xref: /netbsd-src/sys/kern/kern_sysctl.c (revision 4472dbe5e3bd91ef2540bada7a7ca7384627ff9b)
1 /*	$NetBSD: kern_sysctl.c,v 1.70 2000/06/03 20:42:42 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Mike Karels at Berkeley Software Design, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sysctl.c	8.9 (Berkeley) 5/20/95
39  */
40 
41 /*
42  * sysctl system call.
43  */
44 
45 #include "opt_ddb.h"
46 #include "opt_insecure.h"
47 #include "opt_defcorename.h"
48 #include "opt_sysv.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/buf.h>
54 #include <sys/device.h>
55 #include <sys/disklabel.h>
56 #include <sys/dkstat.h>
57 #include <sys/exec.h>
58 #include <sys/file.h>
59 #include <sys/ioctl.h>
60 #include <sys/malloc.h>
61 #include <sys/mount.h>
62 #include <sys/msgbuf.h>
63 #include <sys/pool.h>
64 #include <sys/proc.h>
65 #include <sys/resource.h>
66 #include <sys/resourcevar.h>
67 #include <sys/syscallargs.h>
68 #include <sys/tty.h>
69 #include <sys/unistd.h>
70 #include <sys/vnode.h>
71 #include <sys/sysctl.h>
72 
73 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
74 #include <sys/ipc.h>
75 #endif
76 #ifdef SYSVMSG
77 #include <sys/msg.h>
78 #endif
79 #ifdef SYSVSEM
80 #include <sys/sem.h>
81 #endif
82 #ifdef SYSVSHM
83 #include <sys/shm.h>
84 #endif
85 
86 #if defined(DDB)
87 #include <ddb/ddbvar.h>
88 #endif
89 
90 #define PTRTOINT64(foo)	((u_int64_t)(uintptr_t)(foo))
91 
92 /*
93  * Locking and stats
94  */
95 static struct sysctl_lock {
96 	int	sl_lock;
97 	int	sl_want;
98 	int	sl_locked;
99 } memlock;
100 
101 static int sysctl_file __P((void *, size_t *));
102 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
103 static int sysctl_sysvipc __P((int *, u_int, void *, size_t *));
104 #endif
105 static int sysctl_doeproc __P((int *, u_int, void *, size_t *));
106 static void fill_kproc2 __P((struct proc *, struct kinfo_proc2 *));
107 static int sysctl_procargs __P((int *, u_int, void *, size_t *, struct proc *));
108 
109 int
110 sys___sysctl(p, v, retval)
111 	struct proc *p;
112 	void *v;
113 	register_t *retval;
114 {
115 	struct sys___sysctl_args /* {
116 		syscallarg(int *) name;
117 		syscallarg(u_int) namelen;
118 		syscallarg(void *) old;
119 		syscallarg(size_t *) oldlenp;
120 		syscallarg(void *) new;
121 		syscallarg(size_t) newlen;
122 	} */ *uap = v;
123 	int error, dolock = 1;
124 	size_t savelen = 0, oldlen = 0;
125 	sysctlfn *fn;
126 	int name[CTL_MAXNAME];
127 	size_t *oldlenp;
128 
129 	/*
130 	 * all top-level sysctl names are non-terminal
131 	 */
132 	if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
133 		return (EINVAL);
134 	error = copyin(SCARG(uap, name), &name,
135 		       SCARG(uap, namelen) * sizeof(int));
136 	if (error)
137 		return (error);
138 
139 	/*
140 	 * For all but CTL_PROC, must be root to change a value.
141 	 * For CTL_PROC, must be root, or owner of the proc (and not suid),
142 	 * this is checked in proc_sysctl() (once we know the targer proc).
143 	 */
144 	if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
145 		    (error = suser(p->p_ucred, &p->p_acflag)))
146 			return error;
147 
148 	switch (name[0]) {
149 	case CTL_KERN:
150 		fn = kern_sysctl;
151 		if (name[2] != KERN_VNODE)	/* XXX */
152 			dolock = 0;
153 		break;
154 	case CTL_HW:
155 		fn = hw_sysctl;
156 		break;
157 	case CTL_VM:
158 		fn = uvm_sysctl;
159 		break;
160 	case CTL_NET:
161 		fn = net_sysctl;
162 		break;
163 	case CTL_VFS:
164 		fn = vfs_sysctl;
165 		break;
166 	case CTL_MACHDEP:
167 		fn = cpu_sysctl;
168 		break;
169 #ifdef DEBUG
170 	case CTL_DEBUG:
171 		fn = debug_sysctl;
172 		break;
173 #endif
174 #ifdef DDB
175 	case CTL_DDB:
176 		fn = ddb_sysctl;
177 		break;
178 #endif
179 	case CTL_PROC:
180 		fn = proc_sysctl;
181 		break;
182 	default:
183 		return (EOPNOTSUPP);
184 	}
185 
186 	oldlenp = SCARG(uap, oldlenp);
187 	if (oldlenp) {
188 		if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
189 			return (error);
190 		oldlenp = &oldlen;
191 	}
192 	if (SCARG(uap, old) != NULL) {
193 		if (!uvm_useracc(SCARG(uap, old), oldlen, B_WRITE))
194 			return (EFAULT);
195 		while (memlock.sl_lock) {
196 			memlock.sl_want = 1;
197 			(void) tsleep(&memlock, PRIBIO+1, "memlock", 0);
198 			memlock.sl_locked++;
199 		}
200 		memlock.sl_lock = 1;
201 		if (dolock) {
202 			/*
203 			 * XXX Um, this is kind of evil.  What should we
204 			 * XXX be passing here?
205 			 */
206 			if (uvm_vslock(p, SCARG(uap, old), oldlen,
207 			    VM_PROT_NONE) != KERN_SUCCESS) {
208 				memlock.sl_lock = 0;
209 				if (memlock.sl_want) {
210 					memlock.sl_want = 0;
211 					wakeup((caddr_t)&memlock);
212 					return (EFAULT);
213 				}
214 			}
215 		}
216 		savelen = oldlen;
217 	}
218 	error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
219 	    oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
220 	if (SCARG(uap, old) != NULL) {
221 		if (dolock)
222 			uvm_vsunlock(p, SCARG(uap, old), savelen);
223 		memlock.sl_lock = 0;
224 		if (memlock.sl_want) {
225 			memlock.sl_want = 0;
226 			wakeup((caddr_t)&memlock);
227 		}
228 	}
229 	if (error)
230 		return (error);
231 	if (SCARG(uap, oldlenp))
232 		error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
233 	return (error);
234 }
235 
236 /*
237  * Attributes stored in the kernel.
