xref: /netbsd-src/sys/kern/kern_synch.c (revision e4d7c2e329d54c97e0c0bd3016bbe74f550c3d5e)
1 /*	$NetBSD: kern_synch.c,v 1.67 1999/11/15 18:49:09 fvdl Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*-
41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Redistribution and use in source and binary forms, with or without
50  * modification, are permitted provided that the following conditions
51  * are met:
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  * 3. All advertising materials mentioning features or use of this software
58  *    must display the following acknowledgement:
59  *	This product includes software developed by the University of
60  *	California, Berkeley and its contributors.
61  * 4. Neither the name of the University nor the names of its contributors
62  *    may be used to endorse or promote products derived from this software
63  *    without specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75  * SUCH DAMAGE.
76  *
77  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
78  */
79 
80 #include "opt_ddb.h"
81 #include "opt_ktrace.h"
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/kernel.h>
87 #include <sys/buf.h>
88 #include <sys/signalvar.h>
89 #include <sys/resourcevar.h>
90 #include <vm/vm.h>
91 #include <sys/sched.h>
92 
93 #include <uvm/uvm_extern.h>
94 
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98 
99 #define NICE_WEIGHT 2			/* priorities per nice level */
100 #define	PPQ	(128 / NQS)		/* priorities per queue */
101 
102 #define	ESTCPULIM(e) min((e), NICE_WEIGHT * PRIO_MAX - PPQ)
103 
104 #include <machine/cpu.h>
105 
106 u_char	curpriority;		/* usrpri of curproc */
107 int	lbolt;			/* once a second sleep address */
108 
109 void roundrobin __P((void *));
110 void schedcpu __P((void *));
111 void updatepri __P((struct proc *));
112 void endtsleep __P((void *));
113 
114 __inline void awaken __P((struct proc *));
115 
116 /*
117  * Force switch among equal priority processes every 100ms.
118  */
119 /* ARGSUSED */
120 void
121 roundrobin(arg)
122 	void *arg;
123 {
124 
125 	need_resched();
126 	timeout(roundrobin, NULL, hz / 10);
127 }
128 
129 /*
130  * Constants for digital decay and forget:
131  *	90% of (p_estcpu) usage in 5 * loadav time
132  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
133  *          Note that, as ps(1) mentions, this can let percentages
134  *          total over 100% (I've seen 137.9% for 3 processes).
135  *
136  * Note that hardclock updates p_estcpu and p_cpticks independently.
137  *
138  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
139  * That is, the system wants to compute a value of decay such
140  * that the following for loop:
141  * 	for (i = 0; i < (5 * loadavg); i++)
142  * 		p_estcpu *= decay;
143  * will compute
144  * 	p_estcpu *= 0.1;
145  * for all values of loadavg:
146  *
147  * Mathematically this loop can be expressed by saying:
148  * 	decay ** (5 * loadavg) ~= .1
149  *
150  * The system computes decay as:
151  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
152  *
153  * We wish to prove that the system's computation of decay
154  * will always fulfill the equation:
155  * 	decay ** (5 * loadavg) ~= .1
156  *
157  * If we compute b as:
158  * 	b = 2 * loadavg
159  * then
160  * 	decay = b / (b + 1)
161  *
162  * We now need to prove two things:
163  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
164  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
165  *
166  * Facts:
167  *         For x close to zero, exp(x) =~ 1 + x, since
168  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
169  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
170  *         For x close to zero, ln(1+x) =~ x, since
171  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
172  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
173  *         ln(.1) =~ -2.30
174  *
175  * Proof of (1):
176  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
177  *	solving for factor,
178  *      ln(factor) =~ (-2.30/5*loadav), or
179  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
180  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
181  *
182  * Proof of (2):
183  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
184  *	solving for power,
185  *      power*ln(b/(b+1)) =~ -2.30, or
186  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
187  *
188  * Actual power values for the implemented algorithm are as follows:
189  *      loadav: 1       2       3       4
190  *      power:  5.68    10.32   14.94   19.55
191  */
192 
193 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
194 #define	loadfactor(loadav)	(2 * (loadav))
195 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
196 
197 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
198 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
199 
200 /*
201  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
202  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
203  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
204  *
205  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
206  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
207  *
208  * If you dont want to bother with the faster/more-accurate formula, you
209  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
210  * (more general) method of calculating the %age of CPU used by a process.
