xref: /netbsd-src/sys/kern/kern_sysctl.c (revision 481fca6e59249d8ffcf24fef7cfbe7b131bfb080)
1 /*	$NetBSD: kern_sysctl.c,v 1.74 2000/07/13 14:26:43 simonb Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Mike Karels at Berkeley Software Design, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sysctl.c	8.9 (Berkeley) 5/20/95
39  */
40 
41 /*
42  * sysctl system call.
43  */
44 
45 #include "opt_ddb.h"
46 #include "opt_insecure.h"
47 #include "opt_defcorename.h"
48 #include "opt_sysv.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/buf.h>
54 #include <sys/device.h>
55 #include <sys/disklabel.h>
56 #include <sys/dkstat.h>
57 #include <sys/exec.h>
58 #include <sys/file.h>
59 #include <sys/ioctl.h>
60 #include <sys/malloc.h>
61 #include <sys/mount.h>
62 #include <sys/msgbuf.h>
63 #include <sys/pool.h>
64 #include <sys/proc.h>
65 #include <sys/resource.h>
66 #include <sys/resourcevar.h>
67 #include <sys/syscallargs.h>
68 #include <sys/tty.h>
69 #include <sys/unistd.h>
70 #include <sys/vnode.h>
71 #include <sys/sysctl.h>
72 
73 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
74 #include <sys/ipc.h>
75 #endif
76 #ifdef SYSVMSG
77 #include <sys/msg.h>
78 #endif
79 #ifdef SYSVSEM
80 #include <sys/sem.h>
81 #endif
82 #ifdef SYSVSHM
83 #include <sys/shm.h>
84 #endif
85 
86 #include <dev/cons.h>
87 
88 #if defined(DDB)
89 #include <ddb/ddbvar.h>
90 #endif
91 
92 #define PTRTOINT64(foo)	((u_int64_t)(uintptr_t)(foo))
93 
94 /*
95  * Locking and stats
96  */
97 static struct sysctl_lock {
98 	int	sl_lock;
99 	int	sl_want;
100 	int	sl_locked;
101 } memlock;
102 
103 static int sysctl_file __P((void *, size_t *));
104 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
105 static int sysctl_sysvipc __P((int *, u_int, void *, size_t *));
106 #endif
107 static int sysctl_msgbuf __P((void *, size_t *));
108 static int sysctl_doeproc __P((int *, u_int, void *, size_t *));
109 static void fill_kproc2 __P((struct proc *, struct kinfo_proc2 *));
110 static int sysctl_procargs __P((int *, u_int, void *, size_t *, struct proc *));
111 
112 int
113 sys___sysctl(p, v, retval)
114 	struct proc *p;
115 	void *v;
116 	register_t *retval;
117 {
118 	struct sys___sysctl_args /* {
119 		syscallarg(int *) name;
120 		syscallarg(u_int) namelen;
121 		syscallarg(void *) old;
122 		syscallarg(size_t *) oldlenp;
123 		syscallarg(void *) new;
124 		syscallarg(size_t) newlen;
125 	} */ *uap = v;
126 	int error, dolock = 1;
127 	size_t savelen = 0, oldlen = 0;
128 	sysctlfn *fn;
129 	int name[CTL_MAXNAME];
130 	size_t *oldlenp;
131 
132 	/*
133 	 * all top-level sysctl names are non-terminal
134 	 */
135 	if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
136 		return (EINVAL);
137 	error = copyin(SCARG(uap, name), &name,
138 		       SCARG(uap, namelen) * sizeof(int));
139 	if (error)
140 		return (error);
141 
142 	/*
143 	 * For all but CTL_PROC, must be root to change a value.
144 	 * For CTL_PROC, must be root, or owner of the proc (and not suid),
145 	 * this is checked in proc_sysctl() (once we know the targer proc).
146 	 */
147 	if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
148 		    (error = suser(p->p_ucred, &p->p_acflag)))
149 			return error;
150 
151 	switch (name[0]) {
152 	case CTL_KERN:
153 		fn = kern_sysctl;
154 		if (name[2] != KERN_VNODE)	/* XXX */
155 			dolock = 0;
156 		break;
157 	case CTL_HW:
158 		fn = hw_sysctl;
159 		break;
160 	case CTL_VM:
161 		fn = uvm_sysctl;
162 		break;
163 	case CTL_NET:
164 		fn = net_sysctl;
165 		break;
166 	case CTL_VFS:
167 		fn = vfs_sysctl;
168 		break;
169 	case CTL_MACHDEP:
170 		fn = cpu_sysctl;
171 		break;
172 #ifdef DEBUG
173 	case CTL_DEBUG:
174 		fn = debug_sysctl;
175 		break;
176 #endif
177 #ifdef DDB
178 	case CTL_DDB:
179 		fn = ddb_sysctl;
180 		break;
181 #endif
182 	case CTL_PROC:
183 		fn = proc_sysctl;
184 		break;
185 	default:
186 		return (EOPNOTSUPP);
187 	}
188 
189 	oldlenp = SCARG(uap, oldlenp);
190 	if (oldlenp) {
191 		if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
192 			return (error);
193 		oldlenp = &oldlen;
194 	}
195 	if (SCARG(uap, old) != NULL) {
196 		if (!uvm_useracc(SCARG(uap, old), oldlen, B_WRITE))
197 			return (EFAULT);
198 		while (memlock.sl_lock) {
199 			memlock.sl_want = 1;
200 			(void) tsleep(&memlock, PRIBIO+1, "memlock", 0);
201 			memlock.sl_locked++;
202 		}
203 		memlock.sl_lock = 1;
204 		if (dolock) {
205 			/*
206 			 * XXX Um, this is kind of evil.  What should we
207 			 * XXX be passing here?
208 			 */
209 			if (uvm_vslock(p, SCARG(uap, old), oldlen,
210 			    VM_PROT_NONE) != KERN_SUCCESS) {
211 				memlock.sl_lock = 0;
212 				if (memlock.sl_want) {
213 					memlock.sl_want = 0;
214 					wakeup((caddr_t)&memlock);
215 					return (EFAULT);
216 				}
217 			}
218 		}
219 		savelen = oldlen;
220 	}
221 	error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
222 	    oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
223 	if (SCARG(uap, old) != NULL) {
224 		if (dolock)
225 			uvm_vsunlock(p, SCARG(uap, old), savelen);
226 		memlock.sl_lock = 0;
227 		if (memlock.sl_want) {
228 			memlock.sl_want = 0;
229 			wakeup((caddr_t)&memlock);
230 		}
231 	}
232 	if (error)
233 		return (error);
234 	if (SCARG(uap, oldlenp))
235 		error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
236 	return (error);
237 }
238 
239 /*
240  * Attributes stored in the kernel.
241  */
242 char hostname[MAXHOSTNAMELEN];
243 int hostnamelen;
244 char domainname[MAXHOSTNAMELEN];
245 int domainnamelen;
246 long hostid;
247 #ifdef INSECURE
248 int securelevel = -1;
249 #else
250 int securelevel = 0;
251 #endif
252 #ifdef DEFCORENAME
253 char defcorename[MAXPATHLEN] = DEFCORENAME;
254 int defcorenamelen = sizeof(DEFCORENAME);
255 #else
256 char defcorename[MAXPATHLEN] = "%n.core";
257 int defcorenamelen = sizeof("%n.core");
258 #endif
259 extern	int	kern_logsigexit;
260 extern	fixpt_t	ccpu;
261 
262 /*
263  * kernel related system variables.