238  */
239 char hostname[MAXHOSTNAMELEN];
240 int hostnamelen;
241 char domainname[MAXHOSTNAMELEN];
242 int domainnamelen;
243 long hostid;
244 #ifdef INSECURE
245 int securelevel = -1;
246 #else
247 int securelevel = 0;
248 #endif
249 #ifdef DEFCORENAME
250 char defcorename[MAXPATHLEN] = DEFCORENAME;
251 int defcorenamelen = sizeof(DEFCORENAME);
252 #else
253 char defcorename[MAXPATHLEN] = "%n.core";
254 int defcorenamelen = sizeof("%n.core");
255 #endif
256 extern	int	kern_logsigexit;
257 extern	fixpt_t	ccpu;
258 
259 /*
260  * kernel related system variables.
261  */
262 int
263 kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
264 	int *name;
265 	u_int namelen;
266 	void *oldp;
267 	size_t *oldlenp;
268 	void *newp;
269 	size_t newlen;
270 	struct proc *p;
271 {
272 	int error, level, inthostid;
273 	int old_autonicetime;
274 	int old_vnodes;
275 
276 	/* All sysctl names at this level, except for a few, are terminal. */
277 	switch (name[0]) {
278 	case KERN_PROC:
279 	case KERN_PROC2:
280 	case KERN_PROF:
281 	case KERN_MBUF:
282 	case KERN_PROC_ARGS:
283 	case KERN_SYSVIPC_INFO:
284 		/* Not terminal. */
285 		break;
286 	default:
287 		if (namelen != 1)
288 			return (ENOTDIR);	/* overloaded */
289 	}
290 
291 	switch (name[0]) {
292 	case KERN_OSTYPE:
293 		return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
294 	case KERN_OSRELEASE:
295 		return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
296 	case KERN_OSREV:
297 		return (sysctl_rdint(oldp, oldlenp, newp, NetBSD));
298 	case KERN_VERSION:
299 		return (sysctl_rdstring(oldp, oldlenp, newp, version));
300 	case KERN_MAXVNODES:
301 		old_vnodes = desiredvnodes;
302 		error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
303 		if (old_vnodes > desiredvnodes) {
304 		        desiredvnodes = old_vnodes;
305 			return (EINVAL);
306 		}
307 		return (error);
308 	case KERN_MAXPROC:
309 		return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
310 	case KERN_MAXFILES:
311 		return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
312 	case KERN_ARGMAX:
313 		return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
314 	case KERN_SECURELVL:
315 		level = securelevel;
316 		if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
317 		    newp == NULL)
318 			return (error);
319 		if (level < securelevel && p->p_pid != 1)
320 			return (EPERM);
321 		securelevel = level;
322 		return (0);
323 	case KERN_HOSTNAME:
324 		error = sysctl_string(oldp, oldlenp, newp, newlen,
325 		    hostname, sizeof(hostname));
326 		if (newp && !error)
327 			hostnamelen = newlen;
328 		return (error);
329 	case KERN_DOMAINNAME:
330 		error = sysctl_string(oldp, oldlenp, newp, newlen,
331 		    domainname, sizeof(domainname));
332 		if (newp && !error)
333 			domainnamelen = newlen;
334 		return (error);
335 	case KERN_HOSTID:
336 		inthostid = hostid;  /* XXX assumes sizeof long <= sizeof int */
337 		error =  sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
338 		hostid = inthostid;
339 		return (error);
340 	case KERN_CLOCKRATE:
341 		return (sysctl_clockrate(oldp, oldlenp));
342 	case KERN_BOOTTIME:
343 		return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
344 		    sizeof(struct timeval)));
345 	case KERN_VNODE:
346 		return (sysctl_vnode(oldp, oldlenp, p));
347 	case KERN_PROC:
348 	case KERN_PROC2:
349 		return (sysctl_doeproc(name, namelen, oldp, oldlenp));
350 	case KERN_PROC_ARGS:
351 		return (sysctl_procargs(name + 1, namelen - 1,
352 		    oldp, oldlenp, p));
353 	case KERN_FILE:
354 		return (sysctl_file(oldp, oldlenp));
355 #ifdef GPROF
356 	case KERN_PROF:
357 		return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
358 		    newp, newlen));
359 #endif
360 	case KERN_POSIX1:
361 		return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
362 	case KERN_NGROUPS:
363 		return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
364 	case KERN_JOB_CONTROL:
365 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
366 	case KERN_SAVED_IDS:
367 #ifdef _POSIX_SAVED_IDS
368 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
369 #else
370 		return (sysctl_rdint(oldp, oldlenp, newp, 0));
371 #endif
372 	case KERN_MAXPARTITIONS:
373 		return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
374 	case KERN_RAWPARTITION:
375 		return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
376 #ifdef NTP
377 	case KERN_NTPTIME:
378 		return (sysctl_ntptime(oldp, oldlenp));
379 #endif
380 	case KERN_AUTONICETIME:
381 	        old_autonicetime = autonicetime;
382 	        error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
383 		if (autonicetime < 0)
384  		        autonicetime = old_autonicetime;
385 		return (error);
386 	case KERN_AUTONICEVAL:
387 		error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
388 		if (autoniceval < PRIO_MIN)
389 			autoniceval = PRIO_MIN;
390 		if (autoniceval > PRIO_MAX)
391 			autoniceval = PRIO_MAX;
392 		return (error);
393 	case KERN_RTC_OFFSET:
394 		return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
395 	case KERN_ROOT_DEVICE:
396 		return (sysctl_rdstring(oldp, oldlenp, newp,
397 		    root_device->dv_xname));
398 	case KERN_MSGBUFSIZE:
399 		/*
400 		 * deal with cases where the message buffer has
401 		 * become corrupted.
402 		 */
403 		if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
404 			msgbufenabled = 0;
405 			return (ENXIO);
406 		}
407 		return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
408 	case KERN_FSYNC:
409 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
410 	case KERN_SYSVMSG:
411 #ifdef SYSVMSG
412 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
413 #else
414 		return (sysctl_rdint(oldp, oldlenp, newp, 0));
415 #endif
416 	case KERN_SYSVSEM:
417 #ifdef SYSVSEM
418 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
419 #else
420 		return (sysctl_rdint(oldp, oldlenp, newp, 0));
421 #endif
422 	case KERN_SYSVSHM:
423 #ifdef SYSVSHM
424 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
425 #else
426 		return (sysctl_rdint(oldp, oldlenp, newp, 0));
427 #endif
428  	case KERN_DEFCORENAME:
429 		if (newp && newlen < 1)
430 			return (EINVAL);
431 		error = sysctl_string(oldp, oldlenp, newp, newlen,
432 		    defcorename, sizeof(defcorename));
433 		if (newp && !error)
434 			defcorenamelen = newlen;
435 		return (error);
436 	case KERN_SYNCHRONIZED_IO:
437 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
438 	case KERN_IOV_MAX:
439 		return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
440 	case KERN_MBUF:
441 		return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
442 		    newp, newlen));
443 	case KERN_MAPPED_FILES:
444 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
445 	case KERN_MEMLOCK:
446 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
447 	case KERN_MEMLOCK_RANGE:
448 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
449 	case KERN_MEMORY_PROTECTION:
450 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
451 	case KERN_LOGIN_NAME_MAX:
452 		return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
453 	case KERN_LOGSIGEXIT:
454 		return (sysctl_int(oldp, oldlenp, newp, newlen,
455 		    &kern_logsigexit));
456 	case KERN_FSCALE:
457 		return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
458 	case KERN_CCPU:
459 		return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
460 	case KERN_CP_TIME:
461 		/* XXXSMP: WRONG! */
462 		return (sysctl_rdstruct(oldp, oldlenp, newp,
463 		    curcpu()->ci_schedstate.spc_cp_time,
464 		    sizeof(curcpu()->ci_schedstate.spc_cp_time)));
465 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
466 	case KERN_SYSVIPC_INFO:
467 		return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
468 #endif
469 	default:
470 		return (EOPNOTSUPP);
471 	}
472 	/* NOTREACHED */
473 }
474 
475 /*
476  * hardware related system variables.