211  */
212 #define	CCPU_SHIFT	11
213 
214 /*
215  * Recompute process priorities, every hz ticks.
216  */
217 /* ARGSUSED */
218 void
219 schedcpu(arg)
220 	void *arg;
221 {
222 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
223 	register struct proc *p;
224 	register int s;
225 	register unsigned int newcpu;
226 	int clkhz;
227 
228 	proclist_lock_read();
229 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
230 		/*
231 		 * Increment time in/out of memory and sleep time
232 		 * (if sleeping).  We ignore overflow; with 16-bit int's
233 		 * (remember them?) overflow takes 45 days.
234 		 */
235 		p->p_swtime++;
236 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
237 			p->p_slptime++;
238 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
239 		/*
240 		 * If the process has slept the entire second,
241 		 * stop recalculating its priority until it wakes up.
242 		 */
243 		if (p->p_slptime > 1)
244 			continue;
245 		s = splstatclock();	/* prevent state changes */
246 		/*
247 		 * p_pctcpu is only for ps.
248 		 */
249 		clkhz = stathz != 0 ? stathz : hz;
250 #if	(FSHIFT >= CCPU_SHIFT)
251 		p->p_pctcpu += (clkhz == 100)?
252 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
253                 	100 * (((fixpt_t) p->p_cpticks)
254 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
255 #else
256 		p->p_pctcpu += ((FSCALE - ccpu) *
257 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
258 #endif
259 		p->p_cpticks = 0;
260 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
261 		p->p_estcpu = newcpu;
262 		resetpriority(p);
263 		if (p->p_priority >= PUSER) {
264 			if ((p != curproc) &&
265 			    p->p_stat == SRUN &&
266 			    (p->p_flag & P_INMEM) &&
267 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
268 				remrunqueue(p);
269 				p->p_priority = p->p_usrpri;
270 				setrunqueue(p);
271 			} else
272 				p->p_priority = p->p_usrpri;
273 		}
274 		splx(s);
275 	}
276 	proclist_unlock_read();
277 	uvm_meter();
278 	wakeup((caddr_t)&lbolt);
279 	timeout(schedcpu, (void *)0, hz);
280 }
281 
282 /*
283  * Recalculate the priority of a process after it has slept for a while.
284  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
285  * least six times the loadfactor will decay p_estcpu to zero.
286  */
287 void
288 updatepri(p)
289 	register struct proc *p;
290 {
291 	register unsigned int newcpu = p->p_estcpu;
292 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
293 
294 	if (p->p_slptime > 5 * loadfac)
295 		p->p_estcpu = 0;
296 	else {
297 		p->p_slptime--;	/* the first time was done in schedcpu */
298 		while (newcpu && --p->p_slptime)
299 			newcpu = (int) decay_cpu(loadfac, newcpu);
300 		p->p_estcpu = newcpu;
301 	}
302 	resetpriority(p);
303 }
304 
305 /*
306  * We're only looking at 7 bits of the address; everything is
307  * aligned to 4, lots of things are aligned to greater powers
308  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
309  */
310 #define TABLESIZE	128
311 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
312 struct slpque {
313 	struct proc *sq_head;
314 	struct proc **sq_tailp;
315 } slpque[TABLESIZE];
316 
317 /*
318  * During autoconfiguration or after a panic, a sleep will simply
319  * lower the priority briefly to allow interrupts, then return.
320  * The priority to be used (safepri) is machine-dependent, thus this
321  * value is initialized and maintained in the machine-dependent layers.
322  * This priority will typically be 0, or the lowest priority
323  * that is safe for use on the interrupt stack; it can be made
324  * higher to block network software interrupts after panics.
