quality = -2000;
436 		aprint_verbose(
437 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
438 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
439 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
440 	} else if (tc->tc_quality >= 0 || bootverbose) {
441 		aprint_verbose(
442 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
443 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
444 		    tc->tc_quality);
445 	}
446 
447 	mutex_enter(&time_lock);
448 	s = splsched();
449 	tc->tc_next = timecounters;
450 	timecounters = tc;
451 	/*
452 	 * Never automatically use a timecounter with negative quality.
453 	 * Even though we run on the dummy counter, switching here may be
454 	 * worse since this timecounter may not be monotonous.
455 	 */
456 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
457 	    (tc->tc_quality == timecounter->tc_quality &&
458 	    tc->tc_frequency > timecounter->tc_frequency))) {
459 		(void)tc->tc_get_timecount(tc);
460 		(void)tc->tc_get_timecount(tc);
461 		timecounter = tc;
462 		tc_windup();
463 	}
464 	splx(s);
465 	mutex_exit(&time_lock);
466 }
467 
468 /* Report the frequency of the current timecounter. */
469 u_int64_t
470 tc_getfrequency(void)
471 {
472 
473 	return (timehands->th_counter->tc_frequency);
474 }
475 
476 /*
477  * Step our concept of UTC.  This is done by modifying our estimate of
478  * when we booted.
479  * XXX: not locked.
480  */
481 void
482 tc_setclock(struct timespec *ts)
483 {
484 	struct timespec ts2;
485 	struct bintime bt, bt2;
486 
487 	nsetclock.ev_count++;
488 	binuptime(&bt2);
489 	timespec2bintime(ts, &bt);
490 	bintime_sub(&bt, &bt2);
491 	bintime_add(&bt2, &timebasebin);
492 	timebasebin = bt;
493 
494 	/* XXX fiddle all the little crinkly bits around the fiords... */
495 	tc_windup();
496 	if (timestepwarnings) {
497 		bintime2timespec(&bt2, &ts2);
498 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
499 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
500 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
501 	}
502 }
503 
504 /*
505  * Initialize the next struct timehands in the ring and make
506  * it the active timehands.  Along the way we might switch to a different
507  * timecounter and/or do seconds processing in NTP.  Slightly magic.
508  */
509 static void
510 tc_windup(void)
511 {
512 	struct bintime bt;
513 	struct timehands *th, *tho;
514 	u_int64_t scale;
515 	u_int delta, ncount, ogen;
516 	int i, s_update;
517 	time_t t;
518 
519 	s_update = 0;
520 
521 	/*
522 	 * Make the next timehands a copy of the current one, but do not
523 	 * overwrite the generation or next pointer.  While we update
524 	 * the contents, the generation must be zero.  Ensure global
525 	 * visibility of the generation before proceeding.
526 	 */
527 	tho = timehands;
528 	th = tho->th_next;
529 	ogen = th->th_generation;
530 	th->th_generation = 0;
531 	mb_write();
532 	bcopy(tho, th, offsetof(struct timehands, th_generation));
533 
534 	/*
535 	 * Capture a timecounter delta on the current timecounter and if
536 	 * changing timecounters, a counter value from the new timecounter.
537 	 * Update the offset fields accordingly.
538 	 */
539 	delta = tc_delta(th);
540 	if (th->th_counter != timecounter)
541 		ncount = timecounter->tc_get_timecount(timecounter);
542 	else
543 		ncount = 0;
544 	th->th_offset_count += delta;
545 	th->th_offset_count &= th->th_counter->tc_counter_mask;
546 	bintime_addx(&th->th_offset, th->th_scale * delta);
547 
548 	/*
549 	 * Hardware latching timecounters may not generate interrupts on
550 	 * PPS events, so instead we poll them.  There is a finite risk that
551 	 * the hardware might capture a count which is later than the one we
552 	 * got above, and therefore possibly in the next NTP second which might
553 	 * have a different rate than the current NTP second.  It doesn't
554 	 * matter in practice.
555 	 */
556 	if (tho->th_counter->tc_poll_pps)
557 		tho->th_counter->tc_poll_pps(tho->th_counter);
558 
559 	/*
560 	 * Deal with NTP second processing.  The for loop normally
561 	 * iterates at most once, but in extreme situations it might
562 	 * keep NTP sane if timeouts are not run for several seconds.
563 	 * At boot, the time step can be large when the TOD hardware
564 	 * has been read, so on really large steps, we call
565 	 * ntp_update_second only twice.  We need to call it twice in
566 	 * case we missed a leap second.
567 	 * If NTP is not compiled in ntp_update_second still calculates
568 	 * the adjustment resulting from adjtime() calls.