477  */
478 int
479 hw_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
480 	int *name;
481 	u_int namelen;
482 	void *oldp;
483 	size_t *oldlenp;
484 	void *newp;
485 	size_t newlen;
486 	struct proc *p;
487 {
488 
489 	/* all sysctl names at this level are terminal */
490 	if (namelen != 1)
491 		return (ENOTDIR);		/* overloaded */
492 
493 	switch (name[0]) {
494 	case HW_MACHINE:
495 		return (sysctl_rdstring(oldp, oldlenp, newp, machine));
496 	case HW_MACHINE_ARCH:
497 		return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
498 	case HW_MODEL:
499 		return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
500 	case HW_NCPU:
501 		return (sysctl_rdint(oldp, oldlenp, newp, 1));	/* XXX */
502 	case HW_BYTEORDER:
503 		return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
504 	case HW_PHYSMEM:
505 		return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
506 	case HW_USERMEM:
507 		return (sysctl_rdint(oldp, oldlenp, newp,
508 		    ctob(physmem - uvmexp.wired)));
509 	case HW_PAGESIZE:
510 		return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
511 	case HW_ALIGNBYTES:
512 		return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
513 	default:
514 		return (EOPNOTSUPP);
515 	}
516 	/* NOTREACHED */
517 }
518 
519 #ifdef DEBUG
520 /*
521  * Debugging related system variables.
522  */
523 struct ctldebug debug0, debug1, debug2, debug3, debug4;
524 struct ctldebug debug5, debug6, debug7, debug8, debug9;
525 struct ctldebug debug10, debug11, debug12, debug13, debug14;
526 struct ctldebug debug15, debug16, debug17, debug18, debug19;
527 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
528 	&debug0, &debug1, &debug2, &debug3, &debug4,
529 	&debug5, &debug6, &debug7, &debug8, &debug9,
530 	&debug10, &debug11, &debug12, &debug13, &debug14,
531 	&debug15, &debug16, &debug17, &debug18, &debug19,
532 };
533 int
534 debug_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
535 	int *name;
536 	u_int namelen;
537 	void *oldp;
538 	size_t *oldlenp;
539 	void *newp;
540 	size_t newlen;
541 	struct proc *p;
542 {
543 	struct ctldebug *cdp;
544 
545 	/* all sysctl names at this level are name and field */
546 	if (namelen != 2)
547 		return (ENOTDIR);		/* overloaded */
548 	cdp = debugvars[name[0]];
549 	if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
550 		return (EOPNOTSUPP);
551 	switch (name[1]) {
552 	case CTL_DEBUG_NAME:
553 		return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
554 	case CTL_DEBUG_VALUE:
555 		return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
556 	default:
557 		return (EOPNOTSUPP);
558 	}
559 	/* NOTREACHED */
560 }
561 #endif /* DEBUG */
562 
563 int
564 proc_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
565 	int *name;
566 	u_int namelen;
567 	void *oldp;
568 	size_t *oldlenp;
569 	void *newp;
570 	size_t newlen;
571 	struct proc *p;
572 {
573 	struct proc *ptmp = NULL;
574 	const struct proclist_desc *pd;
575 	int error = 0;
576 	struct rlimit alim;
577 	struct plimit *newplim;
578 	char *tmps = NULL;
579 	int i, curlen, len;
580 
581 	if (namelen < 2)
582 		return EINVAL;
583 
584 	if (name[0] == PROC_CURPROC) {
585 		ptmp = p;
586 	} else {
587 		proclist_lock_read();
588 		for (pd = proclists; pd->pd_list != NULL; pd++) {
589 			for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
590 			    ptmp = LIST_NEXT(ptmp, p_list)) {
591 				/* Skip embryonic processes. */
592 				if (ptmp->p_stat == SIDL)
593 					continue;
594 				if (ptmp->p_pid == (pid_t)name[0])
595 					break;
596 			}
597 			if (ptmp != NULL)
598 				break;
599 		}
600 		proclist_unlock_read();
601 		if (ptmp == NULL)
602 			return(ESRCH);
603 		if (p->p_ucred->cr_uid != 0) {
604 			if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
605 			    p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
606 				return EPERM;
607 			if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
608 				return EPERM; /* sgid proc */
609 			for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
610 				if (p->p_ucred->cr_groups[i] ==
611 				    ptmp->p_cred->p_rgid)
612 					break;
613 			}
614 			if (i == p->p_ucred->cr_ngroups)
615 				return EPERM;
616 		}
617 	}
618 	if (name[1] == PROC_PID_CORENAME) {
619 		if (namelen != 2)
620 			return EINVAL;
621 		/*
622 		 * Can't use sysctl_string() here because we may malloc a new
623 		 * area during the process, so we have to do it by hand.