325  */
326 int safepri;
327 
328 /*
329  * General sleep call.  Suspends the current process until a wakeup is
330  * performed on the specified identifier.  The process will then be made
331  * runnable with the specified priority.  Sleeps at most timo/hz seconds
332  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
333  * before and after sleeping, else signals are not checked.  Returns 0 if
334  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
335  * signal needs to be delivered, ERESTART is returned if the current system
336  * call should be restarted if possible, and EINTR is returned if the system
337  * call should be interrupted by the signal (return EINTR).
338  */
339 int
340 tsleep(ident, priority, wmesg, timo)
341 	void *ident;
342 	int priority, timo;
343 	const char *wmesg;
344 {
345 	register struct proc *p = curproc;
346 	register struct slpque *qp;
347 	register int s;
348 	int sig, catch = priority & PCATCH;
349 	void endtsleep __P((void *));
350 
351 	if (cold || panicstr) {
352 		/*
353 		 * After a panic, or during autoconfiguration,
354 		 * just give interrupts a chance, then just return;
355 		 * don't run any other procs or panic below,
356 		 * in case this is the idle process and already asleep.
357 		 */
358 		s = splhigh();
359 		splx(safepri);
360 		splx(s);
361 		return (0);
362 	}
363 
364 #ifdef KTRACE
365 	if (KTRPOINT(p, KTR_CSW))
366 		ktrcsw(p->p_tracep, 1, 0);
367 #endif
368 	s = splhigh();
369 
370 #ifdef DIAGNOSTIC
371 	if (ident == NULL)
372 		panic("tsleep: ident == NULL");
373 	if (p->p_stat != SRUN)
374 		panic("tsleep: p_stat %d != SRUN", p->p_stat);
375 	if (p->p_back != NULL)
376 		panic("tsleep: p_back != NULL");
377 #endif
378 	p->p_wchan = ident;
379 	p->p_wmesg = wmesg;
380 	p->p_slptime = 0;
381 	p->p_priority = priority & PRIMASK;
382 	qp = &slpque[LOOKUP(ident)];
383 	if (qp->sq_head == 0)
384 		qp->sq_head = p;
385 	else
386 		*qp->sq_tailp = p;
387 	*(qp->sq_tailp = &p->p_forw) = 0;
388 	if (timo)
389 		timeout(endtsleep, (void *)p, timo);
390 	/*
391 	 * We put ourselves on the sleep queue and start our timeout
392 	 * before calling CURSIG, as we could stop there, and a wakeup
393 	 * or a SIGCONT (or both) could occur while we were stopped.
394 	 * A SIGCONT would cause us to be marked as SSLEEP
395 	 * without resuming us, thus we must be ready for sleep
396 	 * when CURSIG is called.  If the wakeup happens while we're
397 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
398 	 */
399 	if (catch) {
400 		p->p_flag |= P_SINTR;
401 		if ((sig = CURSIG(p)) != 0) {
402 			if (p->p_wchan)
403 				unsleep(p);
404 			p->p_stat = SRUN;
405 			goto resume;
406 		}
407 		if (p->p_wchan == 0) {
408 			catch = 0;
409 			goto resume;
410 		}
411 	} else
412 		sig = 0;
413 	p->p_stat = SSLEEP;
414 	p->p_stats->p_ru.ru_nvcsw++;
415 	mi_switch();
416 #ifdef	DDB
417 	/* handy breakpoint location after process "wakes" */
418 	asm(".globl bpendtsleep ; bpendtsleep:");
419 #endif
420 resume:
421 	curpriority = p->p_usrpri;
422 	splx(s);
423 	p->p_flag &= ~P_SINTR;
424 	if (p->p_flag & P_TIMEOUT) {
425 		p->p_flag &= ~P_TIMEOUT;
426 		if (sig == 0) {
427 #ifdef KTRACE
428 			if (KTRPOINT(p, KTR_CSW))
429 				ktrcsw(p->p_tracep, 0, 0);
430 #endif
431 			return (EWOULDBLOCK);
432 		}
433 	} else if (timo)
434 		untimeout(endtsleep, (void *)p);
435 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
436 #ifdef KTRACE
437 		if (KTRPOINT(p, KTR_CSW))
438 			ktrcsw(p->p_tracep, 0, 0);
439 #endif
440 		if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
441 			return (EINTR);
442 		return (ERESTART);
443 	}
444 #ifdef KTRACE
445 	if (KTRPOINT(p, KTR_CSW))
446 		ktrcsw(p->p_tracep, 0, 0);
447 #endif
448 	return (0);
449 }
450 
451 /*
452  * Implement timeout for tsleep.