264  */
265 int
266 kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
267 	int *name;
268 	u_int namelen;
269 	void *oldp;
270 	size_t *oldlenp;
271 	void *newp;
272 	size_t newlen;
273 	struct proc *p;
274 {
275 	int error, level, inthostid;
276 	int old_autonicetime;
277 	int old_vnodes;
278 	dev_t consdev;
279 
280 	/* All sysctl names at this level, except for a few, are terminal. */
281 	switch (name[0]) {
282 	case KERN_PROC:
283 	case KERN_PROC2:
284 	case KERN_PROF:
285 	case KERN_MBUF:
286 	case KERN_PROC_ARGS:
287 	case KERN_SYSVIPC_INFO:
288 		/* Not terminal. */
289 		break;
290 	default:
291 		if (namelen != 1)
292 			return (ENOTDIR);	/* overloaded */
293 	}
294 
295 	switch (name[0]) {
296 	case KERN_OSTYPE:
297 		return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
298 	case KERN_OSRELEASE:
299 		return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
300 	case KERN_OSREV:
301 		return (sysctl_rdint(oldp, oldlenp, newp, NetBSD));
302 	case KERN_VERSION:
303 		return (sysctl_rdstring(oldp, oldlenp, newp, version));
304 	case KERN_MAXVNODES:
305 		old_vnodes = desiredvnodes;
306 		error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
307 		if (old_vnodes > desiredvnodes) {
308 		        desiredvnodes = old_vnodes;
309 			return (EINVAL);
310 		}
311 		return (error);
312 	case KERN_MAXPROC:
313 		return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
314 	case KERN_MAXFILES:
315 		return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
316 	case KERN_ARGMAX:
317 		return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
318 	case KERN_SECURELVL:
319 		level = securelevel;
320 		if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
321 		    newp == NULL)
322 			return (error);
323 		if (level < securelevel && p->p_pid != 1)
324 			return (EPERM);
325 		securelevel = level;
326 		return (0);
327 	case KERN_HOSTNAME:
328 		error = sysctl_string(oldp, oldlenp, newp, newlen,
329 		    hostname, sizeof(hostname));
330 		if (newp && !error)
331 			hostnamelen = newlen;
332 		return (error);
333 	case KERN_DOMAINNAME:
334 		error = sysctl_string(oldp, oldlenp, newp, newlen,
335 		    domainname, sizeof(domainname));
336 		if (newp && !error)
337 			domainnamelen = newlen;
338 		return (error);
339 	case KERN_HOSTID:
340 		inthostid = hostid;  /* XXX assumes sizeof long <= sizeof int */
341 		error =  sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
342 		hostid = inthostid;
343 		return (error);
344 	case KERN_CLOCKRATE:
345 		return (sysctl_clockrate(oldp, oldlenp));
346 	case KERN_BOOTTIME:
347 		return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
348 		    sizeof(struct timeval)));
349 	case KERN_VNODE:
350 		return (sysctl_vnode(oldp, oldlenp, p));
351 	case KERN_PROC:
352 	case KERN_PROC2:
353 		return (sysctl_doeproc(name, namelen, oldp, oldlenp));
354 	case KERN_PROC_ARGS:
355 		return (sysctl_procargs(name + 1, namelen - 1,
356 		    oldp, oldlenp, p));
357 	case KERN_FILE:
358 		return (sysctl_file(oldp, oldlenp));
359 #ifdef GPROF
360 	case KERN_PROF:
361 		return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
362 		    newp, newlen));
363 #endif
364 	case KERN_POSIX1:
365 		return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
366 	case KERN_NGROUPS:
367 		return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
368 	case KERN_JOB_CONTROL:
369 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
370 	case KERN_SAVED_IDS:
371 #ifdef _POSIX_SAVED_IDS
372 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
373 #else
374 		return (sysctl_rdint(oldp, oldlenp, newp, 0));
375 #endif
376 	case KERN_MAXPARTITIONS:
377 		return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
378 	case KERN_RAWPARTITION:
379 		return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
380 #ifdef NTP
381 	case KERN_NTPTIME:
382 		return (sysctl_ntptime(oldp, oldlenp));
383 #endif
384 	case KERN_AUTONICETIME:
385 	        old_autonicetime = autonicetime;
386 	        error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
387 		if (autonicetime < 0)
388  		        autonicetime = old_autonicetime;
389 		return (error);
390 	case KERN_AUTONICEVAL:
391 		error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
392 		if (autoniceval < PRIO_MIN)
393 			autoniceval = PRIO_MIN;
394 		if (autoniceval > PRIO_MAX)
395 			autoniceval = PRIO_MAX;
396 		return (error);
397 	case KERN_RTC_OFFSET:
398 		return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
399 	case KERN_ROOT_DEVICE:
400 		return (sysctl_rdstring(oldp, oldlenp, newp,
401 		    root_device->dv_xname));
402 	case KERN_MSGBUFSIZE:
403 		/*
404 		 * deal with cases where the message buffer has
405 		 * become corrupted.
406 		 */
407 		if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
408 			msgbufenabled = 0;
409 			return (ENXIO);
410 		}
411 		return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
412 	case KERN_FSYNC:
413 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
414 	case KERN_SYSVMSG:
415 #ifdef SYSVMSG
416 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
417 #else
418 		return (sysctl_rdint(oldp, oldlenp, newp, 0));
419 #endif
420 	case KERN_SYSVSEM:
421 #ifdef SYSVSEM
422 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
423 #else
424 		return (sysctl_rdint(oldp, oldlenp, newp, 0));
425 #endif
426 	case KERN_SYSVSHM:
427 #ifdef SYSVSHM
428 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
429 #else
430 		return (sysctl_rdint(oldp, oldlenp, newp, 0));
431 #endif
432  	case KERN_DEFCORENAME:
433 		if (newp && newlen < 1)
434 			return (EINVAL);
435 		error = sysctl_string(oldp, oldlenp, newp, newlen,
436 		    defcorename, sizeof(defcorename));
437 		if (newp && !error)
438 			defcorenamelen = newlen;
439 		return (error);
440 	case KERN_SYNCHRONIZED_IO:
441 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
442 	case KERN_IOV_MAX:
443 		return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
444 	case KERN_MBUF:
445 		return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
446 		    newp, newlen));
447 	case KERN_MAPPED_FILES:
448 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
449 	case KERN_MEMLOCK:
450 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
451 	case KERN_MEMLOCK_RANGE:
452 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
453 	case KERN_MEMORY_PROTECTION:
454 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
455 	case KERN_LOGIN_NAME_MAX:
456 		return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
457 	case KERN_LOGSIGEXIT:
458 		return (sysctl_int(oldp, oldlenp, newp, newlen,
459 		    &kern_logsigexit));
460 	case KERN_FSCALE:
461 		return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
462 	case KERN_CCPU:
463 		return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
464 	case KERN_CP_TIME:
465 		/* XXXSMP: WRONG! */
466 		return (sysctl_rdstruct(oldp, oldlenp, newp,
467 		    curcpu()->ci_schedstate.spc_cp_time,
468 		    sizeof(curcpu()->ci_schedstate.spc_cp_time)));
469 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
470 	case KERN_SYSVIPC_INFO:
471 		return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
472 #endif
473 	case KERN_MSGBUF:
474 		return (sysctl_msgbuf(oldp, oldlenp));
475 	case KERN_CONSDEV:
476 		if (cn_tab != NULL)
477 			consdev = cn_tab->cn_dev;
478 		else
479 			consdev = NODEV;
480 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
481 		    sizeof consdev));
482 	default:
483 		return (EOPNOTSUPP);
484 	}
485 	/* NOTREACHED */
486 }
487 
488 /*
489  * hardware related system variables.