624 		 */
625 		curlen = strlen(ptmp->p_limit->pl_corename) + 1;
626 		if (oldlenp  && *oldlenp < curlen) {
627 			if (!oldp)
628 				*oldlenp = curlen;
629 			return (ENOMEM);
630 		}
631 		if (newp) {
632 			if (securelevel > 2)
633 				return EPERM;
634 			if (newlen > MAXPATHLEN)
635 				return ENAMETOOLONG;
636 			tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
637 			if (tmps == NULL)
638 				return ENOMEM;
639 			error = copyin(newp, tmps, newlen + 1);
640 			tmps[newlen] = '\0';
641 			if (error)
642 				goto cleanup;
643 			/* Enforce to be either 'core' for end with '.core' */
644 			if (newlen < 4)  { /* c.o.r.e */
645 				error = EINVAL;
646 				goto cleanup;
647 			}
648 			len = newlen - 4;
649 			if (len > 0) {
650 				if (tmps[len - 1] != '.' &&
651 				    tmps[len - 1] != '/') {
652 					error = EINVAL;
653 					goto cleanup;
654 				}
655 			}
656 			if (strcmp(&tmps[len], "core") != 0) {
657 				error = EINVAL;
658 				goto cleanup;
659 			}
660 		}
661 		if (oldp && oldlenp) {
662 			*oldlenp = curlen;
663 			error = copyout(ptmp->p_limit->pl_corename, oldp,
664 			    curlen);
665 		}
666 		if (newp && error == 0) {
667 			/* if the 2 strings are identical, don't limcopy() */
668 			if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
669 				error = 0;
670 				goto cleanup;
671 			}
672 			if (ptmp->p_limit->p_refcnt > 1 &&
673 			    (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
674 				newplim = limcopy(ptmp->p_limit);
675 				limfree(ptmp->p_limit);
676 				ptmp->p_limit = newplim;
677 			} else if (ptmp->p_limit->pl_corename != defcorename) {
678 				free(ptmp->p_limit->pl_corename, M_TEMP);
679 			}
680 			ptmp->p_limit->pl_corename = tmps;
681 			return (0);
682 		}
683 cleanup:
684 		if (tmps)
685 			free(tmps, M_TEMP);
686 		return (error);
687 	}
688 	if (name[1] == PROC_PID_LIMIT) {
689 		if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
690 			return EINVAL;
691 		memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
692 		if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
693 			error = sysctl_quad(oldp, oldlenp, newp, newlen,
694 			    &alim.rlim_max);
695 		else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
696 			error = sysctl_quad(oldp, oldlenp, newp, newlen,
697 			    &alim.rlim_cur);
698 		else
699 			error = EINVAL;
700 
701 		if (error)
702 			return error;
703 
704 		if (newp)
705 			error = dosetrlimit(ptmp, p->p_cred,
706 			    name[2] - 1, &alim);
707 		return error;
708 	}
709 	return (EINVAL);
710 }
711 
712 /*
713  * Convenience macros.
714  */
715 
716 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) 		\
717 	if (oldlenp) {							\
718 		if (!oldp)						\
719 			*oldlenp = len;					\
720 		else {							\
721 			if (*oldlenp < len)				\
722 				return(ENOMEM);				\
723 			*oldlenp = len;					\
724 			error = copyout((caddr_t)valp, oldp, len);	\
725 		}							\
726 	}
727 
728 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
729 	SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
730 
731 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)	\
732 	if (newp && newlen != len)			\
733 		return (EINVAL);
734 
735 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ)	\
736 	SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
737 
738 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len)	\
739 	if (error == 0 && newp)				\
740 		error = copyin(newp, valp, len);
741 
742 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ)      \
743 	SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
744 
745 #define SYSCTL_STRING_CORE(oldp, oldlenp, str)		\
746 	if (oldlenp) {					\
747 		len = strlen(str) + 1;			\
748 		if (!oldp)				\
749 			*oldlenp = len;			\
750 		else {					\
751 			if (*oldlenp < len) {		\
752 				err2 = ENOMEM;		\
753 				len = *oldlenp;		\
754 			} else				\
755 				*oldlenp = len;		\
756 			error = copyout(str, oldp, len);\
757 			if (error == 0)			\
758 				error = err2;		\
759 		}					\
760 	}
761 
762 /*
763  * Validate parameters and get old / set new parameters
764  * for an integer-valued sysctl function.
765  */
766 int
767 sysctl_int(oldp, oldlenp, newp, newlen, valp)
768 	void *oldp;
769 	size_t *oldlenp;
770 	void *newp;
771 	size_t newlen;
772 	int *valp;
773 {
774 	int error = 0;
775 
776 	SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
777 	SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
778 	SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
779 
780 	return (error);
781 }
782 
783 
784 /*
785  * As above, but read-only.
786  */
787 int
788 sysctl_rdint(oldp, oldlenp, newp, val)
789 	void *oldp;
790 	size_t *oldlenp;
791 	void *newp;
792 	int val;
793 {
794 	int error = 0;
795 
796 	if (newp)
797 		return (EPERM);
798 
799 	SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
800 
801 	return (error);
802 }
803 
804 /*
805  * Validate parameters and get old / set new parameters
806  * for an quad-valued sysctl function.
807  */
808 int
809 sysctl_quad(oldp, oldlenp, newp, newlen, valp)
810 	void *oldp;
811 	size_t *oldlenp;
812 	void *newp;
813 	size_t newlen;
814 	quad_t *valp;
815 {
816 	int error = 0;
817 
818 	SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
819 	SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
820 	SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
821 
822 	return (error);
823 }
824 
825 /*
826  * As above, but read-only.
827  */
828 int
829 sysctl_rdquad(oldp, oldlenp, newp, val)
830 	void *oldp;
831 	size_t *oldlenp;
832 	void *newp;
833 	quad_t val;
834 {
835 	int error = 0;
836 
837 	if (newp)
838 		return (EPERM);
839 
840 	SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
841 
842 	return (error);
843 }
844 
845 /*
846  * Validate parameters and get old / set new parameters
847  * for a string-valued sysctl function.
848  */
849 int
850 sysctl_string(oldp, oldlenp, newp, newlen, str, maxlen)
851 	void *oldp;
852 	size_t *oldlenp;
853 	void *newp;
854 	size_t newlen;
855 	char *str;
856 	int maxlen;
857 {
858 	int len, error = 0, err2 = 0;
859 
860 	if (newp && newlen >= maxlen)
861 		return (EINVAL);
862 
863 	SYSCTL_STRING_CORE(oldp, oldlenp, str);
864 
865 	if (error == 0 && newp) {
866 		error = copyin(newp, str, newlen);
867 		str[newlen] = 0;
868 	}
869 	return (error);
870 }
871 
872 /*
873  * As above, but read-only.
874  */
875 int
876 sysctl_rdstring(oldp, oldlenp, newp, str)
877 	void *oldp;
878 	size_t *oldlenp;
879 	void *newp;
880 	char *str;
881 {
882 	int len, error = 0, err2 = 0;
883 
884 	if (newp)
885 		return (EPERM);
886 
887 	SYSCTL_STRING_CORE(oldp, oldlenp, str);
888 
889 	return (error);
890 }
891 
892 /*
893  * Validate parameters and get old / set new parameters
894  * for a structure oriented sysctl function.
895  */
896 int
897 sysctl_struct(oldp, oldlenp, newp, newlen, sp, len)
898 	void *oldp;
899 	size_t *oldlenp;
900 	void *newp;
901 	size_t newlen;
902 	void *sp;
903 	int len;
904 {
905 	int error = 0;
906 
907 	SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
908 	SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
909 	SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
910 
911 	return (error);
912 }
913 
914 /*
915  * Validate parameters and get old parameters
916  * for a structure oriented sysctl function.