453  * If process hasn't been awakened (wchan non-zero),
454  * set timeout flag and undo the sleep.  If proc
455  * is stopped, just unsleep so it will remain stopped.
456  */
457 void
458 endtsleep(arg)
459 	void *arg;
460 {
461 	register struct proc *p;
462 	int s;
463 
464 	p = (struct proc *)arg;
465 	s = splhigh();
466 	if (p->p_wchan) {
467 		if (p->p_stat == SSLEEP)
468 			setrunnable(p);
469 		else
470 			unsleep(p);
471 		p->p_flag |= P_TIMEOUT;
472 	}
473 	splx(s);
474 }
475 
476 /*
477  * Short-term, non-interruptable sleep.
478  */
479 void
480 sleep(ident, priority)
481 	void *ident;
482 	int priority;
483 {
484 	register struct proc *p = curproc;
485 	register struct slpque *qp;
486 	register int s;
487 
488 #ifdef DIAGNOSTIC
489 	if (priority > PZERO) {
490 		printf("sleep called with priority %d > PZERO, wchan: %p\n",
491 		    priority, ident);
492 		panic("old sleep");
493 	}
494 #endif
495 	s = splhigh();
496 	if (cold || panicstr) {
497 		/*
498 		 * After a panic, or during autoconfiguration,
499 		 * just give interrupts a chance, then just return;
500 		 * don't run any other procs or panic below,
501 		 * in case this is the idle process and already asleep.
502 		 */
503 		splx(safepri);
504 		splx(s);
505 		return;
506 	}
507 #ifdef DIAGNOSTIC
508 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
509 		panic("sleep");
510 #endif
511 	p->p_wchan = ident;
512 	p->p_wmesg = NULL;
513 	p->p_slptime = 0;
514 	p->p_priority = priority;
515 	qp = &slpque[LOOKUP(ident)];
516 	if (qp->sq_head == 0)
517 		qp->sq_head = p;
518 	else
519 		*qp->sq_tailp = p;
520 	*(qp->sq_tailp = &p->p_forw) = 0;
521 	p->p_stat = SSLEEP;
522 	p->p_stats->p_ru.ru_nvcsw++;
523 #ifdef KTRACE
524 	if (KTRPOINT(p, KTR_CSW))
525 		ktrcsw(p->p_tracep, 1, 0);
526 #endif
527 	mi_switch();
528 #ifdef	DDB
529 	/* handy breakpoint location after process "wakes" */
530 	asm(".globl bpendsleep ; bpendsleep:");
531 #endif
532 #ifdef KTRACE
533 	if (KTRPOINT(p, KTR_CSW))
534 		ktrcsw(p->p_tracep, 0, 0);
535 #endif
536 	curpriority = p->p_usrpri;
537 	splx(s);
538 }
539 
540 /*
541  * Remove a process from its wait queue
542  */
543 void
544 unsleep(p)
545 	register struct proc *p;
546 {
547 	register struct slpque *qp;
548 	register struct proc **hp;
549 	int s;
550 
551 	s = splhigh();
552 	if (p->p_wchan) {
553 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
554 		while (*hp != p)
555 			hp = &(*hp)->p_forw;
556 		*hp = p->p_forw;
557 		if (qp->sq_tailp == &p->p_forw)
558 			qp->sq_tailp = hp;
559 		p->p_wchan = 0;
560 	}
561 	splx(s);
562 }
563 
564 /*
565  * Optimized-for-wakeup() version of setrunnable().
566  */
567 __inline void
568 awaken(p)
569 	struct proc *p;
570 {
571 
572 	if (p->p_slptime > 1)
573 		updatepri(p);
574 	p->p_slptime = 0;
575 	p->p_stat = SRUN;
576 	/*
577 	 * Since curpriority is a user priority, p->p_priority
578 	 * is always better than curpriority.
