1 /* $NetBSD: kern_synch.c,v 1.54 1998/11/04 06:19:56 chs Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1990, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 41 */ 42 43 #include "opt_ddb.h" 44 #include "opt_ktrace.h" 45 #include "opt_uvm.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/proc.h> 50 #include <sys/kernel.h> 51 #include <sys/buf.h> 52 #include <sys/signalvar.h> 53 #include <sys/resourcevar.h> 54 #include <vm/vm.h> 55 56 #if defined(UVM) 57 #include <uvm/uvm_extern.h> 58 #endif 59 60 #ifdef KTRACE 61 #include <sys/ktrace.h> 62 #endif 63 64 #include <machine/cpu.h> 65 66 u_char curpriority; /* usrpri of curproc */ 67 int lbolt; /* once a second sleep address */ 68 69 void roundrobin __P((void *)); 70 void schedcpu __P((void *)); 71 void updatepri __P((struct proc *)); 72 void endtsleep __P((void *)); 73 74 /* 75 * Force switch among equal priority processes every 100ms. 76 */ 77 /* ARGSUSED */ 78 void 79 roundrobin(arg) 80 void *arg; 81 { 82 83 need_resched(); 84 timeout(roundrobin, NULL, hz / 10); 85 } 86 87 /* 88 * Constants for digital decay and forget: 89 * 90% of (p_estcpu) usage in 5 * loadav time 90 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 91 * Note that, as ps(1) mentions, this can let percentages 92 * total over 100% (I've seen 137.9% for 3 processes). 93 * 94 * Note that hardclock updates p_estcpu and p_cpticks independently. 95 * 96 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. 97 * That is, the system wants to compute a value of decay such 98 * that the following for loop: 99 * for (i = 0; i < (5 * loadavg); i++) 100 * p_estcpu *= decay; 101 * will compute 102 * p_estcpu *= 0.1; 103 * for all values of loadavg: 104 * 105 * Mathematically this loop can be expressed by saying: 106 * decay ** (5 * loadavg) ~= .1 107 * 108 * The system computes decay as: 109 * decay = (2 * loadavg) / (2 * loadavg + 1) 110 * 111 * We wish to prove that the system's computation of decay 112 * will always fulfill the equation: 113 * decay ** (5 * loadavg) ~= .1 114 * 115 * If we compute b as: 116 * b = 2 * loadavg 117 * then 118 * decay = b / (b + 1) 119 * 120 * We now need to prove two things: 121 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 122 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 123 * 124 * Facts: 125 * For x close to zero, exp(x) =~ 1 + x, since 126 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 127 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 128 * For x close to zero, ln(1+x) =~ x, since 129 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 130 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 131 * ln(.1) =~ -2.30 132 * 133 * Proof of (1): 134 * Solve (factor)**(power) =~ .1 given power (5*loadav): 135 * solving for factor, 136 * ln(factor) =~ (-2.30/5*loadav), or 137 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 138 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 139 * 140 * Proof of (2): 141 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 142 * solving for power, 143 * power*ln(b/(b+1)) =~ -2.30, or 144 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 145 * 146 * Actual power values for the implemented algorithm are as follows: 147 * loadav: 1 2 3 4 148 * power: 5.68 10.32 14.94 19.55 149 */ 150 151 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 152 #define loadfactor(loadav) (2 * (loadav)) 153 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 154 155 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 156 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 157 158 /* 159 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 160 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 161 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 162 * 163 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 164 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 165 * 166 * If you dont want to bother with the faster/more-accurate formula, you 167 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 168 * (more general) method of calculating the %age of CPU used by a process. 