917  */
918 int
919 sysctl_rdstruct(oldp, oldlenp, newp, sp, len)
920 	void *oldp;
921 	size_t *oldlenp;
922 	void *newp, *sp;
923 	int len;
924 {
925 	int error = 0;
926 
927 	if (newp)
928 		return (EPERM);
929 
930 	SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
931 
932 	return (error);
933 }
934 
935 /*
936  * Get file structures.
937  */
938 static int
939 sysctl_file(vwhere, sizep)
940 	void *vwhere;
941 	size_t *sizep;
942 {
943 	int buflen, error;
944 	struct file *fp;
945 	char *start, *where;
946 
947 	start = where = vwhere;
948 	buflen = *sizep;
949 	if (where == NULL) {
950 		/*
951 		 * overestimate by 10 files
952 		 */
953 		*sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
954 		return (0);
955 	}
956 
957 	/*
958 	 * first copyout filehead
959 	 */
960 	if (buflen < sizeof(filehead)) {
961 		*sizep = 0;
962 		return (0);
963 	}
964 	error = copyout((caddr_t)&filehead, where, sizeof(filehead));
965 	if (error)
966 		return (error);
967 	buflen -= sizeof(filehead);
968 	where += sizeof(filehead);
969 
970 	/*
971 	 * followed by an array of file structures
972 	 */
973 	for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
974 		if (buflen < sizeof(struct file)) {
975 			*sizep = where - start;
976 			return (ENOMEM);
977 		}
978 		error = copyout((caddr_t)fp, where, sizeof(struct file));
979 		if (error)
980 			return (error);
981 		buflen -= sizeof(struct file);
982 		where += sizeof(struct file);
983 	}
984 	*sizep = where - start;
985 	return (0);
986 }
987 
988 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
989 #define	FILL_PERM(src, dst) do { \
990 		(dst)._key = (src)._key; \
991 		(dst).uid = (src).uid; \
992 		(dst).gid = (src).gid; \
993 		(dst).cuid = (src).cuid; \
994 		(dst).cgid = (src).cgid; \
995 		(dst).mode = (src).mode; \
996 		(dst)._seq = (src)._seq; \
997 	} while (0);
998 #define	FILL_MSG(src, dst) do { \
999 	FILL_PERM((src).msg_perm, (dst).msg_perm); \
1000 	(dst).msg_qnum = (src).msg_qnum; \
1001 	(dst).msg_qbytes = (src).msg_qbytes; \
1002 	(dst)._msg_cbytes = (src)._msg_cbytes; \
1003 	(dst).msg_lspid = (src).msg_lspid; \
1004 	(dst).msg_lrpid = (src).msg_lrpid; \
1005 	(dst).msg_stime = (src).msg_stime; \
1006 	(dst).msg_rtime = (src).msg_rtime; \
1007 	(dst).msg_ctime = (src).msg_ctime; \
1008 	} while (0)
1009 #define	FILL_SEM(src, dst) do { \
1010 	FILL_PERM((src).sem_perm, (dst).sem_perm); \
1011 	(dst).sem_nsems = (src).sem_nsems; \
1012 	(dst).sem_otime = (src).sem_otime; \
1013 	(dst).sem_ctime = (src).sem_ctime; \
1014 	} while (0)
1015 #define	FILL_SHM(src, dst) do { \
1016 	FILL_PERM((src).shm_perm, (dst).shm_perm); \
1017 	(dst).shm_segsz = (src).shm_segsz; \
1018 	(dst).shm_lpid = (src).shm_lpid; \
1019 	(dst).shm_cpid = (src).shm_cpid; \
1020 	(dst).shm_atime = (src).shm_atime; \
1021 	(dst).shm_dtime = (src).shm_dtime; \
1022 	(dst).shm_ctime = (src).shm_ctime; \
1023 	(dst).shm_nattch = (src).shm_nattch; \
1024 	} while (0)
1025 
1026 static int
1027 sysctl_sysvipc(name, namelen, where, sizep)
1028 	int *name;
1029 	u_int namelen;
1030 	void *where;
1031 	size_t *sizep;
1032 {
1033 	struct msg_sysctl_info *msgsi;
1034 	struct sem_sysctl_info *semsi;
1035 	struct shm_sysctl_info *shmsi;
1036 	size_t infosize, dssize, tsize, buflen;
1037 	void *buf = NULL, *buf2;
1038 	char *start;
1039 	int32_t nds;
1040 	int i, error, ret;
1041 
1042 	if (namelen != 1)
1043 		return (EINVAL);
1044 
1045 	start = where;
1046 	buflen = *sizep;
1047 
1048 	switch (*name) {
1049 	case KERN_SYSVIPC_MSG_INFO:
1050 #ifdef SYSVMSG
1051 		infosize = sizeof(msgsi->msginfo);
1052 		nds = msginfo.msgmni;
1053 		dssize = sizeof(msgsi->msgids[0]);
1054 		break;
1055 #else
1056 		return (EINVAL);
1057 #endif
1058 	case KERN_SYSVIPC_SEM_INFO:
1059 #ifdef SYSVSEM
1060 		infosize = sizeof(semsi->seminfo);
1061 		nds = seminfo.semmni;
1062 		dssize = sizeof(semsi->semids[0]);
1063 		break;
1064 #else
1065 		return (EINVAL);
1066 #endif
1067 	case KERN_SYSVIPC_SHM_INFO:
1068 #ifdef SYSVSHM
1069 		infosize = sizeof(shmsi->shminfo);
1070 		nds = shminfo.shmmni;
1071 		dssize = sizeof(shmsi->shmids[0]);
1072 		break;
1073 #else
1074 		return (EINVAL);
1075 #endif
1076 	default:
1077 		return (EINVAL);
1078 	}
1079 	/*
1080 	 * Round infosize to 64 bit boundary if requesting more than just
1081 	 * the info structure or getting the total data size.
