1 /* $NetBSD: kern_synch.c,v 1.345 2020/03/26 19:42:39 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and 11 * Daniel Sieger. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /*- 36 * Copyright (c) 1982, 1986, 1990, 1991, 1993 37 * The Regents of the University of California. All rights reserved. 38 * (c) UNIX System Laboratories, Inc. 39 * All or some portions of this file are derived from material licensed 40 * to the University of California by American Telephone and Telegraph 41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 42 * the permission of UNIX System Laboratories, Inc. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. Neither the name of the University nor the names of its contributors 53 * may be used to endorse or promote products derived from this software 54 * without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 66 * SUCH DAMAGE. 67 * 68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 69 */ 70 71 #include <sys/cdefs.h> 72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.345 2020/03/26 19:42:39 ad Exp $"); 73 74 #include "opt_kstack.h" 75 #include "opt_dtrace.h" 76 77 #define __MUTEX_PRIVATE 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/kernel.h> 83 #include <sys/cpu.h> 84 #include <sys/pserialize.h> 85 #include <sys/resourcevar.h> 86 #include <sys/rwlock.h> 87 #include <sys/sched.h> 88 #include <sys/syscall_stats.h> 89 #include <sys/sleepq.h> 90 #include <sys/lockdebug.h> 91 #include <sys/evcnt.h> 92 #include <sys/intr.h> 93 #include <sys/lwpctl.h> 94 #include <sys/atomic.h> 95 #include <sys/syslog.h> 96 97 #include <uvm/uvm_extern.h> 98 99 #include <dev/lockstat.h> 100 101 #include <sys/dtrace_bsd.h> 102 int dtrace_vtime_active=0; 103 dtrace_vtime_switch_func_t dtrace_vtime_switch_func; 104 105 static void sched_unsleep(struct lwp *, bool); 106 static void sched_changepri(struct lwp *, pri_t); 107 static void sched_lendpri(struct lwp *, pri_t); 108 109 syncobj_t sleep_syncobj = { 110 .sobj_flag = SOBJ_SLEEPQ_SORTED, 111 .sobj_unsleep = sleepq_unsleep, 112 .sobj_changepri = sleepq_changepri, 113 .sobj_lendpri = sleepq_lendpri, 114 .sobj_owner = syncobj_noowner, 115 }; 116 117 syncobj_t sched_syncobj = { 118 .sobj_flag = SOBJ_SLEEPQ_SORTED, 119 .sobj_unsleep = sched_unsleep, 120 .sobj_changepri = sched_changepri, 121 .sobj_lendpri = sched_lendpri, 122 .sobj_owner = syncobj_noowner, 123 }; 124 125 syncobj_t kpause_syncobj = { 126 .sobj_flag = SOBJ_SLEEPQ_NULL, 127 .sobj_unsleep = sleepq_unsleep, 128 .sobj_changepri = sleepq_changepri, 129 .sobj_lendpri = sleepq_lendpri, 130 .sobj_owner = syncobj_noowner, 131 }; 132 133 /* "Lightning bolt": once a second sleep address. */ 134 kcondvar_t lbolt __cacheline_aligned; 135 136 u_int sched_pstats_ticks __cacheline_aligned; 137 138 /* Preemption event counters. */ 139 static struct evcnt kpreempt_ev_crit __cacheline_aligned; 140 static struct evcnt kpreempt_ev_klock __cacheline_aligned; 141 static struct evcnt kpreempt_ev_immed __cacheline_aligned; 142 143 void 144 synch_init(void) 145 { 146 147 cv_init(&lbolt, "lbolt"); 148 149 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL, 150 "kpreempt", "defer: critical section"); 151 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL, 152 "kpreempt", "defer: kernel_lock"); 153 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL, 154 "kpreempt", "immediate"); 155 } 156 157 /* 158 * OBSOLETE INTERFACE 159 * 160 * General sleep call. Suspends the current LWP until a wakeup is 161 * performed on the specified identifier. The LWP will then be made 162 * runnable with the specified priority. Sleeps at most timo/hz seconds (0 163 * means no timeout). If pri includes PCATCH flag, signals are checked 164 * before and after sleeping, else signals are not checked. Returns 0 if 165 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 166 * signal needs to be delivered, ERESTART is returned if the current system 167 * call should be restarted if possible, and EINTR is returned if the system 168 * call should be interrupted by the signal (return EINTR). 