490  */
491 int
492 hw_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
493 	int *name;
494 	u_int namelen;
495 	void *oldp;
496 	size_t *oldlenp;
497 	void *newp;
498 	size_t newlen;
499 	struct proc *p;
500 {
501 
502 	/* all sysctl names at this level are terminal */
503 	if (namelen != 1)
504 		return (ENOTDIR);		/* overloaded */
505 
506 	switch (name[0]) {
507 	case HW_MACHINE:
508 		return (sysctl_rdstring(oldp, oldlenp, newp, machine));
509 	case HW_MACHINE_ARCH:
510 		return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
511 	case HW_MODEL:
512 		return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
513 	case HW_NCPU:
514 		return (sysctl_rdint(oldp, oldlenp, newp, 1));	/* XXX */
515 	case HW_BYTEORDER:
516 		return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
517 	case HW_PHYSMEM:
518 		return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
519 	case HW_USERMEM:
520 		return (sysctl_rdint(oldp, oldlenp, newp,
521 		    ctob(physmem - uvmexp.wired)));
522 	case HW_PAGESIZE:
523 		return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
524 	case HW_ALIGNBYTES:
525 		return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
526 	default:
527 		return (EOPNOTSUPP);
528 	}
529 	/* NOTREACHED */
530 }
531 
532 #ifdef DEBUG
533 /*
534  * Debugging related system variables.
535  */
536 struct ctldebug debug0, debug1, debug2, debug3, debug4;
537 struct ctldebug debug5, debug6, debug7, debug8, debug9;
538 struct ctldebug debug10, debug11, debug12, debug13, debug14;
539 struct ctldebug debug15, debug16, debug17, debug18, debug19;
540 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
541 	&debug0, &debug1, &debug2, &debug3, &debug4,
542 	&debug5, &debug6, &debug7, &debug8, &debug9,
543 	&debug10, &debug11, &debug12, &debug13, &debug14,
544 	&debug15, &debug16, &debug17, &debug18, &debug19,
545 };
546 int
547 debug_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
548 	int *name;
549 	u_int namelen;
550 	void *oldp;
551 	size_t *oldlenp;
552 	void *newp;
553 	size_t newlen;
554 	struct proc *p;
555 {
556 	struct ctldebug *cdp;
557 
558 	/* all sysctl names at this level are name and field */
559 	if (namelen != 2)
560 		return (ENOTDIR);		/* overloaded */
561 	cdp = debugvars[name[0]];
562 	if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
563 		return (EOPNOTSUPP);
564 	switch (name[1]) {
565 	case CTL_DEBUG_NAME:
566 		return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
567 	case CTL_DEBUG_VALUE:
568 		return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
569 	default:
570 		return (EOPNOTSUPP);
571 	}
572 	/* NOTREACHED */
573 }
574 #endif /* DEBUG */
575 
576 int
577 proc_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
578 	int *name;
579 	u_int namelen;
580 	void *oldp;
581 	size_t *oldlenp;
582 	void *newp;
583 	size_t newlen;
584 	struct proc *p;
585 {
586 	struct proc *ptmp = NULL;
587 	const struct proclist_desc *pd;
588 	int error = 0;
589 	struct rlimit alim;
590 	struct plimit *newplim;
591 	char *tmps = NULL;
592 	int i, curlen, len;
593 
594 	if (namelen < 2)
595 		return EINVAL;
596 
597 	if (name[0] == PROC_CURPROC) {
598 		ptmp = p;
599 	} else {
600 		proclist_lock_read();
601 		for (pd = proclists; pd->pd_list != NULL; pd++) {
602 			for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
603 			    ptmp = LIST_NEXT(ptmp, p_list)) {
604 				/* Skip embryonic processes. */
605 				if (ptmp->p_stat == SIDL)
606 					continue;
607 				if (ptmp->p_pid == (pid_t)name[0])
608 					break;
609 			}
610 			if (ptmp != NULL)
611 				break;
612 		}
613 		proclist_unlock_read();
614 		if (ptmp == NULL)
615 			return(ESRCH);
616 		if (p->p_ucred->cr_uid != 0) {
617 			if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
618 			    p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
619 				return EPERM;
620 			if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
621 				return EPERM; /* sgid proc */
622 			for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
623 				if (p->p_ucred->cr_groups[i] ==
624 				    ptmp->p_cred->p_rgid)
625 					break;
626 			}
627 			if (i == p->p_ucred->cr_ngroups)
628 				return EPERM;
629 		}
630 	}
631 	if (name[1] == PROC_PID_CORENAME) {
632 		if (namelen != 2)
633 			return EINVAL;
634 		/*
635 		 * Can't use sysctl_string() here because we may malloc a new
636 		 * area during the process, so we have to do it by hand.
637 		 */
638 		curlen = strlen(ptmp->p_limit->pl_corename) + 1;
639 		if (oldlenp  && *oldlenp < curlen) {
640 			if (!oldp)
641 				*oldlenp = curlen;
642 			return (ENOMEM);
643 		}
644 		if (newp) {
645 			if (securelevel > 2)
646 				return EPERM;
647 			if (newlen > MAXPATHLEN)
648 				return ENAMETOOLONG;
649 			tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
650 			if (tmps == NULL)
651 				return ENOMEM;
652 			error = copyin(newp, tmps, newlen + 1);
653 			tmps[newlen] = '\0';
654 			if (error)
655 				goto cleanup;
656 			/* Enforce to be either 'core' for end with '.core' */
657 			if (newlen < 4)  { /* c.o.r.e */
658 				error = EINVAL;
659 				goto cleanup;
660 			}
661 			len = newlen - 4;
662 			if (len > 0) {
663 				if (tmps[len - 1] != '.' &&
664 				    tmps[len - 1] != '/') {
665 					error = EINVAL;
666 					goto cleanup;
667 				}
668 			}
669 			if (strcmp(&tmps[len], "core") != 0) {
670 				error = EINVAL;
671 				goto cleanup;
672 			}
673 		}
674 		if (oldp && oldlenp) {
675 			*oldlenp = curlen;
676 			error = copyout(ptmp->p_limit->pl_corename, oldp,
677 			    curlen);
678 		}
679 		if (newp && error == 0) {
680 			/* if the 2 strings are identical, don't limcopy() */
681 			if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
682 				error = 0;
683 				goto cleanup;
684 			}
685 			if (ptmp->p_limit->p_refcnt > 1 &&
686 			    (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
687 				newplim = limcopy(ptmp->p_limit);
688 				limfree(ptmp->p_limit);
689 				ptmp->p_limit = newplim;
690 			} else if (ptmp->p_limit->pl_corename != defcorename) {
691 				free(ptmp->p_limit->pl_corename, M_TEMP);
692 			}
693 			ptmp->p_limit->pl_corename = tmps;
694 			return (0);
695 		}
696 cleanup:
697 		if (tmps)
698 			free(tmps, M_TEMP);
699 		return (error);
700 	}
701 	if (name[1] == PROC_PID_LIMIT) {
702 		if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
703 			return EINVAL;
704 		memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
705 		if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
706 			error = sysctl_quad(oldp, oldlenp, newp, newlen,
707 			    &alim.rlim_max);
708 		else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
709 			error = sysctl_quad(oldp, oldlenp, newp, newlen,
710 			    &alim.rlim_cur);
711 		else
712 			error = EINVAL;
713 
714 		if (error)
715 			return error;
716 
717 		if (newp)
718 			error = dosetrlimit(ptmp, p->p_cred,
719 			    name[2] - 1, &alim);
720 		return error;
721 	}
722 	return (EINVAL);
723 }
724 
725 /*
726  * Convenience macros.