579 	 */
580 	if (p->p_flag & P_INMEM) {
581 		setrunqueue(p);
582 		need_resched();
583 	} else
584 		wakeup((caddr_t)&proc0);
585 }
586 
587 /*
588  * Make all processes sleeping on the specified identifier runnable.
589  */
590 void
591 wakeup(ident)
592 	register void *ident;
593 {
594 	register struct slpque *qp;
595 	register struct proc *p, **q;
596 	int s;
597 
598 	s = splhigh();
599 	qp = &slpque[LOOKUP(ident)];
600 restart:
601 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
602 #ifdef DIAGNOSTIC
603 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
604 			panic("wakeup");
605 #endif
606 		if (p->p_wchan == ident) {
607 			p->p_wchan = 0;
608 			*q = p->p_forw;
609 			if (qp->sq_tailp == &p->p_forw)
610 				qp->sq_tailp = q;
611 			if (p->p_stat == SSLEEP) {
612 				awaken(p);
613 				goto restart;
614 			}
615 		} else
616 			q = &p->p_forw;
617 	}
618 	splx(s);
619 }
620 
621 /*
622  * Make the highest priority process first in line on the specified
623  * identifier runnable.
624  */
625 void
626 wakeup_one(ident)
627 	void *ident;
628 {
629 	struct slpque *qp;
630 	struct proc *p, **q;
631 	struct proc *best_sleepp, **best_sleepq;
632 	struct proc *best_stopp, **best_stopq;
633 	int s;
634 
635 	best_sleepp = best_stopp = NULL;
636 	best_sleepq = best_stopq = NULL;
637 
638 	s = splhigh();
639 	qp = &slpque[LOOKUP(ident)];
640 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
641 #ifdef DIAGNOSTIC
642 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
643 			panic("wakeup_one");
644 #endif
645 		if (p->p_wchan == ident) {
646 			if (p->p_stat == SSLEEP) {
647 				if (best_sleepp == NULL ||
648 				    p->p_priority < best_sleepp->p_priority) {
649 					best_sleepp = p;
650 					best_sleepq = q;
651 				}
652 			} else {
653 				if (best_stopp == NULL ||
654 				    p->p_priority < best_stopp->p_priority) {
655 					best_stopp = p;
656 					best_stopq = q;
657 				}
658 			}
659 		}
660 	}
661 
662 	/*
663 	 * Consider any SSLEEP process higher than the highest priority SSTOP
664 	 * process.
665 	 */
666 	if (best_sleepp != NULL) {
667 		p = best_sleepp;
668 		q = best_sleepq;
669 	} else {
670 		p = best_stopp;
671 		q = best_stopq;
672 	}
673 
674 	if (p != NULL) {
675 		p->p_wchan = 0;
676 		*q = p->p_forw;
677 		if (qp->sq_tailp == &p->p_forw)
678 			qp->sq_tailp = q;
679 		if (p->p_stat == SSLEEP)
680 			awaken(p);
681 	}
682 	splx(s);
683 }
684 
685 /*
686  * The machine independent parts of mi_switch().
687  * Must be called at splstatclock() or higher.
688  */
689 void
690 mi_switch()
691 {
692 	register struct proc *p = curproc;	/* XXX */
693 	register struct rlimit *rlim;
694 	register long s, u;
695 	struct timeval tv;
696 
697 #ifdef DEBUG
698 	if (p->p_simple_locks) {
699 		printf("p->p_simple_locks %d\n", p->p_simple_locks);
700 #ifdef LOCKDEBUG
701 		simple_lock_dump();
702 #endif
703 		panic("sleep: holding simple lock");
704 	}
705 #endif
706 	/*
707 	 * Compute the amount of time during which the current
708 	 * process was running, and add that to its total so far.
709 	 */
710 	microtime(&tv);
711 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
712 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
713 	if (u < 0) {
714 		u += 1000000;
715 		s--;
716 	} else if (u >= 1000000) {
717 		u -= 1000000;
718 		s++;
719 	}
720 	p->p_rtime.tv_usec = u;
721 	p->p_rtime.tv_sec = s;
722 
723 	/*
724 	 * Check if the process exceeds its cpu resource allocation.