169 */ 170 int 171 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo) 172 { 173 struct lwp *l = curlwp; 174 sleepq_t *sq; 175 kmutex_t *mp; 176 177 KASSERT((l->l_pflag & LP_INTR) == 0); 178 KASSERT(ident != &lbolt); 179 180 if (sleepq_dontsleep(l)) { 181 (void)sleepq_abort(NULL, 0); 182 return 0; 183 } 184 185 l->l_kpriority = true; 186 sq = sleeptab_lookup(&sleeptab, ident, &mp); 187 sleepq_enter(sq, l, mp); 188 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj); 189 return sleepq_block(timo, priority & PCATCH); 190 } 191 192 int 193 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 194 kmutex_t *mtx) 195 { 196 struct lwp *l = curlwp; 197 sleepq_t *sq; 198 kmutex_t *mp; 199 int error; 200 201 KASSERT((l->l_pflag & LP_INTR) == 0); 202 KASSERT(ident != &lbolt); 203 204 if (sleepq_dontsleep(l)) { 205 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0); 206 return 0; 207 } 208 209 l->l_kpriority = true; 210 sq = sleeptab_lookup(&sleeptab, ident, &mp); 211 sleepq_enter(sq, l, mp); 212 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj); 213 mutex_exit(mtx); 214 error = sleepq_block(timo, priority & PCATCH); 215 216 if ((priority & PNORELOCK) == 0) 217 mutex_enter(mtx); 218 219 return error; 220 } 221 222 /* 223 * General sleep call for situations where a wake-up is not expected. 224 */ 225 int 226 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx) 227 { 228 struct lwp *l = curlwp; 229 int error; 230 231 KASSERT(!(timo == 0 && intr == false)); 232 233 if (sleepq_dontsleep(l)) 234 return sleepq_abort(NULL, 0); 235 236 if (mtx != NULL) 237 mutex_exit(mtx); 238 l->l_kpriority = true; 239 lwp_lock(l); 240 KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks); 241 sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj); 242 error = sleepq_block(timo, intr); 243 if (mtx != NULL) 244 mutex_enter(mtx); 245 246 return error; 247 } 248 249 /* 250 * OBSOLETE INTERFACE 251 * 252 * Make all LWPs sleeping on the specified identifier runnable. 253 */ 254 void 255 wakeup(wchan_t ident) 256 { 257 sleepq_t *sq; 258 kmutex_t *mp; 259 260 if (__predict_false(cold)) 261 return; 262 263 sq = sleeptab_lookup(&sleeptab, ident, &mp); 264 sleepq_wake(sq, ident, (u_int)-1, mp); 265 } 266 267 /* 268 * General yield call. Puts the current LWP back on its run queue and 269 * performs a context switch. 270 */ 271 void 272 yield(void) 273 { 274 struct lwp *l = curlwp; 275 276 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 277 lwp_lock(l); 278 279 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 280 KASSERT(l->l_stat == LSONPROC); 281 282 /* Voluntary - ditch kpriority boost. */ 283 l->l_kpriority = false; 284 spc_lock(l->l_cpu); 285 mi_switch(l); 286 KERNEL_LOCK(l->l_biglocks, l); 287 } 288 289 /* 290 * General preemption call. Puts the current LWP back on its run queue 291 * and performs an involuntary context switch. Different from yield() 292 * in that: 293 * 294 * - It's counted differently (involuntary vs. voluntary). 295 * - Realtime threads go to the head of their runqueue vs. tail for yield(). 296 * - Priority boost is retained unless LWP has exceeded timeslice. 297 */ 298 void 299 preempt(void) 300 { 301 struct lwp *l = curlwp; 302 303 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 304 lwp_lock(l); 305 306 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 307 KASSERT(l->l_stat == LSONPROC); 308 309 spc_lock(l->l_cpu); 310 /* Involuntary - keep kpriority boost unless a CPU hog. */ 311 if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) { 312 l->l_kpriority = false; 313 } 314 l->l_pflag |= LP_PREEMPTING; 315 mi_switch(l); 316 KERNEL_LOCK(l->l_biglocks, l); 317 } 318 319 /* 320 * A breathing point for long running code in kernel. 