727  */
728 
729 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) 		\
730 	if (oldlenp) {							\
731 		if (!oldp)						\
732 			*oldlenp = len;					\
733 		else {							\
734 			if (*oldlenp < len)				\
735 				return(ENOMEM);				\
736 			*oldlenp = len;					\
737 			error = copyout((caddr_t)valp, oldp, len);	\
738 		}							\
739 	}
740 
741 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
742 	SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
743 
744 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)	\
745 	if (newp && newlen != len)			\
746 		return (EINVAL);
747 
748 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ)	\
749 	SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
750 
751 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len)	\
752 	if (error == 0 && newp)				\
753 		error = copyin(newp, valp, len);
754 
755 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ)      \
756 	SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
757 
758 #define SYSCTL_STRING_CORE(oldp, oldlenp, str)		\
759 	if (oldlenp) {					\
760 		len = strlen(str) + 1;			\
761 		if (!oldp)				\
762 			*oldlenp = len;			\
763 		else {					\
764 			if (*oldlenp < len) {		\
765 				err2 = ENOMEM;		\
766 				len = *oldlenp;		\
767 			} else				\
768 				*oldlenp = len;		\
769 			error = copyout(str, oldp, len);\
770 			if (error == 0)			\
771 				error = err2;		\
772 		}					\
773 	}
774 
775 /*
776  * Validate parameters and get old / set new parameters
777  * for an integer-valued sysctl function.
778  */
779 int
780 sysctl_int(oldp, oldlenp, newp, newlen, valp)
781 	void *oldp;
782 	size_t *oldlenp;
783 	void *newp;
784 	size_t newlen;
785 	int *valp;
786 {
787 	int error = 0;
788 
789 	SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
790 	SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
791 	SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
792 
793 	return (error);
794 }
795 
796 
797 /*
798  * As above, but read-only.
799  */
800 int
801 sysctl_rdint(oldp, oldlenp, newp, val)
802 	void *oldp;
803 	size_t *oldlenp;
804 	void *newp;
805 	int val;
806 {
807 	int error = 0;
808 
809 	if (newp)
810 		return (EPERM);
811 
812 	SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
813 
814 	return (error);
815 }
816 
817 /*
818  * Validate parameters and get old / set new parameters
819  * for an quad-valued sysctl function.
820  */
821 int
822 sysctl_quad(oldp, oldlenp, newp, newlen, valp)
823 	void *oldp;
824 	size_t *oldlenp;
825 	void *newp;
826 	size_t newlen;
827 	quad_t *valp;
828 {
829 	int error = 0;
830 
831 	SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
832 	SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
833 	SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
834 
835 	return (error);
836 }
837 
838 /*
839  * As above, but read-only.
840  */
841 int
842 sysctl_rdquad(oldp, oldlenp, newp, val)
843 	void *oldp;
844 	size_t *oldlenp;
845 	void *newp;
846 	quad_t val;
847 {
848 	int error = 0;
849 
850 	if (newp)
851 		return (EPERM);
852 
853 	SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
854 
855 	return (error);
856 }
857 
858 /*
859  * Validate parameters and get old / set new parameters
860  * for a string-valued sysctl function.
861  */
862 int
863 sysctl_string(oldp, oldlenp, newp, newlen, str, maxlen)
864 	void *oldp;
865 	size_t *oldlenp;
866 	void *newp;
867 	size_t newlen;
868 	char *str;
869 	int maxlen;
870 {
871 	int len, error = 0, err2 = 0;
872 
873 	if (newp && newlen >= maxlen)
874 		return (EINVAL);
875 
876 	SYSCTL_STRING_CORE(oldp, oldlenp, str);
877 
878 	if (error == 0 && newp) {
879 		error = copyin(newp, str, newlen);
880 		str[newlen] = 0;
881 	}
882 	return (error);
883 }
884 
885 /*
886  * As above, but read-only.
887  */
888 int
889 sysctl_rdstring(oldp, oldlenp, newp, str)
890 	void *oldp;
891 	size_t *oldlenp;
892 	void *newp;
893 	char *str;
894 {
895 	int len, error = 0, err2 = 0;
896 
897 	if (newp)
898 		return (EPERM);
899 
900 	SYSCTL_STRING_CORE(oldp, oldlenp, str);
901 
902 	return (error);
903 }
904 
905 /*
906  * Validate parameters and get old / set new parameters
907  * for a structure oriented sysctl function.
908  */
909 int
910 sysctl_struct(oldp, oldlenp, newp, newlen, sp, len)
911 	void *oldp;
912 	size_t *oldlenp;
913 	void *newp;
914 	size_t newlen;
915 	void *sp;
916 	int len;
917 {
918 	int error = 0;
919 
920 	SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
921 	SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
922 	SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
923 
924 	return (error);
925 }
926 
927 /*
928  * Validate parameters and get old parameters
929  * for a structure oriented sysctl function.
930  */
931 int
932 sysctl_rdstruct(oldp, oldlenp, newp, sp, len)
933 	void *oldp;
934 	size_t *oldlenp;
935 	void *newp, *sp;
936 	int len;
937 {
938 	int error = 0;
939 
940 	if (newp)
941 		return (EPERM);
942 
943 	SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
944 
945 	return (error);
946 }
947 
948 /*
949  * Get file structures.