725 	 * If over max, kill it.  In any case, if it has run for more
726 	 * than 10 minutes, reduce priority to give others a chance.
727 	 */
728 	rlim = &p->p_rlimit[RLIMIT_CPU];
729 	if (s >= rlim->rlim_cur) {
730 		if (s >= rlim->rlim_max)
731 			psignal(p, SIGKILL);
732 		else {
733 			psignal(p, SIGXCPU);
734 			if (rlim->rlim_cur < rlim->rlim_max)
735 				rlim->rlim_cur += 5;
736 		}
737 	}
738 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
739 		p->p_nice = autoniceval + NZERO;
740 		resetpriority(p);
741 	}
742 
743 	/*
744 	 * Pick a new current process and record its start time.
745 	 */
746 	uvmexp.swtch++;
747 	cpu_switch(p);
748 	microtime(&runtime);
749 }
750 
751 /*
752  * Initialize the (doubly-linked) run queues
753  * to be empty.
754  */
755 void
756 rqinit()
757 {
758 	register int i;
759 
760 	for (i = 0; i < NQS; i++)
761 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
762 }
763 
764 /*
765  * Change process state to be runnable,
766  * placing it on the run queue if it is in memory,
767  * and awakening the swapper if it isn't in memory.
768  */
769 void
770 setrunnable(p)
771 	register struct proc *p;
772 {
773 	register int s;
774 
775 	s = splhigh();
776 	switch (p->p_stat) {
777 	case 0:
778 	case SRUN:
779 	case SZOMB:
780 	case SDEAD:
781 	default:
782 		panic("setrunnable");
783 	case SSTOP:
784 		/*
785 		 * If we're being traced (possibly because someone attached us
786 		 * while we were stopped), check for a signal from the debugger.
787 		 */
788 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
789 			sigaddset(&p->p_siglist, p->p_xstat);
790 			p->p_sigcheck = 1;
791 		}
792 	case SSLEEP:
793 		unsleep(p);		/* e.g. when sending signals */
794 		break;
795 
796 	case SIDL:
797 		break;
798 	}
799 	p->p_stat = SRUN;
800 	if (p->p_flag & P_INMEM)
801 		setrunqueue(p);
802 	splx(s);
803 	if (p->p_slptime > 1)
804 		updatepri(p);
805 	p->p_slptime = 0;
806 	if ((p->p_flag & P_INMEM) == 0)
807 		wakeup((caddr_t)&proc0);
808 	else if (p->p_priority < curpriority)
809 		need_resched();
810 }
811 
812 /*
813  * Compute the priority of a process when running in user mode.
814  * Arrange to reschedule if the resulting priority is better
815  * than that of the current process.
816  */
817 void
818 resetpriority(p)
819 	register struct proc *p;
820 {
821 	register unsigned int newpriority;
822 
823 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
824 	newpriority = min(newpriority, MAXPRI);
825 	p->p_usrpri = newpriority;
826 	if (newpriority < curpriority)
827 		need_resched();
828 }
829 
830 /*
831  * We adjust the priority of the current process.  The priority of a process
832  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
833  * is increased here.  The formula for computing priorities (in kern_synch.c)
834  * will compute a different value each time p_estcpu increases. This can
835  * cause a switch, but unless the priority crosses a PPQ boundary the actual
836  * queue will not change.  The cpu usage estimator ramps up quite quickly
837  * when the process is running (linearly), and decays away exponentially, at
838  * a rate which is proportionally slower when the system is busy.  The basic
839  * principal is that the system will 90% forget that the process used a lot
840  * of CPU time in 5 * loadav seconds.  This causes the system to favor
841  * processes which haven't run much recently, and to round-robin among other
842  * processes.
843  */
844 
845 void
846 schedclock(p)
847 	struct proc *p;
848 {
849 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
850 	resetpriority(p);
851 	if (p->p_priority >= PUSER)
852 		p->p_priority = p->p_usrpri;
853 }
854