569 	 */
570 	bt = th->th_offset;
571 	bintime_add(&bt, &timebasebin);
572 	i = bt.sec - tho->th_microtime.tv_sec;
573 	if (i > LARGE_STEP)
574 		i = 2;
575 	for (; i > 0; i--) {
576 		t = bt.sec;
577 		ntp_update_second(&th->th_adjustment, &bt.sec);
578 		s_update = 1;
579 		if (bt.sec != t)
580 			timebasebin.sec += bt.sec - t;
581 	}
582 
583 	/* Update the UTC timestamps used by the get*() functions. */
584 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
585 	bintime2timeval(&bt, &th->th_microtime);
586 	bintime2timespec(&bt, &th->th_nanotime);
587 
588 	/* Now is a good time to change timecounters. */
589 	if (th->th_counter != timecounter) {
590 		th->th_counter = timecounter;
591 		th->th_offset_count = ncount;
592 		s_update = 1;
593 	}
594 
595 	/*-
596 	 * Recalculate the scaling factor.  We want the number of 1/2^64
597 	 * fractions of a second per period of the hardware counter, taking
598 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
599 	 * processing provides us with.
600 	 *
601 	 * The th_adjustment is nanoseconds per second with 32 bit binary
602 	 * fraction and we want 64 bit binary fraction of second:
603 	 *
604 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
605 	 *
606 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
607 	 * we can only multiply by about 850 without overflowing, but that
608 	 * leaves suitably precise fractions for multiply before divide.
609 	 *
610 	 * Divide before multiply with a fraction of 2199/512 results in a
611 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
612 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
613  	 *
614 	 * We happily sacrifice the lowest of the 64 bits of our result
615 	 * to the goddess of code clarity.
616 	 *
617 	 */
618 	if (s_update) {
619 		scale = (u_int64_t)1 << 63;
620 		scale += (th->th_adjustment / 1024) * 2199;
621 		scale /= th->th_counter->tc_frequency;
622 		th->th_scale = scale * 2;
623 	}
624 	/*
625 	 * Now that the struct timehands is again consistent, set the new
626 	 * generation number, making sure to not make it zero.  Ensure
627 	 * changes are globally visible before changing.
628 	 */
629 	if (++ogen == 0)
630 		ogen = 1;
631 	mb_write();
632 	th->th_generation = ogen;
633 
634 	/*
635 	 * Go live with the new struct timehands.  Ensure changes are
636 	 * globally visible before changing.
637 	 */
638 	time_second = th->th_microtime.tv_sec;
639 	time_uptime = th->th_offset.sec;
640 	mb_write();
641 	timehands = th;
642 
643 	/*
644 	 * Force users of the old timehand to move on.  This is
645 	 * necessary for MP systems; we need to ensure that the
646 	 * consumers will move away from the old timehand before
647 	 * we begin updating it again when we eventually wrap
648 	 * around.
649 	 */
650 	if (++tho->th_generation == 0)
651 		tho->th_generation = 1;
652 }
653 
654 /*
655  * RFC 2783 PPS-API implementation.
656  */
657 
658 int
659 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
660 {
661 	pps_params_t *app;
662 	pps_info_t *pipi;
663 #ifdef PPS_SYNC
664 	int *epi;
665 #endif
666 
667 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
668 	switch (cmd) {
669 	case PPS_IOC_CREATE:
670 		return (0);
671 	case PPS_IOC_DESTROY:
672 		return (0);
673 	case PPS_IOC_SETPARAMS:
674 		app = (pps_params_t *)data;
675 		if (app->mode & ~pps->ppscap)
676 			return (EINVAL);
677 		pps->ppsparam = *app;
678 		return (0);
679 	case PPS_IOC_GETPARAMS:
680 		app = (pps_params_t *)data;
681 		*app = pps->ppsparam;
682 		app->api_version = PPS_API_VERS_1;
683 		return (0);
684 	case PPS_IOC_GETCAP:
685 		*(int*)data = pps->ppscap;
686 		return (0);
687 	case PPS_IOC_FETCH:
688 		pipi = (pps_info_t *)data;
689 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
690 		*pipi = pps->ppsinfo;
691 		return (0);
692 	case PPS_IOC_KCBIND:
693 #ifdef PPS_SYNC
694 		epi = (int *)data;
695 		/* XXX Only root should be able to do this */
696 		if (*epi & ~pps->ppscap)
697 			return (EINVAL);
698 		pps->kcmode = *epi;
699 		return (0);
700 #else
701 		return (EOPNOTSUPP);
702 #endif
703 	default:
704 		return (EPASSTHROUGH);
705 	}
706 }
707 
708 void
709 pps_init(struct pps_state *pps)
710 {
711 	pps->ppscap |= PPS_TSFMT_TSPEC;
712 	if (pps->ppscap & PPS_CAPTUREASSERT)
713 		pps->ppscap |= PPS_OFFSETASSERT;
714 	if (pps->ppscap & PPS_CAPTURECLEAR)
715 		pps->ppscap |= PPS_OFFSETCLEAR;
716 }
717 
718 void
719 pps_capture(struct pps_state *pps)
720 {
721 	struct timehands *th;
722 
723 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
724 	th = timehands;
725 	pps->capgen = th->th_generation;
726 	pps->capth = th;
727 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
728 	if (pps->capgen != th->th_generation)
729 		pps->capgen = 0;
730 }
731 
732 void
733 pps_event(struct pps_state *pps, int event)
734 {
735 	struct bintime bt;
736 	struct timespec ts, *tsp, *osp;
737 	u_int tcount, *pcount;
738 	int foff, fhard;
739 	pps_seq_t *pseq;
740 
741 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
742 	/* If the timecounter was wound up underneath us, bail out. */
743 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
744 		return;
745 
746 	/* Things would be easier with arrays. */
747 	if (event == PPS_CAPTUREASSERT) {
748 		tsp = &pps->ppsinfo.assert_timestamp;
749 		osp = &pps->ppsparam.assert_offset;
750 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
751 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
752 		pcount = &pps->ppscount[0];
753 		pseq = &pps->ppsinfo.assert_sequence;
754 	} else {
755 		tsp = &pps->ppsinfo.clear_timestamp;
756 		osp = &pps->ppsparam.clear_offset;
757 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
758 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
759 		pcount = &pps->ppscount[1];
760 		pseq = &pps->ppsinfo.clear_sequence;
761 	}
762 
763 	/*
764 	 * If the timecounter changed, we cannot compare the count values, so
765 	 * we have to drop the rest of the PPS-stuff until the next event.