950  */
951 static int
952 sysctl_file(vwhere, sizep)
953 	void *vwhere;
954 	size_t *sizep;
955 {
956 	int buflen, error;
957 	struct file *fp;
958 	char *start, *where;
959 
960 	start = where = vwhere;
961 	buflen = *sizep;
962 	if (where == NULL) {
963 		/*
964 		 * overestimate by 10 files
965 		 */
966 		*sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
967 		return (0);
968 	}
969 
970 	/*
971 	 * first copyout filehead
972 	 */
973 	if (buflen < sizeof(filehead)) {
974 		*sizep = 0;
975 		return (0);
976 	}
977 	error = copyout((caddr_t)&filehead, where, sizeof(filehead));
978 	if (error)
979 		return (error);
980 	buflen -= sizeof(filehead);
981 	where += sizeof(filehead);
982 
983 	/*
984 	 * followed by an array of file structures
985 	 */
986 	for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
987 		if (buflen < sizeof(struct file)) {
988 			*sizep = where - start;
989 			return (ENOMEM);
990 		}
991 		error = copyout((caddr_t)fp, where, sizeof(struct file));
992 		if (error)
993 			return (error);
994 		buflen -= sizeof(struct file);
995 		where += sizeof(struct file);
996 	}
997 	*sizep = where - start;
998 	return (0);
999 }
1000 
1001 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1002 #define	FILL_PERM(src, dst) do { \
1003 		(dst)._key = (src)._key; \
1004 		(dst).uid = (src).uid; \
1005 		(dst).gid = (src).gid; \
1006 		(dst).cuid = (src).cuid; \
1007 		(dst).cgid = (src).cgid; \
1008 		(dst).mode = (src).mode; \
1009 		(dst)._seq = (src)._seq; \
1010 	} while (0);
1011 #define	FILL_MSG(src, dst) do { \
1012 	FILL_PERM((src).msg_perm, (dst).msg_perm); \
1013 	(dst).msg_qnum = (src).msg_qnum; \
1014 	(dst).msg_qbytes = (src).msg_qbytes; \
1015 	(dst)._msg_cbytes = (src)._msg_cbytes; \
1016 	(dst).msg_lspid = (src).msg_lspid; \
1017 	(dst).msg_lrpid = (src).msg_lrpid; \
1018 	(dst).msg_stime = (src).msg_stime; \
1019 	(dst).msg_rtime = (src).msg_rtime; \
1020 	(dst).msg_ctime = (src).msg_ctime; \
1021 	} while (0)
1022 #define	FILL_SEM(src, dst) do { \
1023 	FILL_PERM((src).sem_perm, (dst).sem_perm); \
1024 	(dst).sem_nsems = (src).sem_nsems; \
1025 	(dst).sem_otime = (src).sem_otime; \
1026 	(dst).sem_ctime = (src).sem_ctime; \
1027 	} while (0)
1028 #define	FILL_SHM(src, dst) do { \
1029 	FILL_PERM((src).shm_perm, (dst).shm_perm); \
1030 	(dst).shm_segsz = (src).shm_segsz; \
1031 	(dst).shm_lpid = (src).shm_lpid; \
1032 	(dst).shm_cpid = (src).shm_cpid; \
1033 	(dst).shm_atime = (src).shm_atime; \
1034 	(dst).shm_dtime = (src).shm_dtime; \
1035 	(dst).shm_ctime = (src).shm_ctime; \
1036 	(dst).shm_nattch = (src).shm_nattch; \
1037 	} while (0)
1038 
1039 static int
1040 sysctl_sysvipc(name, namelen, where, sizep)
1041 	int *name;
1042 	u_int namelen;
1043 	void *where;
1044 	size_t *sizep;
1045 {
1046 #ifdef SYSVMSG
1047 	struct msg_sysctl_info *msgsi;
1048 #endif
1049 #ifdef SYSVSEM
1050 	struct sem_sysctl_info *semsi;
1051 #endif
1052 #ifdef SYSVSHM
1053 	struct shm_sysctl_info *shmsi;
1054 #endif
1055 	size_t infosize, dssize, tsize, buflen;
1056 	void *buf = NULL, *buf2;
1057 	char *start;
1058 	int32_t nds;
1059 	int i, error, ret;
1060 
1061 	if (namelen != 1)
1062 		return (EINVAL);
1063 
1064 	start = where;
1065 	buflen = *sizep;
1066 
1067 	switch (*name) {
1068 	case KERN_SYSVIPC_MSG_INFO:
1069 #ifdef SYSVMSG
1070 		infosize = sizeof(msgsi->msginfo);
1071 		nds = msginfo.msgmni;
1072 		dssize = sizeof(msgsi->msgids[0]);
1073 		break;
1074 #else
1075 		return (EINVAL);
1076 #endif
1077 	case KERN_SYSVIPC_SEM_INFO:
1078 #ifdef SYSVSEM
1079 		infosize = sizeof(semsi->seminfo);
1080 		nds = seminfo.semmni;
1081 		dssize = sizeof(semsi->semids[0]);
1082 		break;
1083 #else
1084 		return (EINVAL);
1085 #endif
1086 	case KERN_SYSVIPC_SHM_INFO:
1087 #ifdef SYSVSHM
1088 		infosize = sizeof(shmsi->shminfo);
1089 		nds = shminfo.shmmni;
1090 		dssize = sizeof(shmsi->shmids[0]);
1091 		break;
1092 #else
1093 		return (EINVAL);
1094 #endif
1095 	default:
1096 		return (EINVAL);
1097 	}
1098 	/*
1099 	 * Round infosize to 64 bit boundary if requesting more than just
1100 	 * the info structure or getting the total data size.
1101 	 */
1102 	if (where == NULL || *sizep > infosize)
1103 		infosize = ((infosize + 7) / 8) * 8;
1104 	tsize = infosize + nds * dssize;
1105 
1106 	/* Return just the total size required. */
1107 	if (where == NULL) {
1108 		*sizep = tsize;
1109 		return (0);
1110 	}
1111 
1112 	/* Not enough room for even the info struct. */
1113 	if (buflen < infosize) {
1114 		*sizep = 0;
1115 		return (ENOMEM);
1116 	}
1117 	buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1118 	memset(buf, 0, min(tsize, buflen));
1119 
1120 	switch (*name) {
1121 #ifdef SYSVMSG
1122 	case KERN_SYSVIPC_MSG_INFO:
1123 		msgsi = (struct msg_sysctl_info *)buf;
1124 		buf2 = &msgsi->msgids[0];
1125 		msgsi->msginfo = msginfo;
1126 		break;
1127 #endif
1128 #ifdef SYSVSEM
1129 	case KERN_SYSVIPC_SEM_INFO:
1130 		semsi = (struct sem_sysctl_info *)buf;
1131 		buf2 = &semsi->semids[0];
1132 		semsi->seminfo = seminfo;
1133 		break;
1134 #endif
1135 #ifdef SYSVSHM
1136 	case KERN_SYSVIPC_SHM_INFO:
1137 		shmsi = (struct shm_sysctl_info *)buf;
1138 		buf2 = &shmsi->shmids[0];
1139 		shmsi->shminfo = shminfo;
1140 		break;
1141 #endif
1142 	}
1143 	buflen -= infosize;
1144 
1145 	ret = 0;
1146 	if (buflen > 0) {
1147 		/* Fill in the IPC data structures.  */
1148 		for (i = 0; i < nds; i++) {
1149 			if (buflen < dssize) {
1150 				ret = ENOMEM;
1151 				break;
1152 			}
1153 			switch (*name) {
1154 #ifdef SYSVMSG
1155 			case KERN_SYSVIPC_MSG_INFO:
1156 				FILL_MSG(msqids[i], msgsi->msgids[i]);
1157 				break;
1158 #endif
1159 #ifdef SYSVSEM
1160 			case KERN_SYSVIPC_SEM_INFO:
1161 				FILL_SEM(sema[i], semsi->semids[i]);
1162 				break;
1163 #endif
1164 #ifdef SYSVSHM
1165 			case KERN_SYSVIPC_SHM_INFO:
1166 				FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1167 				break;
1168 #endif
1169 			}
1170 			buflen -= dssize;
1171 		}
1172 	}
1173 	*sizep -= buflen;
1174 	error = copyout(buf, start, *sizep);
1175 	/* If copyout succeeded, use return code set earlier. */
1176 	if (error == 0)
1177 		error = ret;
1178 	if (buf)
1179 		free(buf, M_TEMP);
1180 	return (error);
1181 }
1182 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1183 
1184 static int
1185 sysctl_msgbuf(vwhere, sizep)
1186 	void *vwhere;
1187 	size_t *sizep;
1188 {
1189 	char *where = vwhere;
1190 	size_t len, maxlen = *sizep;
1191 	long pos;
1192 	int error;
1193 
1194 	/*
1195 	 * deal with cases where the message buffer has
1196 	 * become corrupted.