1082 	 */
1083 	if (where == NULL || *sizep > infosize)
1084 		infosize = ((infosize + 7) / 8) * 8;
1085 	tsize = infosize + nds * dssize;
1086 
1087 	/* Return just the total size required. */
1088 	if (where == NULL) {
1089 		*sizep = tsize;
1090 		return (0);
1091 	}
1092 
1093 	/* Not enough room for even the info struct. */
1094 	if (buflen < infosize) {
1095 		*sizep = 0;
1096 		return (ENOMEM);
1097 	}
1098 	buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1099 	memset(buf, 0, min(tsize, buflen));
1100 
1101 	switch (*name) {
1102 	case KERN_SYSVIPC_MSG_INFO:
1103 		msgsi = (struct msg_sysctl_info *)buf;
1104 		buf2 = &msgsi->msgids[0];
1105 		msgsi->msginfo = msginfo;
1106 		break;
1107 	case KERN_SYSVIPC_SEM_INFO:
1108 		semsi = (struct sem_sysctl_info *)buf;
1109 		buf2 = &semsi->semids[0];
1110 		semsi->seminfo = seminfo;
1111 		break;
1112 	case KERN_SYSVIPC_SHM_INFO:
1113 		shmsi = (struct shm_sysctl_info *)buf;
1114 		buf2 = &shmsi->shmids[0];
1115 		shmsi->shminfo = shminfo;
1116 		break;
1117 	}
1118 	buflen -= infosize;
1119 
1120 	ret = 0;
1121 	if (buflen > 0) {
1122 		/* Fill in the IPC data structures.  */
1123 		for (i = 0; i < nds; i++) {
1124 			if (buflen < dssize) {
1125 				ret = ENOMEM;
1126 				break;
1127 			}
1128 			switch (*name) {
1129 			case KERN_SYSVIPC_MSG_INFO:
1130 				FILL_MSG(msqids[i], msgsi->msgids[i]);
1131 				break;
1132 			case KERN_SYSVIPC_SEM_INFO:
1133 				FILL_SEM(sema[i], semsi->semids[i]);
1134 				break;
1135 			case KERN_SYSVIPC_SHM_INFO:
1136 				FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1137 				break;
1138 			}
1139 			buflen -= dssize;
1140 		}
1141 	}
1142 	*sizep -= buflen;
1143 	error = copyout(buf, start, *sizep);
1144 	/* If copyout succeeded, use return code set earlier. */
1145 	if (error == 0)
1146 		error = ret;
1147 	if (buf)
1148 		free(buf, M_TEMP);
1149 	return (error);
1150 }
1151 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1152 
1153 /*
1154  * try over estimating by 5 procs
1155  */
1156 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
1157 
1158 static int
1159 sysctl_doeproc(name, namelen, vwhere, sizep)
1160 	int *name;
1161 	u_int namelen;
1162 	void *vwhere;
1163 	size_t *sizep;
1164 {
1165 	struct eproc eproc;
1166 	struct kinfo_proc2 kproc2;
1167 	struct kinfo_proc *dp;
1168 	struct proc *p;
1169 	const struct proclist_desc *pd;
1170 	char *where, *dp2;
1171 	int type, op, arg, elem_size, elem_count;
1172 	int buflen, needed, error;
1173 
1174 	dp = vwhere;
1175 	dp2 = where = vwhere;
1176 	buflen = where != NULL ? *sizep : 0;
1177 	error = needed = 0;
1178 	type = name[0];
1179 
1180 	if (type == KERN_PROC) {
1181 		if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1182 			return (EINVAL);
1183 		op = name[1];
1184 		if (op != KERN_PROC_ALL)
1185 			arg = name[2];
1186 	} else {
1187 		if (namelen != 5)
1188 			return (EINVAL);
1189 		op = name[1];
1190 		arg = name[2];
1191 		elem_size = name[3];
1192 		elem_count = name[4];
1193 	}
1194 
1195 	proclist_lock_read();
1196 
1197 	pd = proclists;
1198 again:
1199 	for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1200 		/*
1201 		 * Skip embryonic processes.
1202 		 */
1203 		if (p->p_stat == SIDL)
1204 			continue;
1205 		/*
1206 		 * TODO - make more efficient (see notes below).
1207 		 * do by session.
1208 		 */
1209 		switch (op) {
1210 
1211 		case KERN_PROC_PID:
1212 			/* could do this with just a lookup */
1213 			if (p->p_pid != (pid_t)arg)
1214 				continue;
1215 			break;
1216 
1217 		case KERN_PROC_PGRP:
1218 			/* could do this by traversing pgrp */
1219 			if (p->p_pgrp->pg_id != (pid_t)arg)
1220 				continue;
1221 			break;
1222 
1223 		case KERN_PROC_TTY:
1224 			if (arg == KERN_PROC_TTY_REVOKE) {
1225 				if ((p->p_flag & P_CONTROLT) == 0 ||
1226 				    p->p_session->s_ttyp == NULL ||
1227 				    p->p_session->s_ttyvp != NULL)
1228 					continue;
1229 			} else if ((p->p_flag & P_CONTROLT) == 0 ||
1230 			    p->p_session->s_ttyp == NULL) {
1231 				if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1232 					continue;
1233 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1234 				continue;
1235 			break;
1236 
1237 		case KERN_PROC_UID:
1238 			if (p->p_ucred->cr_uid != (uid_t)arg)
1239 				continue;
1240 			break;
1241 
1242 		case KERN_PROC_RUID:
1243 			if (p->p_cred->p_ruid != (uid_t)arg)
1244 				continue;
1245 			break;
1246 		}
1247 		if (type == KERN_PROC) {
1248 			if (buflen >= sizeof(struct kinfo_proc)) {
1249 				fill_eproc(p, &eproc);
1250 				error = copyout((caddr_t)p, &dp->kp_proc,
1251 						sizeof(struct proc));
1252 				if (error)
1253 					goto cleanup;
1254 				error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1255 						sizeof(eproc));
1256 				if (error)
1257 					goto cleanup;
1258 				dp++;
1259 				buflen -= sizeof(struct kinfo_proc);
1260 			}
1261 			needed += sizeof(struct kinfo_proc);
1262 		} else { /* KERN_PROC2 */
1263 			if (buflen >= elem_size && elem_count > 0) {
1264 				fill_kproc2(p, &kproc2);
1265 				/*
1266 				 * Copy out elem_size, but not larger than
1267 				 * the size of a struct kinfo_proc2.
1268 				 */
1269 				error = copyout(&kproc2, dp2,
1270 				    min(sizeof(kproc2), elem_size));
1271 				if (error)
1272 					goto cleanup;
1273 				dp2 += elem_size;
1274 				buflen -= elem_size;
1275 				elem_count--;
1276 			}
1277 			needed += elem_size;
1278 		}
1279 	}
1280 	pd++;
1281 	if (pd->pd_list != NULL)
1282 		goto again;
1283 	proclist_unlock_read();
1284 
1285 	if (where != NULL) {
1286 		if (type == KERN_PROC)
1287 			*sizep = (caddr_t)dp - where;
1288 		else
1289 			*sizep = dp2 - where;
1290 		if (needed > *sizep)
1291 			return (ENOMEM);
1292 	} else {
1293 		needed += KERN_PROCSLOP;
1294 		*sizep = needed;
1295 	}
1296 	return (0);
1297  cleanup:
1298 	proclist_unlock_read();
1299 	return (error);
1300 }
1301 
1302 /*
1303  * Fill in an eproc structure for the specified process.