766 	 */
767 	if (pps->ppstc != pps->capth->th_counter) {
768 		pps->ppstc = pps->capth->th_counter;
769 		*pcount = pps->capcount;
770 		pps->ppscount[2] = pps->capcount;
771 		return;
772 	}
773 
774 	/* Convert the count to a timespec. */
775 	tcount = pps->capcount - pps->capth->th_offset_count;
776 	tcount &= pps->capth->th_counter->tc_counter_mask;
777 	bt = pps->capth->th_offset;
778 	bintime_addx(&bt, pps->capth->th_scale * tcount);
779 	bintime_add(&bt, &timebasebin);
780 	bintime2timespec(&bt, &ts);
781 
782 	/* If the timecounter was wound up underneath us, bail out. */
783 	if (pps->capgen != pps->capth->th_generation)
784 		return;
785 
786 	*pcount = pps->capcount;
787 	(*pseq)++;
788 	*tsp = ts;
789 
790 	if (foff) {
791 		timespecadd(tsp, osp, tsp);
792 		if (tsp->tv_nsec < 0) {
793 			tsp->tv_nsec += 1000000000;
794 			tsp->tv_sec -= 1;
795 		}
796 	}
797 #ifdef PPS_SYNC
798 	if (fhard) {
799 		u_int64_t scale;
800 
801 		/*
802 		 * Feed the NTP PLL/FLL.
803 		 * The FLL wants to know how many (hardware) nanoseconds
804 		 * elapsed since the previous event.
805 		 */
806 		tcount = pps->capcount - pps->ppscount[2];
807 		pps->ppscount[2] = pps->capcount;
808 		tcount &= pps->capth->th_counter->tc_counter_mask;
809 		scale = (u_int64_t)1 << 63;
810 		scale /= pps->capth->th_counter->tc_frequency;
811 		scale *= 2;
812 		bt.sec = 0;
813 		bt.frac = 0;
814 		bintime_addx(&bt, scale * tcount);
815 		bintime2timespec(&bt, &ts);
816 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
817 	}
818 #endif
819 }
820 
821 /*
822  * Timecounters need to be updated every so often to prevent the hardware
823  * counter from overflowing.  Updating also recalculates the cached values
824  * used by the get*() family of functions, so their precision depends on
825  * the update frequency.
826  */
827 
828 static int tc_tick;
829 
830 void
831 tc_ticktock(void)
832 {
833 	static int count;
834 
835 	if (++count < tc_tick)
836 		return;
837 	count = 0;
838 	tc_windup();
839 }
840 
841 void
842 inittimecounter(void)
843 {
844 	u_int p;
845 
846 	/*
847 	 * Set the initial timeout to
848 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
849 	 * People should probably not use the sysctl to set the timeout
850 	 * to smaller than its inital value, since that value is the
851 	 * smallest reasonable one.  If they want better timestamps they
852 	 * should use the non-"get"* functions.
853 	 */
854 	if (hz > 1000)
855 		tc_tick = (hz + 500) / 1000;
856 	else
857 		tc_tick = 1;
858 	p = (tc_tick * 1000000) / hz;
859 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
860 	    p / 1000, p % 1000);
861 
862 	/* warm up new timecounter (again) and get rolling. */
863 	(void)timecounter->tc_get_timecount(timecounter);
864 	(void)timecounter->tc_get_timecount(timecounter);
865 }
866 
867 #endif /* __HAVE_TIMECOUNTER */
868