1197 	 */
1198 	if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1199 		msgbufenabled = 0;
1200 		return (ENXIO);
1201 	}
1202 
1203 	if (where == NULL) {
1204 		/* always return full buffer size */
1205 		*sizep = msgbufp->msg_bufs;
1206 		return (0);
1207 	}
1208 
1209 	error = 0;
1210 	maxlen = min(msgbufp->msg_bufs, maxlen);
1211 	pos = msgbufp->msg_bufx;
1212 	while (maxlen > 0) {
1213 		len = pos == 0 ? msgbufp->msg_bufx : msgbufp->msg_bufs - msgbufp->msg_bufx;
1214 		len = min(len, maxlen);
1215 		if (len == 0)
1216 			break;
1217 		error = copyout(&msgbufp->msg_bufc[pos], where, len);
1218 		if (error)
1219 			break;
1220 		where += len;
1221 		maxlen -= len;
1222 		pos = 0;
1223 	}
1224 	return (error);
1225 }
1226 
1227 /*
1228  * try over estimating by 5 procs
1229  */
1230 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
1231 
1232 static int
1233 sysctl_doeproc(name, namelen, vwhere, sizep)
1234 	int *name;
1235 	u_int namelen;
1236 	void *vwhere;
1237 	size_t *sizep;
1238 {
1239 	struct eproc eproc;
1240 	struct kinfo_proc2 kproc2;
1241 	struct kinfo_proc *dp;
1242 	struct proc *p;
1243 	const struct proclist_desc *pd;
1244 	char *where, *dp2;
1245 	int type, op, arg, elem_size, elem_count;
1246 	int buflen, needed, error;
1247 
1248 	dp = vwhere;
1249 	dp2 = where = vwhere;
1250 	buflen = where != NULL ? *sizep : 0;
1251 	error = needed = 0;
1252 	type = name[0];
1253 
1254 	if (type == KERN_PROC) {
1255 		if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1256 			return (EINVAL);
1257 		op = name[1];
1258 		if (op != KERN_PROC_ALL)
1259 			arg = name[2];
1260 	} else {
1261 		if (namelen != 5)
1262 			return (EINVAL);
1263 		op = name[1];
1264 		arg = name[2];
1265 		elem_size = name[3];
1266 		elem_count = name[4];
1267 	}
1268 
1269 	proclist_lock_read();
1270 
1271 	pd = proclists;
1272 again:
1273 	for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1274 		/*
1275 		 * Skip embryonic processes.
1276 		 */
1277 		if (p->p_stat == SIDL)
1278 			continue;
1279 		/*
1280 		 * TODO - make more efficient (see notes below).
1281 		 * do by session.
1282 		 */
1283 		switch (op) {
1284 
1285 		case KERN_PROC_PID:
1286 			/* could do this with just a lookup */
1287 			if (p->p_pid != (pid_t)arg)
1288 				continue;
1289 			break;
1290 
1291 		case KERN_PROC_PGRP:
1292 			/* could do this by traversing pgrp */
1293 			if (p->p_pgrp->pg_id != (pid_t)arg)
1294 				continue;
1295 			break;
1296 
1297 		case KERN_PROC_SESSION:
1298 			if (p->p_session->s_sid != (pid_t)arg)
1299 				continue;
1300 			break;
1301 
1302 		case KERN_PROC_TTY:
1303 			if (arg == KERN_PROC_TTY_REVOKE) {
1304 				if ((p->p_flag & P_CONTROLT) == 0 ||
1305 				    p->p_session->s_ttyp == NULL ||
1306 				    p->p_session->s_ttyvp != NULL)
1307 					continue;
1308 			} else if ((p->p_flag & P_CONTROLT) == 0 ||
1309 			    p->p_session->s_ttyp == NULL) {
1310 				if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1311 					continue;
1312 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1313 				continue;
1314 			break;
1315 
1316 		case KERN_PROC_UID:
1317 			if (p->p_ucred->cr_uid != (uid_t)arg)
1318 				continue;
1319 			break;
1320 
1321 		case KERN_PROC_RUID:
1322 			if (p->p_cred->p_ruid != (uid_t)arg)
1323 				continue;
1324 			break;
1325 
1326 		case KERN_PROC_GID:
1327 			if (p->p_ucred->cr_gid != (uid_t)arg)
1328 				continue;
1329 			break;
1330 
1331 		case KERN_PROC_RGID:
1332 			if (p->p_cred->p_rgid != (uid_t)arg)
1333 				continue;
1334 			break;
1335 
1336 		case KERN_PROC_ALL:
1337 			/* allow everything */
1338 			break;
1339 
1340 		default:
1341 			error = EINVAL;
1342 			goto cleanup;
1343 		}
1344 		if (type == KERN_PROC) {
1345 			if (buflen >= sizeof(struct kinfo_proc)) {
1346 				fill_eproc(p, &eproc);
1347 				error = copyout((caddr_t)p, &dp->kp_proc,
1348 						sizeof(struct proc));
1349 				if (error)
1350 					goto cleanup;
1351 				error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1352 						sizeof(eproc));
1353 				if (error)
1354 					goto cleanup;
1355 				dp++;
1356 				buflen -= sizeof(struct kinfo_proc);
1357 			}
1358 			needed += sizeof(struct kinfo_proc);
1359 		} else { /* KERN_PROC2 */
1360 			if (buflen >= elem_size && elem_count > 0) {
1361 				fill_kproc2(p, &kproc2);
1362 				/*
1363 				 * Copy out elem_size, but not larger than
1364 				 * the size of a struct kinfo_proc2.
1365 				 */
1366 				error = copyout(&kproc2, dp2,
1367 				    min(sizeof(kproc2), elem_size));
1368 				if (error)
1369 					goto cleanup;
1370 				dp2 += elem_size;
1371 				buflen -= elem_size;
1372 				elem_count--;
1373 			}
1374 			needed += elem_size;
1375 		}
1376 	}
1377 	pd++;
1378 	if (pd->pd_list != NULL)
1379 		goto again;
1380 	proclist_unlock_read();
1381 
1382 	if (where != NULL) {
1383 		if (type == KERN_PROC)
1384 			*sizep = (caddr_t)dp - where;
1385 		else
1386 			*sizep = dp2 - where;
1387 		if (needed > *sizep)
1388 			return (ENOMEM);
1389 	} else {
1390 		needed += KERN_PROCSLOP;
1391 		*sizep = needed;
1392 	}
1393 	return (0);
1394  cleanup:
1395 	proclist_unlock_read();
1396 	return (error);
1397 }
1398 
1399 /*
1400  * Fill in an eproc structure for the specified process.