169 */ 170 #define CCPU_SHIFT 11 171 172 /* 173 * Recompute process priorities, every hz ticks. 174 */ 175 /* ARGSUSED */ 176 void 177 schedcpu(arg) 178 void *arg; 179 { 180 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 181 register struct proc *p; 182 register int s; 183 register unsigned int newcpu; 184 185 wakeup((caddr_t)&lbolt); 186 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { 187 /* 188 * Increment time in/out of memory and sleep time 189 * (if sleeping). We ignore overflow; with 16-bit int's 190 * (remember them?) overflow takes 45 days. 191 */ 192 p->p_swtime++; 193 if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 194 p->p_slptime++; 195 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 196 /* 197 * If the process has slept the entire second, 198 * stop recalculating its priority until it wakes up. 199 */ 200 if (p->p_slptime > 1) 201 continue; 202 s = splstatclock(); /* prevent state changes */ 203 /* 204 * p_pctcpu is only for ps. 205 */ 206 #if (FSHIFT >= CCPU_SHIFT) 207 p->p_pctcpu += (hz == 100)? 208 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 209 100 * (((fixpt_t) p->p_cpticks) 210 << (FSHIFT - CCPU_SHIFT)) / hz; 211 #else 212 p->p_pctcpu += ((FSCALE - ccpu) * 213 (p->p_cpticks * FSCALE / hz)) >> FSHIFT; 214 #endif 215 p->p_cpticks = 0; 216 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu) 217 + p->p_nice - NZERO; 218 p->p_estcpu = min(newcpu, UCHAR_MAX); 219 resetpriority(p); 220 if (p->p_priority >= PUSER) { 221 #define PPQ (128 / NQS) /* priorities per queue */ 222 if ((p != curproc) && 223 p->p_stat == SRUN && 224 (p->p_flag & P_INMEM) && 225 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) { 226 remrunqueue(p); 227 p->p_priority = p->p_usrpri; 228 setrunqueue(p); 229 } else 230 p->p_priority = p->p_usrpri; 231 } 232 splx(s); 233 } 234 #if defined(UVM) 235 uvm_meter(); 236 #else 237 vmmeter(); 238 #endif 239 timeout(schedcpu, (void *)0, hz); 240 } 241 242 /* 243 * Recalculate the priority of a process after it has slept for a while. 244 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at 245 * least six times the loadfactor will decay p_estcpu to zero. 246 */ 247 void 248 updatepri(p) 249 register struct proc *p; 250 { 251 register unsigned int newcpu = p->p_estcpu; 252 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 253 254 if (p->p_slptime > 5 * loadfac) 255 p->p_estcpu = 0; 256 else { 257 p->p_slptime--; /* the first time was done in schedcpu */ 258 while (newcpu && --p->p_slptime) 259 newcpu = (int) decay_cpu(loadfac, newcpu); 260 p->p_estcpu = min(newcpu, UCHAR_MAX); 261 } 262 resetpriority(p); 263 } 264 265 /* 266 * We're only looking at 7 bits of the address; everything is 267 * aligned to 4, lots of things are aligned to greater powers 268 * of 2. Shift right by 8, i.e. drop the bottom 256 worth. 269 */ 270 #define TABLESIZE 128 271 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1)) 272 struct slpque { 273 struct proc *sq_head; 274 struct proc **sq_tailp; 275 } slpque[TABLESIZE]; 276 277 /* 278 * During autoconfiguration or after a panic, a sleep will simply 279 * lower the priority briefly to allow interrupts, then return. 280 * The priority to be used (safepri) is machine-dependent, thus this 281 * value is initialized and maintained in the machine-dependent layers. 282 * This priority will typically be 0, or the lowest priority 283 * that is safe for use on the interrupt stack; it can be made 284 * higher to block network software interrupts after panics. 285 */ 286 int safepri; 287 288 /* 289 * General sleep call. Suspends the current process until a wakeup is 290 * performed on the specified identifier. The process will then be made 291 * runnable with the specified priority. Sleeps at most timo/hz seconds 292 * (0 means no timeout). If pri includes PCATCH flag, signals are checked 293 * before and after sleeping, else signals are not checked. Returns 0 if 294 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 295 * signal needs to be delivered, ERESTART is returned if the current system 296 * call should be restarted if possible, and EINTR is returned if the system 297 * call should be interrupted by the signal (return EINTR). 