1304  */
1305 void
1306 fill_eproc(p, ep)
1307 	struct proc *p;
1308 	struct eproc *ep;
1309 {
1310 	struct tty *tp;
1311 
1312 	ep->e_paddr = p;
1313 	ep->e_sess = p->p_session;
1314 	ep->e_pcred = *p->p_cred;
1315 	ep->e_ucred = *p->p_ucred;
1316 	if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1317 		ep->e_vm.vm_rssize = 0;
1318 		ep->e_vm.vm_tsize = 0;
1319 		ep->e_vm.vm_dsize = 0;
1320 		ep->e_vm.vm_ssize = 0;
1321 		/* ep->e_vm.vm_pmap = XXX; */
1322 	} else {
1323 		struct vmspace *vm = p->p_vmspace;
1324 
1325 		ep->e_vm.vm_rssize = vm_resident_count(vm);
1326 		ep->e_vm.vm_tsize = vm->vm_tsize;
1327 		ep->e_vm.vm_dsize = vm->vm_dsize;
1328 		ep->e_vm.vm_ssize = vm->vm_ssize;
1329 	}
1330 	if (p->p_pptr)
1331 		ep->e_ppid = p->p_pptr->p_pid;
1332 	else
1333 		ep->e_ppid = 0;
1334 	ep->e_pgid = p->p_pgrp->pg_id;
1335 	ep->e_sid = ep->e_sess->s_sid;
1336 	ep->e_jobc = p->p_pgrp->pg_jobc;
1337 	if ((p->p_flag & P_CONTROLT) &&
1338 	     (tp = ep->e_sess->s_ttyp)) {
1339 		ep->e_tdev = tp->t_dev;
1340 		ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1341 		ep->e_tsess = tp->t_session;
1342 	} else
1343 		ep->e_tdev = NODEV;
1344 	if (p->p_wmesg)
1345 		strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1346 	ep->e_xsize = ep->e_xrssize = 0;
1347 	ep->e_xccount = ep->e_xswrss = 0;
1348 	ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1349 	if (SESS_LEADER(p))
1350 		ep->e_flag |= EPROC_SLEADER;
1351 	strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1352 }
1353 
1354 /*
1355  * Fill in an eproc structure for the specified process.
1356  */
1357 static void
1358 fill_kproc2(p, ki)
1359 	struct proc *p;
1360 	struct kinfo_proc2 *ki;
1361 {
1362 	struct tty *tp;
1363 
1364 	memset(ki, 0, sizeof(*ki));
1365 
1366 	ki->p_forw = PTRTOINT64(p->p_forw);
1367 	ki->p_back = PTRTOINT64(p->p_back);
1368 	ki->p_paddr = PTRTOINT64(p);
1369 
1370 	ki->p_addr = PTRTOINT64(p->p_addr);
1371 	ki->p_fd = PTRTOINT64(p->p_fd);
1372 	ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1373 	ki->p_stats = PTRTOINT64(p->p_stats);
1374 	ki->p_limit = PTRTOINT64(p->p_limit);
1375 	ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1376 	ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1377 	ki->p_sess = PTRTOINT64(p->p_session);
1378 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
1379 	ki->p_ru = PTRTOINT64(p->p_ru);
1380 
1381 	ki->p_eflag = 0;
1382 	ki->p_exitsig = p->p_exitsig;
1383 	ki->p_flag = p->p_flag;
1384 
1385 	ki->p_pid = p->p_pid;
1386 	if (p->p_pptr)
1387 		ki->p_ppid = p->p_pptr->p_pid;
1388 	else
1389 		ki->p_ppid = 0;
1390 	ki->p_sid = p->p_session->s_sid;
1391 	ki->p__pgid = p->p_pgrp->pg_id;
1392 
1393 	ki->p_tpgid = NO_PID;	/* may be changed if controlling tty below */
1394 
1395 	ki->p_uid = p->p_ucred->cr_uid;
1396 	ki->p_ruid = p->p_cred->p_ruid;
1397 	ki->p_gid = p->p_ucred->cr_gid;
1398 	ki->p_rgid = p->p_cred->p_rgid;
1399 
1400 	memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1401 	    min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1402 	ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1403 
1404 	ki->p_jobc = p->p_pgrp->pg_jobc;
1405 	if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1406 		ki->p_tdev = tp->t_dev;
1407 		ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1408 		ki->p_tsess = PTRTOINT64(tp->t_session);
1409 	} else {
1410 		ki->p_tdev = NODEV;
1411 	}
1412 
1413 	ki->p_estcpu = p->p_estcpu;
1414 	ki->p_rtime_sec = p->p_rtime.tv_sec;
1415 	ki->p_rtime_usec = p->p_rtime.tv_usec;
1416 	ki->p_cpticks = p->p_cpticks;
1417 	ki->p_pctcpu = p->p_pctcpu;
1418 	ki->p_swtime = p->p_swtime;
1419 	ki->p_slptime = p->p_slptime;
1420 	if (p->p_stat == SONPROC) {
1421 		KDASSERT(p->p_cpu != NULL);
1422 		ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1423 	} else
1424 		ki->p_schedflags = 0;
1425 
1426 	ki->p_uticks = p->p_uticks;
1427 	ki->p_sticks = p->p_sticks;
1428 	ki->p_iticks = p->p_iticks;
1429 
1430 	ki->p_tracep = PTRTOINT64(p->p_tracep);
1431 	ki->p_traceflag = p->p_traceflag;
1432 
1433 	ki->p_holdcnt = p->p_holdcnt;
1434 
1435 	memcpy(&ki->p_siglist, &p->p_siglist, sizeof(ki_sigset_t));
1436 	memcpy(&ki->p_sigmask, &p->p_sigmask, sizeof(ki_sigset_t));
1437 	memcpy(&ki->p_sigignore, &p->p_sigignore, sizeof(ki_sigset_t));
1438 	memcpy(&ki->p_sigcatch, &p->p_sigcatch, sizeof(ki_sigset_t));
1439 
1440 	ki->p_stat = p->p_stat;
1441 	ki->p_priority = p->p_priority;
1442 	ki->p_usrpri = p->p_usrpri;
1443 	ki->p_nice = p->p_nice;
1444 
1445 	ki->p_xstat = p->p_xstat;
1446 	ki->p_acflag = p->p_acflag;
1447 
1448 	strncpy(ki->p_comm, p->p_comm,
1449 	    min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1450 
1451 	if (p->p_wmesg)
1452 		strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1453 	ki->p_wchan = PTRTOINT64(p->p_wchan);
1454 
1455 	strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1456 
1457 	if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1458 		ki->p_vm_rssize = 0;
1459 		ki->p_vm_tsize = 0;
1460 		ki->p_vm_dsize = 0;
1461 		ki->p_vm_ssize = 0;
1462 	} else {
1463 		struct vmspace *vm = p->p_vmspace;
1464 
1465 		ki->p_vm_rssize = vm_resident_count(vm);
1466 		ki->p_vm_tsize = vm->vm_tsize;
1467 		ki->p_vm_dsize = vm->vm_dsize;
1468 		ki->p_vm_ssize = vm->vm_ssize;
1469 	}
1470 
1471 	if (p->p_session->s_ttyvp)
1472 		ki->p_eflag |= EPROC_CTTY;
1473 	if (SESS_LEADER(p))
1474 		ki->p_eflag |= EPROC_SLEADER;
1475 
1476 	/* XXX Is this double check necessary? */
1477 	if (P_ZOMBIE(p) || p->p_addr == NULL) {
1478 		ki->p_uvalid = 0;
1479 	} else {
1480 		ki->p_uvalid = 1;
1481 
1482 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1483 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1484 
1485 		ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1486 		ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1487 		ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1488 		ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1489 