321 */ 322 void 323 preempt_point(void) 324 { 325 lwp_t *l = curlwp; 326 int needed; 327 328 KPREEMPT_DISABLE(l); 329 needed = l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD; 330 #ifndef __HAVE_FAST_SOFTINTS 331 needed |= l->l_cpu->ci_data.cpu_softints; 332 #endif 333 KPREEMPT_ENABLE(l); 334 335 if (__predict_false(needed)) { 336 preempt(); 337 } 338 } 339 340 /* 341 * Check the SPCF_SHOULDYIELD flag. 342 */ 343 bool 344 preempt_needed(void) 345 { 346 lwp_t *l = curlwp; 347 int needed; 348 349 KPREEMPT_DISABLE(l); 350 needed = l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD; 351 #ifndef __HAVE_FAST_SOFTINTS 352 needed |= l->l_cpu->ci_data.cpu_softints; 353 #endif 354 KPREEMPT_ENABLE(l); 355 356 return (bool)needed; 357 } 358 359 /* 360 * Handle a request made by another agent to preempt the current LWP 361 * in-kernel. Usually called when l_dopreempt may be non-zero. 362 * 363 * Character addresses for lockstat only. 364 */ 365 static char kpreempt_is_disabled; 366 static char kernel_lock_held; 367 static char is_softint_lwp; 368 static char spl_is_raised; 369 370 bool 371 kpreempt(uintptr_t where) 372 { 373 uintptr_t failed; 374 lwp_t *l; 375 int s, dop, lsflag; 376 377 l = curlwp; 378 failed = 0; 379 while ((dop = l->l_dopreempt) != 0) { 380 if (l->l_stat != LSONPROC) { 381 /* 382 * About to block (or die), let it happen. 383 * Doesn't really count as "preemption has 384 * been blocked", since we're going to 385 * context switch. 386 */ 387 atomic_swap_uint(&l->l_dopreempt, 0); 388 return true; 389 } 390 KASSERT((l->l_flag & LW_IDLE) == 0); 391 if (__predict_false(l->l_nopreempt != 0)) { 392 /* LWP holds preemption disabled, explicitly. */ 393 if ((dop & DOPREEMPT_COUNTED) == 0) { 394 kpreempt_ev_crit.ev_count++; 395 } 396 failed = (uintptr_t)&kpreempt_is_disabled; 397 break; 398 } 399 if (__predict_false((l->l_pflag & LP_INTR) != 0)) { 400 /* Can't preempt soft interrupts yet. */ 401 atomic_swap_uint(&l->l_dopreempt, 0); 402 failed = (uintptr_t)&is_softint_lwp; 403 break; 404 } 405 s = splsched(); 406 if (__predict_false(l->l_blcnt != 0 || 407 curcpu()->ci_biglock_wanted != NULL)) { 408 /* Hold or want kernel_lock, code is not MT safe. */ 409 splx(s); 410 if ((dop & DOPREEMPT_COUNTED) == 0) { 411 kpreempt_ev_klock.ev_count++; 412 } 413 failed = (uintptr_t)&kernel_lock_held; 414 break; 415 } 416 if (__predict_false(!cpu_kpreempt_enter(where, s))) { 417 /* 418 * It may be that the IPL is too high. 419 * kpreempt_enter() can schedule an 420 * interrupt to retry later. 421 */ 422 splx(s); 423 failed = (uintptr_t)&spl_is_raised; 424 break; 425 } 426 /* Do it! */ 427 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) { 428 kpreempt_ev_immed.ev_count++; 429 } 430 lwp_lock(l); 431 /* Involuntary - keep kpriority boost. */ 432 l->l_pflag |= LP_PREEMPTING; 433 spc_lock(l->l_cpu); 434 mi_switch(l); 435 l->l_nopreempt++; 436 splx(s); 437 438 /* Take care of any MD cleanup. */ 439 cpu_kpreempt_exit(where); 440 l->l_nopreempt--; 441 } 442 443 if (__predict_true(!failed)) { 444 return false; 445 } 446 447 /* Record preemption failure for reporting via lockstat. */ 448 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED); 449 lsflag = 0; 450 LOCKSTAT_ENTER(lsflag); 451 if (__predict_false(lsflag)) { 452 if (where == 0) { 453 where = (uintptr_t)__builtin_return_address(0); 454 } 455 /* Preemption is on, might recurse, so make it atomic. */ 456 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL, 457 (void *)where) == NULL) { 458 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime); 459 l->l_pfaillock = failed; 460 } 461 } 462 LOCKSTAT_EXIT(lsflag); 463 return true; 464 } 465 466 /* 467 * Return true if preemption is explicitly disabled. 468 */ 469 bool 470 kpreempt_disabled(void) 471 { 472 const lwp_t *l = curlwp; 473 474 return l->l_nopreempt != 0 || l->l_stat == LSZOMB || 475 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 || 476 cpu_kpreempt_disabled(); 477 } 478 479 /* 480 * Disable kernel preemption. 481 */ 482 void 483 kpreempt_disable(void) 484 { 485 486 KPREEMPT_DISABLE(curlwp); 487 } 488 489 /* 490 * Reenable kernel preemption. 491 */ 492 void 493 kpreempt_enable(void) 494 { 495 496 KPREEMPT_ENABLE(curlwp); 497 } 498 499 /* 500 * Compute the amount of time during which the current lwp was running. 