1401  */
1402 void
1403 fill_eproc(p, ep)
1404 	struct proc *p;
1405 	struct eproc *ep;
1406 {
1407 	struct tty *tp;
1408 
1409 	ep->e_paddr = p;
1410 	ep->e_sess = p->p_session;
1411 	ep->e_pcred = *p->p_cred;
1412 	ep->e_ucred = *p->p_ucred;
1413 	if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1414 		ep->e_vm.vm_rssize = 0;
1415 		ep->e_vm.vm_tsize = 0;
1416 		ep->e_vm.vm_dsize = 0;
1417 		ep->e_vm.vm_ssize = 0;
1418 		/* ep->e_vm.vm_pmap = XXX; */
1419 	} else {
1420 		struct vmspace *vm = p->p_vmspace;
1421 
1422 		ep->e_vm.vm_rssize = vm_resident_count(vm);
1423 		ep->e_vm.vm_tsize = vm->vm_tsize;
1424 		ep->e_vm.vm_dsize = vm->vm_dsize;
1425 		ep->e_vm.vm_ssize = vm->vm_ssize;
1426 	}
1427 	if (p->p_pptr)
1428 		ep->e_ppid = p->p_pptr->p_pid;
1429 	else
1430 		ep->e_ppid = 0;
1431 	ep->e_pgid = p->p_pgrp->pg_id;
1432 	ep->e_sid = ep->e_sess->s_sid;
1433 	ep->e_jobc = p->p_pgrp->pg_jobc;
1434 	if ((p->p_flag & P_CONTROLT) &&
1435 	     (tp = ep->e_sess->s_ttyp)) {
1436 		ep->e_tdev = tp->t_dev;
1437 		ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1438 		ep->e_tsess = tp->t_session;
1439 	} else
1440 		ep->e_tdev = NODEV;
1441 	if (p->p_wmesg)
1442 		strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1443 	ep->e_xsize = ep->e_xrssize = 0;
1444 	ep->e_xccount = ep->e_xswrss = 0;
1445 	ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1446 	if (SESS_LEADER(p))
1447 		ep->e_flag |= EPROC_SLEADER;
1448 	strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1449 }
1450 
1451 /*
1452  * Fill in an eproc structure for the specified process.
1453  */
1454 static void
1455 fill_kproc2(p, ki)
1456 	struct proc *p;
1457 	struct kinfo_proc2 *ki;
1458 {
1459 	struct tty *tp;
1460 
1461 	memset(ki, 0, sizeof(*ki));
1462 
1463 	ki->p_forw = PTRTOINT64(p->p_forw);
1464 	ki->p_back = PTRTOINT64(p->p_back);
1465 	ki->p_paddr = PTRTOINT64(p);
1466 
1467 	ki->p_addr = PTRTOINT64(p->p_addr);
1468 	ki->p_fd = PTRTOINT64(p->p_fd);
1469 	ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1470 	ki->p_stats = PTRTOINT64(p->p_stats);
1471 	ki->p_limit = PTRTOINT64(p->p_limit);
1472 	ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1473 	ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1474 	ki->p_sess = PTRTOINT64(p->p_session);
1475 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
1476 	ki->p_ru = PTRTOINT64(p->p_ru);
1477 
1478 	ki->p_eflag = 0;
1479 	ki->p_exitsig = p->p_exitsig;
1480 	ki->p_flag = p->p_flag;
1481 
1482 	ki->p_pid = p->p_pid;
1483 	if (p->p_pptr)
1484 		ki->p_ppid = p->p_pptr->p_pid;
1485 	else
1486 		ki->p_ppid = 0;
1487 	ki->p_sid = p->p_session->s_sid;
1488 	ki->p__pgid = p->p_pgrp->pg_id;
1489 
1490 	ki->p_tpgid = NO_PID;	/* may be changed if controlling tty below */
1491 
1492 	ki->p_uid = p->p_ucred->cr_uid;
1493 	ki->p_ruid = p->p_cred->p_ruid;
1494 	ki->p_gid = p->p_ucred->cr_gid;
1495 	ki->p_rgid = p->p_cred->p_rgid;
1496 
1497 	memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1498 	    min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1499 	ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1500 
1501 	ki->p_jobc = p->p_pgrp->pg_jobc;
1502 	if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1503 		ki->p_tdev = tp->t_dev;
1504 		ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1505 		ki->p_tsess = PTRTOINT64(tp->t_session);
1506 	} else {
1507 		ki->p_tdev = NODEV;
1508 	}
1509 
1510 	ki->p_estcpu = p->p_estcpu;
1511 	ki->p_rtime_sec = p->p_rtime.tv_sec;
1512 	ki->p_rtime_usec = p->p_rtime.tv_usec;
1513 	ki->p_cpticks = p->p_cpticks;
1514 	ki->p_pctcpu = p->p_pctcpu;
1515 	ki->p_swtime = p->p_swtime;
1516 	ki->p_slptime = p->p_slptime;
1517 	if (p->p_stat == SONPROC) {
1518 		KDASSERT(p->p_cpu != NULL);
1519 		ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1520 	} else
1521 		ki->p_schedflags = 0;
1522 
1523 	ki->p_uticks = p->p_uticks;
1524 	ki->p_sticks = p->p_sticks;
1525 	ki->p_iticks = p->p_iticks;
1526 
1527 	ki->p_tracep = PTRTOINT64(p->p_tracep);
1528 	ki->p_traceflag = p->p_traceflag;
1529 
1530 	ki->p_holdcnt = p->p_holdcnt;
1531 
1532 	memcpy(&ki->p_siglist, &p->p_siglist, sizeof(ki_sigset_t));
1533 	memcpy(&ki->p_sigmask, &p->p_sigmask, sizeof(ki_sigset_t));
1534 	memcpy(&ki->p_sigignore, &p->p_sigignore, sizeof(ki_sigset_t));
1535 	memcpy(&ki->p_sigcatch, &p->p_sigcatch, sizeof(ki_sigset_t));
1536 
1537 	ki->p_stat = p->p_stat;
1538 	ki->p_priority = p->p_priority;
1539 	ki->p_usrpri = p->p_usrpri;
1540 	ki->p_nice = p->p_nice;
1541 
1542 	ki->p_xstat = p->p_xstat;
1543 	ki->p_acflag = p->p_acflag;
1544 
1545 	strncpy(ki->p_comm, p->p_comm,
1546 	    min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1547 
1548 	if (p->p_wmesg)
1549 		strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1550 	ki->p_wchan = PTRTOINT64(p->p_wchan);
1551 
1552 	strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1553 
1554 	if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1555 		ki->p_vm_rssize = 0;
1556 		ki->p_vm_tsize = 0;
1557 		ki->p_vm_dsize = 0;
1558 		ki->p_vm_ssize = 0;
1559 	} else {
1560 		struct vmspace *vm = p->p_vmspace;
1561 
1562 		ki->p_vm_rssize = vm_resident_count(vm);
1563 		ki->p_vm_tsize = vm->vm_tsize;
1564 		ki->p_vm_dsize = vm->vm_dsize;
1565 		ki->p_vm_ssize = vm->vm_ssize;
1566 	}
1567 
1568 	if (p->p_session->s_ttyvp)
1569 		ki->p_eflag |= EPROC_CTTY;
1570 	if (SESS_LEADER(p))
1571 		ki->p_eflag |= EPROC_SLEADER;
1572 
1573 	/* XXX Is this double check necessary? */
1574 	if (P_ZOMBIE(p) || p->p_addr == NULL) {
1575 		ki->p_uvalid = 0;
1576 	} else {
1577 		ki->p_uvalid = 1;
1578 
1579 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1580 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1581 
1582 		ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1583 		ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1584 		ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1585 		ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1586 