1490 		ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1491 		ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1492 		ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1493 		ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1494 		ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1495 		ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1496 		ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1497 		ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1498 		ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1499 		ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1500 		ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1501 		ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1502 		ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1503 		ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1504 
1505 		ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1506 		    p->p_stats->p_cru.ru_stime.tv_sec;
1507 		ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1508 		    p->p_stats->p_cru.ru_stime.tv_usec;
1509 	}
1510 }
1511 
1512 int
1513 sysctl_procargs(name, namelen, where, sizep, up)
1514 	int *name;
1515 	u_int namelen;
1516 	void *where;
1517 	size_t *sizep;
1518 	struct proc *up;
1519 {
1520 	struct ps_strings pss;
1521 	struct proc *p;
1522 	size_t len, upper_bound, xlen;
1523 	struct uio auio;
1524 	struct iovec aiov;
1525 	vaddr_t argv;
1526 	pid_t pid;
1527 	int nargv, type, error, i;
1528 	char *arg;
1529 	char *tmp;
1530 
1531 	if (namelen != 2)
1532 		return (EINVAL);
1533 	pid = name[0];
1534 	type = name[1];
1535 
1536 	switch (type) {
1537 	  case KERN_PROC_ARGV:
1538 	  case KERN_PROC_NARGV:
1539 	  case KERN_PROC_ENV:
1540 	  case KERN_PROC_NENV:
1541 		/* ok */
1542 		break;
1543 	  default:
1544 		return (EINVAL);
1545 	}
1546 
1547 	/* check pid */
1548 	if ((p = pfind(pid)) == NULL)
1549 		return (EINVAL);
1550 
1551 	/* only root or same user change look at the environment */
1552 	if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1553 		if (up->p_ucred->cr_uid != 0) {
1554 			if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1555 			    up->p_cred->p_ruid != p->p_cred->p_svuid)
1556 				return (EPERM);
1557 		}
1558 	}
1559 
1560 	if (sizep != NULL && where == NULL) {
1561 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1562 			*sizep = sizeof (int);
1563 		else
1564 			*sizep = ARG_MAX;	/* XXX XXX XXX */
1565 		return (0);
1566 	}
1567 	if (where == NULL || sizep == NULL)
1568 		return (EINVAL);
1569 
1570 	/*
1571 	 * Zombies don't have a stack, so we can't read their psstrings.
1572 	 * System processes also don't have a user stack.
1573 	 */
1574 	if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1575 		return (EINVAL);
1576 
1577 	/*
1578 	 * Lock the process down in memory.
1579 	 */
1580 	/* XXXCDC: how should locking work here? */
1581 	if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1582 		return (EFAULT);
1583 	PHOLD(p);
1584 	p->p_vmspace->vm_refcnt++;	/* XXX */
1585 
1586 	/*
1587 	 * Allocate a temporary buffer to hold the arguments.
1588 	 */
1589 	arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1590 
1591 	/*
1592 	 * Read in the ps_strings structure.
1593 	 */
1594 	aiov.iov_base = &pss;
1595 	aiov.iov_len = sizeof(pss);
1596 	auio.uio_iov = &aiov;
1597 	auio.uio_iovcnt = 1;
1598 	auio.uio_offset = (vaddr_t)p->p_psstr;
1599 	auio.uio_resid = sizeof(pss);
1600 	auio.uio_segflg = UIO_SYSSPACE;
1601 	auio.uio_rw = UIO_READ;
1602 	auio.uio_procp = NULL;
1603 	error = uvm_io(&p->p_vmspace->vm_map, &auio);
1604 	if (error)
1605 		goto done;
1606 
1607 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1608 		memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1609 	else
1610 		memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1611 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1612 		error = copyout(&nargv, where, sizeof(nargv));
1613 		*sizep = sizeof(nargv);
1614 		goto done;
1615 	}
1616 	/*
1617 	 * Now read the address of the argument vector.
1618 	 */
1619 	switch (type) {
1620 	case KERN_PROC_ARGV:
1621 		/* XXX compat32 stuff here */
1622 		memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1623 		break;
1624 	case KERN_PROC_ENV:
1625 		memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1626 		break;
1627 	default:
1628 		return (EINVAL);
1629 	}
1630 	auio.uio_offset = (off_t)(long)tmp;
1631 	aiov.iov_base = &argv;
1632 	aiov.iov_len = sizeof(argv);
1633 	auio.uio_iov = &aiov;
1634 	auio.uio_iovcnt = 1;
1635 	auio.uio_resid = sizeof(argv);
1636 	auio.uio_segflg = UIO_SYSSPACE;
1637 	auio.uio_rw = UIO_READ;
1638 	auio.uio_procp = NULL;
1639 	error = uvm_io(&p->p_vmspace->vm_map, &auio);
1640 	if (error)
1641 		goto done;
1642 
1643 	/*
1644 	 * Now copy in the actual argument vector, one page at a time,
1645 	 * since we don't know how long the vector is (though, we do
1646 	 * know how many NUL-terminated strings are in the vector).
1647 	 */
1648 	len = 0;
1649 	upper_bound = *sizep;
1650 	for (; nargv != 0 && len < upper_bound; len += xlen) {
1651 		aiov.iov_base = arg;
1652 		aiov.iov_len = PAGE_SIZE;
1653 		auio.uio_iov = &aiov;
1654 		auio.uio_iovcnt = 1;
1655 		auio.uio_offset = argv + len;
1656 		xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1657 		auio.uio_resid = xlen;
1658 		auio.uio_segflg = UIO_SYSSPACE;
1659 		auio.uio_rw = UIO_READ;
1660 		auio.uio_procp = NULL;
1661 		error = uvm_io(&p->p_vmspace->vm_map, &auio);
1662 		if (error)
1663 			goto done;
1664 
1665 		for (i = 0; i < xlen && nargv != 0; i++) {
1666 			if (arg[i] == '\0')
1667 				nargv--;	/* one full string */
1668 		}
1669 
1670 		/* make sure we don't copyout past the end of the user's buffer */
1671 		if (len + i > upper_bound)
1672 			i = upper_bound - len;
1673 
1674 		error = copyout(arg, (char *)where + len, i);
1675 		if (error)
1676 			break;
1677 
1678 		if (nargv == 0) {
1679 			len += i;
1680 			break;
1681 		}
1682 	}
1683 	*sizep = len;
1684 
1685 done:
1686 	PRELE(p);
1687 	uvmspace_free(p->p_vmspace);
1688 
1689 	free(arg, M_TEMP);
1690 	return (error);
1691 }
1692