501 * 502 * - update l_rtime unless it's an idle lwp. 503 */ 504 505 void 506 updatertime(lwp_t *l, const struct bintime *now) 507 { 508 509 if (__predict_false(l->l_flag & LW_IDLE)) 510 return; 511 512 /* rtime += now - stime */ 513 bintime_add(&l->l_rtime, now); 514 bintime_sub(&l->l_rtime, &l->l_stime); 515 } 516 517 /* 518 * Select next LWP from the current CPU to run.. 519 */ 520 static inline lwp_t * 521 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc) 522 { 523 lwp_t *newl; 524 525 /* 526 * Let sched_nextlwp() select the LWP to run the CPU next. 527 * If no LWP is runnable, select the idle LWP. 528 * 529 * On arrival here LWPs on a run queue are locked by spc_mutex which 530 * is currently held. Idle LWPs are always locked by spc_lwplock, 531 * which may or may not be held here. On exit from this code block, 532 * in all cases newl is locked by spc_lwplock. 533 */ 534 newl = sched_nextlwp(); 535 if (newl != NULL) { 536 sched_dequeue(newl); 537 KASSERT(lwp_locked(newl, spc->spc_mutex)); 538 KASSERT(newl->l_cpu == ci); 539 newl->l_stat = LSONPROC; 540 newl->l_pflag |= LP_RUNNING; 541 spc->spc_curpriority = lwp_eprio(newl); 542 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE); 543 lwp_setlock(newl, spc->spc_lwplock); 544 } else { 545 /* 546 * The idle LWP does not get set to LSONPROC, because 547 * otherwise it screws up the output from top(1) etc. 548 */ 549 newl = ci->ci_data.cpu_idlelwp; 550 newl->l_pflag |= LP_RUNNING; 551 spc->spc_curpriority = PRI_IDLE; 552 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) | 553 SPCF_IDLE; 554 } 555 556 /* 557 * Only clear want_resched if there are no pending (slow) software 558 * interrupts. We can do this without an atomic, because no new 559 * LWPs can appear in the queue due to our hold on spc_mutex, and 560 * the update to ci_want_resched will become globally visible before 561 * the release of spc_mutex becomes globally visible. 562 */ 563 ci->ci_want_resched = ci->ci_data.cpu_softints; 564 565 return newl; 566 } 567 568 /* 569 * The machine independent parts of context switch. 570 * 571 * NOTE: l->l_cpu is not changed in this routine, because an LWP never 572 * changes its own l_cpu (that would screw up curcpu on many ports and could 573 * cause all kinds of other evil stuff). l_cpu is always changed by some 574 * other actor, when it's known the LWP is not running (the LP_RUNNING flag 575 * is checked under lock). 576 */ 577 void 578 mi_switch(lwp_t *l) 579 { 580 struct cpu_info *ci; 581 struct schedstate_percpu *spc; 582 struct lwp *newl; 583 kmutex_t *lock; 584 int oldspl; 585 struct bintime bt; 586 bool returning; 587 588 KASSERT(lwp_locked(l, NULL)); 589 KASSERT(kpreempt_disabled()); 590 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex)); 591 KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked"); 592 593 kstack_check_magic(l); 594 595 binuptime(&bt); 596 597 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp); 598 KASSERT((l->l_pflag & LP_RUNNING) != 0); 599 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN); 600 ci = curcpu(); 601 spc = &ci->ci_schedstate; 602 returning = false; 603 newl = NULL; 604 605 /* 606 * If we have been asked to switch to a specific LWP, then there 607 * is no need to inspect the run queues. If a soft interrupt is 608 * blocking, then return to the interrupted thread without adjusting 609 * VM context or its start time: neither have been changed in order 610 * to take the interrupt. 611 */ 612 if (l->l_switchto != NULL) { 613 if ((l->l_pflag & LP_INTR) != 0) { 614 returning = true; 615 softint_block(l); 616 if ((l->l_pflag & LP_TIMEINTR) != 0) 617 updatertime(l, &bt); 618 } 619 newl = l->l_switchto; 620 l->l_switchto = NULL; 621 } 622 #ifndef __HAVE_FAST_SOFTINTS 623 else if (ci->ci_data.cpu_softints != 0) { 624 /* There are pending soft interrupts, so pick one. */ 625 newl = softint_picklwp(); 626 newl->l_stat = LSONPROC; 627 newl->l_pflag |= LP_RUNNING; 628 } 629 #endif /* !__HAVE_FAST_SOFTINTS */ 630 631 /* 632 * If on the CPU and we have gotten this far, then we must yield. 