1587 		ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1588 		ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1589 		ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1590 		ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1591 		ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1592 		ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1593 		ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1594 		ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1595 		ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1596 		ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1597 		ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1598 		ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1599 		ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1600 		ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1601 
1602 		ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1603 		    p->p_stats->p_cru.ru_stime.tv_sec;
1604 		ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1605 		    p->p_stats->p_cru.ru_stime.tv_usec;
1606 	}
1607 }
1608 
1609 int
1610 sysctl_procargs(name, namelen, where, sizep, up)
1611 	int *name;
1612 	u_int namelen;
1613 	void *where;
1614 	size_t *sizep;
1615 	struct proc *up;
1616 {
1617 	struct ps_strings pss;
1618 	struct proc *p;
1619 	size_t len, upper_bound, xlen;
1620 	struct uio auio;
1621 	struct iovec aiov;
1622 	vaddr_t argv;
1623 	pid_t pid;
1624 	int nargv, type, error, i;
1625 	char *arg;
1626 	char *tmp;
1627 
1628 	if (namelen != 2)
1629 		return (EINVAL);
1630 	pid = name[0];
1631 	type = name[1];
1632 
1633 	switch (type) {
1634 	  case KERN_PROC_ARGV:
1635 	  case KERN_PROC_NARGV:
1636 	  case KERN_PROC_ENV:
1637 	  case KERN_PROC_NENV:
1638 		/* ok */
1639 		break;
1640 	  default:
1641 		return (EINVAL);
1642 	}
1643 
1644 	/* check pid */
1645 	if ((p = pfind(pid)) == NULL)
1646 		return (EINVAL);
1647 
1648 	/* only root or same user change look at the environment */
1649 	if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1650 		if (up->p_ucred->cr_uid != 0) {
1651 			if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1652 			    up->p_cred->p_ruid != p->p_cred->p_svuid)
1653 				return (EPERM);
1654 		}
1655 	}
1656 
1657 	if (sizep != NULL && where == NULL) {
1658 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1659 			*sizep = sizeof (int);
1660 		else
1661 			*sizep = ARG_MAX;	/* XXX XXX XXX */
1662 		return (0);
1663 	}
1664 	if (where == NULL || sizep == NULL)
1665 		return (EINVAL);
1666 
1667 	/*
1668 	 * Zombies don't have a stack, so we can't read their psstrings.
1669 	 * System processes also don't have a user stack.
1670 	 */
1671 	if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1672 		return (EINVAL);
1673 
1674 	/*
1675 	 * Lock the process down in memory.
1676 	 */
1677 	/* XXXCDC: how should locking work here? */
1678 	if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1679 		return (EFAULT);
1680 	PHOLD(p);
1681 	p->p_vmspace->vm_refcnt++;	/* XXX */
1682 
1683 	/*
1684 	 * Allocate a temporary buffer to hold the arguments.
1685 	 */
1686 	arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1687 
1688 	/*
1689 	 * Read in the ps_strings structure.
1690 	 */
1691 	aiov.iov_base = &pss;
1692 	aiov.iov_len = sizeof(pss);
1693 	auio.uio_iov = &aiov;
1694 	auio.uio_iovcnt = 1;
1695 	auio.uio_offset = (vaddr_t)p->p_psstr;
1696 	auio.uio_resid = sizeof(pss);
1697 	auio.uio_segflg = UIO_SYSSPACE;
1698 	auio.uio_rw = UIO_READ;
1699 	auio.uio_procp = NULL;
1700 	error = uvm_io(&p->p_vmspace->vm_map, &auio);
1701 	if (error)
1702 		goto done;
1703 
1704 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1705 		memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1706 	else
1707 		memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1708 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1709 		error = copyout(&nargv, where, sizeof(nargv));
1710 		*sizep = sizeof(nargv);
1711 		goto done;
1712 	}
1713 	/*
1714 	 * Now read the address of the argument vector.
1715 	 */
1716 	switch (type) {
1717 	case KERN_PROC_ARGV:
1718 		/* XXX compat32 stuff here */
1719 		memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1720 		break;
1721 	case KERN_PROC_ENV:
1722 		memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1723 		break;
1724 	default:
1725 		return (EINVAL);
1726 	}
1727 	auio.uio_offset = (off_t)(long)tmp;
1728 	aiov.iov_base = &argv;
1729 	aiov.iov_len = sizeof(argv);
1730 	auio.uio_iov = &aiov;
1731 	auio.uio_iovcnt = 1;
1732 	auio.uio_resid = sizeof(argv);
1733 	auio.uio_segflg = UIO_SYSSPACE;
1734 	auio.uio_rw = UIO_READ;
1735 	auio.uio_procp = NULL;
1736 	error = uvm_io(&p->p_vmspace->vm_map, &auio);
1737 	if (error)
1738 		goto done;
1739 
1740 	/*
1741 	 * Now copy in the actual argument vector, one page at a time,
1742 	 * since we don't know how long the vector is (though, we do
1743 	 * know how many NUL-terminated strings are in the vector).
1744 	 */
1745 	len = 0;
1746 	upper_bound = *sizep;
1747 	for (; nargv != 0 && len < upper_bound; len += xlen) {
1748 		aiov.iov_base = arg;
1749 		aiov.iov_len = PAGE_SIZE;
1750 		auio.uio_iov = &aiov;
1751 		auio.uio_iovcnt = 1;
1752 		auio.uio_offset = argv + len;
1753 		xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1754 		auio.uio_resid = xlen;
1755 		auio.uio_segflg = UIO_SYSSPACE;
1756 		auio.uio_rw = UIO_READ;
1757 		auio.uio_procp = NULL;
1758 		error = uvm_io(&p->p_vmspace->vm_map, &auio);
1759 		if (error)
1760 			goto done;
1761 
1762 		for (i = 0; i < xlen && nargv != 0; i++) {
1763 			if (arg[i] == '\0')
1764 				nargv--;	/* one full string */
1765 		}
1766 
1767 		/* make sure we don't copyout past the end of the user's buffer */
1768 		if (len + i > upper_bound)
1769 			i = upper_bound - len;
1770 
1771 		error = copyout(arg, (char *)where + len, i);
1772 		if (error)
1773 			break;
1774 
1775 		if (nargv == 0) {
1776 			len += i;
1777 			break;
1778 		}
1779 	}
1780 	*sizep = len;
1781 
1782 done:
1783 	PRELE(p);
1784 	uvmspace_free(p->p_vmspace);
1785 
1786 	free(arg, M_TEMP);
1787 	return (error);
1788 }
1789