633 */ 634 if (l->l_stat == LSONPROC && l != newl) { 635 KASSERT(lwp_locked(l, spc->spc_lwplock)); 636 KASSERT((l->l_flag & LW_IDLE) == 0); 637 l->l_stat = LSRUN; 638 lwp_setlock(l, spc->spc_mutex); 639 sched_enqueue(l); 640 sched_preempted(l); 641 642 /* 643 * Handle migration. Note that "migrating LWP" may 644 * be reset here, if interrupt/preemption happens 645 * early in idle LWP. 646 */ 647 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) { 648 KASSERT((l->l_pflag & LP_INTR) == 0); 649 spc->spc_migrating = l; 650 } 651 } 652 653 /* Pick new LWP to run. */ 654 if (newl == NULL) { 655 newl = nextlwp(ci, spc); 656 } 657 658 /* Items that must be updated with the CPU locked. */ 659 if (!returning) { 660 /* Count time spent in current system call */ 661 SYSCALL_TIME_SLEEP(l); 662 663 updatertime(l, &bt); 664 665 /* Update the new LWP's start time. */ 666 newl->l_stime = bt; 667 668 /* 669 * ci_curlwp changes when a fast soft interrupt occurs. 670 * We use ci_onproc to keep track of which kernel or 671 * user thread is running 'underneath' the software 672 * interrupt. This is important for time accounting, 673 * itimers and forcing user threads to preempt (aston). 674 */ 675 ci->ci_onproc = newl; 676 } 677 678 /* 679 * Preemption related tasks. Must be done holding spc_mutex. Clear 680 * l_dopreempt without an atomic - it's only ever set non-zero by 681 * sched_resched_cpu() which also holds spc_mutex, and only ever 682 * cleared by the LWP itself (us) with atomics when not under lock. 683 */ 684 l->l_dopreempt = 0; 685 if (__predict_false(l->l_pfailaddr != 0)) { 686 LOCKSTAT_FLAG(lsflag); 687 LOCKSTAT_ENTER(lsflag); 688 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime); 689 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN, 690 1, l->l_pfailtime, l->l_pfailaddr); 691 LOCKSTAT_EXIT(lsflag); 692 l->l_pfailtime = 0; 693 l->l_pfaillock = 0; 694 l->l_pfailaddr = 0; 695 } 696 697 if (l != newl) { 698 struct lwp *prevlwp; 699 700 /* Release all locks, but leave the current LWP locked */ 701 if (l->l_mutex == spc->spc_mutex) { 702 /* 703 * Drop spc_lwplock, if the current LWP has been moved 704 * to the run queue (it is now locked by spc_mutex). 705 */ 706 mutex_spin_exit(spc->spc_lwplock); 707 } else { 708 /* 709 * Otherwise, drop the spc_mutex, we are done with the 710 * run queues. 711 */ 712 mutex_spin_exit(spc->spc_mutex); 713 } 714 715 /* We're down to only one lock, so do debug checks. */ 716 LOCKDEBUG_BARRIER(l->l_mutex, 1); 717 718 /* Count the context switch. */ 719 CPU_COUNT(CPU_COUNT_NSWTCH, 1); 720 l->l_ncsw++; 721 if ((l->l_pflag & LP_PREEMPTING) != 0) { 722 l->l_nivcsw++; 723 l->l_pflag &= ~LP_PREEMPTING; 724 } 725 726 /* 727 * Increase the count of spin-mutexes before the release 728 * of the last lock - we must remain at IPL_SCHED after 729 * releasing the lock. 730 */ 731 KASSERTMSG(ci->ci_mtx_count == -1, 732 "%s: cpu%u: ci_mtx_count (%d) != -1 " 733 "(block with spin-mutex held)", 734 __func__, cpu_index(ci), ci->ci_mtx_count); 735 oldspl = MUTEX_SPIN_OLDSPL(ci); 736 ci->ci_mtx_count = -2; 737 738 /* Update status for lwpctl, if present. */ 739 if (l->l_lwpctl != NULL) { 740 l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ? 741 LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE); 742 } 743 744 /* 745 * If curlwp is a soft interrupt LWP, there's nobody on the 746 * other side to unlock - we're returning into an assembly 747 * trampoline. Unlock now. This is safe because this is a 748 * kernel LWP and is bound to current CPU: the worst anyone 749 * else will do to it, is to put it back onto this CPU's run 750 * queue (and the CPU is busy here right now!). 751 */ 752 if (returning) { 753 /* Keep IPL_SCHED after this; MD code will fix up. */ 754 l->l_pflag &= ~LP_RUNNING; 755 lwp_unlock(l); 756 } else { 757 /* A normal LWP: save old VM context. */ 758 pmap_deactivate(l); 759 } 760 761 /* 762 * If DTrace has set the active vtime enum to anything 763 * other than INACTIVE (0), then it should have set the 764 * function to call. 765 */ 766 if (__predict_false(dtrace_vtime_active)) { 767 (*dtrace_vtime_switch_func)(newl); 768 } 769 770 /* 771 * We must ensure not to come here from inside a read section. 772 */ 773 KASSERT(pserialize_not_in_read_section()); 774 775 /* Switch to the new LWP.. */ 776 #ifdef MULTIPROCESSOR 777 KASSERT(curlwp == ci->ci_curlwp); 778 #endif 779 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp); 780 prevlwp = cpu_switchto(l, newl, returning); 781 ci = curcpu(); 782 #ifdef MULTIPROCESSOR 783 KASSERT(curlwp == ci->ci_curlwp); 784 #endif 785 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p", 786 l, curlwp, prevlwp); 787 KASSERT(prevlwp != NULL); 788 KASSERT(l->l_cpu == ci); 789 KASSERT(ci->ci_mtx_count == -2); 790 791 /* 792 * Immediately mark the previous LWP as no longer running 793 * and unlock (to keep lock wait times short as possible). 794 * We'll still be at IPL_SCHED afterwards. If a zombie, 795 * don't touch after clearing LP_RUNNING as it could be 796 * reaped by another CPU. Issue a memory barrier to ensure 797 * this. 798 */ 799 KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0); 800 lock = prevlwp->l_mutex; 801 if (__predict_false(prevlwp->l_stat == LSZOMB)) { 802 membar_sync(); 803 } 804 prevlwp->l_pflag &= ~LP_RUNNING; 805 mutex_spin_exit(lock); 806 807 /* 808 * Switched away - we have new curlwp. 809 * Restore VM context and IPL. 810 */ 811 pmap_activate(l); 812 pcu_switchpoint(l); 813 814 /* Update status for lwpctl, if present. */ 815 if (l->l_lwpctl != NULL) { 816 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci); 817 l->l_lwpctl->lc_pctr++; 818 } 819 820 /* 821 * Normalize the spin mutex count and restore the previous 822 * SPL. Note that, unless the caller disabled preemption, 823 * we can be preempted at any time after this splx(). 824 */ 825 KASSERT(l->l_cpu == ci); 826 KASSERT(ci->ci_mtx_count == -1); 827 ci->ci_mtx_count = 0; 828 splx(oldspl); 829 } else { 830 /* Nothing to do - just unlock and return. */ 831 mutex_spin_exit(spc->spc_mutex); 832 l->l_pflag &= ~LP_PREEMPTING; 833 lwp_unlock(l); 834 } 835 836 KASSERT(l == curlwp); 837 KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0); 838 839 SYSCALL_TIME_WAKEUP(l); 840 LOCKDEBUG_BARRIER(NULL, 1); 841 } 842 843 /* 844 * setrunnable: change LWP state to be runnable, placing it on the run queue. 845 * 846 * Call with the process and LWP locked. Will return with the LWP unlocked. 847 */ 848 void 849 setrunnable(struct lwp *l) 850 { 851 struct proc *p = l->l_proc; 852 struct cpu_info *ci; 853 kmutex_t *oldlock; 854 855 KASSERT((l->l_flag & LW_IDLE) == 0); 856 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0); 857 KASSERT(mutex_owned(p->p_lock)); 858 KASSERT(lwp_locked(l, NULL)); 859 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex); 860 861 switch (l->l_stat) { 862 case LSSTOP: 863 /* 864 * If we're being traced (possibly because someone attached us 865 * while we were stopped), check for a signal from the debugger. 866 */ 867 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0) 868 signotify(l); 869 p->p_nrlwps++; 870 break; 871 case LSSUSPENDED: 872 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 873 l->l_flag &= ~LW_WSUSPEND; 874 p->p_nrlwps++; 875 cv_broadcast(&p->p_lwpcv); 876 break; 877 case LSSLEEP: 878 KASSERT(l->l_wchan != NULL); 879 break; 880 case LSIDL: 881 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 882 break; 883 default: 884 panic("setrunnable: lwp %p state was %d", l, l->l_stat); 885 } 886 887 /* 888 * If the LWP was sleeping, start it again. 889 */ 890 if (l->l_wchan != NULL) { 891 l->l_stat = LSSLEEP; 892 /* lwp_unsleep() will release the lock. */ 893 lwp_unsleep(l, true); 894 return; 895 } 896 897 /* 898 * If the LWP is still on the CPU, mark it as LSONPROC. It may be 899 * about to call mi_switch(), in which case it will yield. 900 */ 901 if ((l->l_pflag & LP_RUNNING) != 0) { 902 l->l_stat = LSONPROC; 903 l->l_slptime = 0; 904 lwp_unlock(l); 905 return; 906 } 907 908 /* 909 * Look for a CPU to run. 910 * Set the LWP runnable. 911 */ 912 ci = sched_takecpu(l); 913 l->l_cpu = ci; 914 spc_lock(ci); 915 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex); 916 sched_setrunnable(l); 917 l->l_stat = LSRUN; 918 l->l_slptime = 0; 919 sched_enqueue(l); 920 sched_resched_lwp(l, true); 921 /* SPC & LWP now unlocked. */ 922 mutex_spin_exit(oldlock); 923 } 924 925 /* 926 * suspendsched: 927 * 928 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED. 929 */ 930 void 931 suspendsched(void) 932 { 933 CPU_INFO_ITERATOR cii; 934 struct cpu_info *ci; 935 struct lwp *l; 936 struct proc *p; 937 938 /* 939 * We do this by process in order not to violate the locking rules. 940 */ 941 mutex_enter(proc_lock); 942 PROCLIST_FOREACH(p, &allproc) { 943 mutex_enter(p->p_lock); 944 if ((p->p_flag & PK_SYSTEM) != 0) { 945 mutex_exit(p->p_lock); 946 continue; 947 } 948 949 if (p->p_stat != SSTOP) { 950 if (p->p_stat != SZOMB && p->p_stat != SDEAD) { 951 p->p_pptr->p_nstopchild++; 952 p->p_waited = 0; 953 } 954 p->p_stat = SSTOP; 955 } 956 957 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 958 if (l == curlwp) 959 continue; 960 961 lwp_lock(l); 962 963 /* 964 * Set L_WREBOOT so that the LWP will suspend itself 965 * when it tries to return to user mode. We want to 966 * try and get to get as many LWPs as possible to 967 * the user / kernel boundary, so that they will 968 * release any locks that they hold. 969 */ 970 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND); 971 972 if (l->l_stat == LSSLEEP && 973 (l->l_flag & LW_SINTR) != 0) { 974 /* setrunnable() will release the lock. */ 975 setrunnable(l); 976 continue; 977 } 978 979 lwp_unlock(l); 980 } 981 982 mutex_exit(p->p_lock); 983 } 984 mutex_exit(proc_lock); 985 986 /* 987 * Kick all CPUs to make them preempt any LWPs running in user mode. 988 * They'll trap into the kernel and suspend themselves in userret(). 989 * 990 * Unusually, we don't hold any other scheduler object locked, which 991 * would keep preemption off for sched_resched_cpu(), so disable it 992 * explicitly. 993 */ 994 kpreempt_disable(); 995 for (CPU_INFO_FOREACH(cii, ci)) { 996 spc_lock(ci); 997 sched_resched_cpu(ci, PRI_KERNEL, true); 998 /* spc now unlocked */ 999 } 1000 kpreempt_enable(); 1001 } 1002 1003 /* 1004 * sched_unsleep: 1005 * 1006 * The is called when the LWP has not been awoken normally but instead 1007 * interrupted: for example, if the sleep timed out. Because of this, 1008 * it's not a valid action for running or idle LWPs. 1009 */ 1010 static void 1011 sched_unsleep(struct lwp *l, bool cleanup) 1012 { 1013 1014 lwp_unlock(l); 1015 panic("sched_unsleep"); 1016 } 1017 1018 static void 1019 sched_changepri(struct lwp *l, pri_t pri) 1020 { 1021 struct schedstate_percpu *spc; 1022 struct cpu_info *ci; 1023 1024 KASSERT(lwp_locked(l, NULL)); 1025 1026 ci = l->l_cpu; 1027 spc = &ci->ci_schedstate; 1028 1029 if (l->l_stat == LSRUN) { 1030 KASSERT(lwp_locked(l, spc->spc_mutex)); 1031 sched_dequeue(l); 1032 l->l_priority = pri; 1033 sched_enqueue(l); 1034 sched_resched_lwp(l, false); 1035 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) { 1036 /* On priority drop, only evict realtime LWPs. */ 1037 KASSERT(lwp_locked(l, spc->spc_lwplock)); 1038 l->l_priority = pri; 1039 spc_lock(ci); 1040 sched_resched_cpu(ci, spc->spc_maxpriority, true); 1041 /* spc now unlocked */ 1042 } else { 1043 l->l_priority = pri; 1044 } 1045 } 1046 1047 static void 1048 sched_lendpri(struct lwp *l, pri_t pri) 1049 { 1050 struct schedstate_percpu *spc; 1051 struct cpu_info *ci; 1052 1053 KASSERT(lwp_locked(l, NULL)); 1054 1055 ci = l->l_cpu; 1056 spc = &ci->ci_schedstate; 1057 1058 if (l->l_stat == LSRUN) { 1059 KASSERT(lwp_locked(l, spc->spc_mutex)); 1060 sched_dequeue(l); 1061 l->l_inheritedprio = pri; 1062 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1063 sched_enqueue(l); 1064 sched_resched_lwp(l, false); 1065 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) { 1066 /* On priority drop, only evict realtime LWPs. */ 1067 KASSERT(lwp_locked(l, spc->spc_lwplock)); 1068 l->l_inheritedprio = pri; 1069 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1070 spc_lock(ci); 1071 sched_resched_cpu(ci, spc->spc_maxpriority, true); 1072 /* spc now unlocked */ 1073 } else { 1074 l->l_inheritedprio = pri; 1075 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1076 } 1077 } 1078 1079 struct lwp * 1080 syncobj_noowner(wchan_t wchan) 1081 { 1082 1083 return NULL; 1084 } 1085 1086 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */ 1087 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE; 1088 1089 /* 1090 * Constants for averages over 1, 5 and 15 minutes when sampling at 1091 * 5 second intervals. 1092 */ 1093 static const fixpt_t cexp[ ] = { 1094 0.9200444146293232 * FSCALE, /* exp(-1/12) */ 1095 0.9834714538216174 * FSCALE, /* exp(-1/60) */ 1096 0.9944598480048967 * FSCALE, /* exp(-1/180) */ 1097 }; 1098 1099 /* 1100 * sched_pstats: 1101 * 1102 * => Update process statistics and check CPU resource allocation. 1103 * => Call scheduler-specific hook to eventually adjust LWP priorities. 1104 * => Compute load average of a quantity on 1, 5 and 15 minute intervals. 1105 */ 1106 void 1107 sched_pstats(void) 1108 { 1109 extern struct loadavg averunnable; 1110 struct loadavg *avg = &averunnable; 1111 const int clkhz = (stathz != 0 ? stathz : hz); 1112 static bool backwards = false; 1113 static u_int lavg_count = 0; 1114 struct proc *p; 1115 int nrun; 1116 1117 sched_pstats_ticks++; 1118 if (++lavg_count >= 5) { 1119 lavg_count = 0; 1120 nrun = 0; 1121 } 1122 mutex_enter(proc_lock); 1123 PROCLIST_FOREACH(p, &allproc) { 1124 struct lwp *l; 1125 struct rlimit *rlim; 1126 time_t runtm; 1127 int sig; 1128 1129 /* Increment sleep time (if sleeping), ignore overflow. */ 1130 mutex_enter(p->p_lock); 1131 runtm = p->p_rtime.sec; 1132 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1133 fixpt_t lpctcpu; 1134 u_int lcpticks; 1135 1136 if (__predict_false((l->l_flag & LW_IDLE) != 0)) 1137 continue; 1138 lwp_lock(l); 1139 runtm += l->l_rtime.sec; 1140 l->l_swtime++; 1141 sched_lwp_stats(l); 1142 1143 /* For load average calculation. */ 1144 if (__predict_false(lavg_count == 0) && 1145 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) { 1146 switch (l->l_stat) { 1147 case LSSLEEP: 1148 if (l->l_slptime > 1) { 1149 break; 1150 } 1151 /* FALLTHROUGH */ 1152 case LSRUN: 1153 case LSONPROC: 1154 case LSIDL: 1155 nrun++; 1156 } 1157 } 1158 lwp_unlock(l); 1159 1160 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT; 1161 if (l->l_slptime != 0) 1162 continue; 1163 1164 lpctcpu = l->l_pctcpu; 1165 lcpticks = atomic_swap_uint(&l->l_cpticks, 0); 1166 lpctcpu += ((FSCALE - ccpu) * 1167 (lcpticks * FSCALE / clkhz)) >> FSHIFT; 1168 l->l_pctcpu = lpctcpu; 1169 } 1170 /* Calculating p_pctcpu only for ps(1) */ 1171 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 1172 1173 if (__predict_false(runtm < 0)) { 1174 if (!backwards) { 1175 backwards = true; 1176 printf("WARNING: negative runtime; " 1177 "monotonic clock has gone backwards\n"); 1178 } 1179 mutex_exit(p->p_lock); 1180 continue; 1181 } 1182 1183 /* 1184 * Check if the process exceeds its CPU resource allocation. 1185 * If over the hard limit, kill it with SIGKILL. 1186 * If over the soft limit, send SIGXCPU and raise 1187 * the soft limit a little. 1188 */ 1189 rlim = &p->p_rlimit[RLIMIT_CPU]; 1190 sig = 0; 1191 if (__predict_false(runtm >= rlim->rlim_cur)) { 1192 if (runtm >= rlim->rlim_max) { 1193 sig = SIGKILL; 1194 log(LOG_NOTICE, 1195 "pid %d, command %s, is killed: %s\n", 1196 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU"); 1197 uprintf("pid %d, command %s, is killed: %s\n", 1198 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU"); 1199 } else { 1200 sig = SIGXCPU; 1201 if (rlim->rlim_cur < rlim->rlim_max) 1202 rlim->rlim_cur += 5; 1203 } 1204 } 1205 mutex_exit(p->p_lock); 1206 if (__predict_false(sig)) { 1207 KASSERT((p->p_flag & PK_SYSTEM) == 0); 1208 psignal(p, sig); 1209 } 1210 } 1211 1212 /* Load average calculation. */ 1213 if (__predict_false(lavg_count == 0)) { 1214 int i; 1215 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg)); 1216 for (i = 0; i < __arraycount(cexp); i++) { 1217 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] + 1218 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT; 1219 } 1220 } 1221 1222 /* Lightning bolt. */ 1223 cv_broadcast(&lbolt); 1224 1225 mutex_exit(proc_lock); 1226 } 1227