298 */ 299 int 300 tsleep(ident, priority, wmesg, timo) 301 void *ident; 302 int priority, timo; 303 const char *wmesg; 304 { 305 register struct proc *p = curproc; 306 register struct slpque *qp; 307 register int s; 308 int sig, catch = priority & PCATCH; 309 extern int cold; 310 void endtsleep __P((void *)); 311 312 if (cold || panicstr) { 313 /* 314 * After a panic, or during autoconfiguration, 315 * just give interrupts a chance, then just return; 316 * don't run any other procs or panic below, 317 * in case this is the idle process and already asleep. 318 */ 319 s = splhigh(); 320 splx(safepri); 321 splx(s); 322 return (0); 323 } 324 325 #ifdef KTRACE 326 if (KTRPOINT(p, KTR_CSW)) 327 ktrcsw(p->p_tracep, 1, 0); 328 #endif 329 s = splhigh(); 330 331 #ifdef DIAGNOSTIC 332 if (ident == NULL || p->p_stat != SRUN || p->p_back) 333 panic("tsleep"); 334 #endif 335 p->p_wchan = ident; 336 p->p_wmesg = wmesg; 337 p->p_slptime = 0; 338 p->p_priority = priority & PRIMASK; 339 qp = &slpque[LOOKUP(ident)]; 340 if (qp->sq_head == 0) 341 qp->sq_head = p; 342 else 343 *qp->sq_tailp = p; 344 *(qp->sq_tailp = &p->p_forw) = 0; 345 if (timo) 346 timeout(endtsleep, (void *)p, timo); 347 /* 348 * We put ourselves on the sleep queue and start our timeout 349 * before calling CURSIG, as we could stop there, and a wakeup 350 * or a SIGCONT (or both) could occur while we were stopped. 351 * A SIGCONT would cause us to be marked as SSLEEP 352 * without resuming us, thus we must be ready for sleep 353 * when CURSIG is called. If the wakeup happens while we're 354 * stopped, p->p_wchan will be 0 upon return from CURSIG. 355 */ 356 if (catch) { 357 p->p_flag |= P_SINTR; 358 if ((sig = CURSIG(p)) != 0) { 359 if (p->p_wchan) 360 unsleep(p); 361 p->p_stat = SRUN; 362 goto resume; 363 } 364 if (p->p_wchan == 0) { 365 catch = 0; 366 goto resume; 367 } 368 } else 369 sig = 0; 370 p->p_stat = SSLEEP; 371 p->p_stats->p_ru.ru_nvcsw++; 372 mi_switch(); 373 #ifdef DDB 374 /* handy breakpoint location after process "wakes" */ 375 asm(".globl bpendtsleep ; bpendtsleep:"); 376 #endif 377 resume: 378 curpriority = p->p_usrpri; 379 splx(s); 380 p->p_flag &= ~P_SINTR; 381 if (p->p_flag & P_TIMEOUT) { 382 p->p_flag &= ~P_TIMEOUT; 383 if (sig == 0) { 384 #ifdef KTRACE 385 if (KTRPOINT(p, KTR_CSW)) 386 ktrcsw(p->p_tracep, 0, 0); 387 #endif 388 return (EWOULDBLOCK); 389 } 390 } else if (timo) 391 untimeout(endtsleep, (void *)p); 392 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) { 393 #ifdef KTRACE 394 if (KTRPOINT(p, KTR_CSW)) 395 ktrcsw(p->p_tracep, 0, 0); 396 #endif 397 if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0) 398 return (EINTR); 399 return (ERESTART); 400 } 401 #ifdef KTRACE 402 if (KTRPOINT(p, KTR_CSW)) 403 ktrcsw(p->p_tracep, 0, 0); 404 #endif 405 return (0); 406 } 407 408 /* 409 * Implement timeout for tsleep. 410 * If process hasn't been awakened (wchan non-zero), 411 * set timeout flag and undo the sleep. If proc 412 * is stopped, just unsleep so it will remain stopped. 413 */ 414 void 415 endtsleep(arg) 416 void *arg; 417 { 418 register struct proc *p; 419 int s; 420 421 p = (struct proc *)arg; 422 s = splhigh(); 423 if (p->p_wchan) { 424 if (p->p_stat == SSLEEP) 425 setrunnable(p); 426 else 427 unsleep(p); 428 p->p_flag |= P_TIMEOUT; 429 } 430 splx(s); 431 } 432 433 /* 434 * Short-term, non-interruptable sleep. 435 */ 436 void 437 sleep(ident, priority) 438 void *ident; 439 int priority; 440 { 441 register struct proc *p = curproc; 442 register struct slpque *qp; 443 register int s; 444 extern int cold; 445 446 #ifdef DIAGNOSTIC 447 if (priority > PZERO) { 448 printf("sleep called with priority %d > PZERO, wchan: %p\n", 449 priority, ident); 450 panic("old sleep"); 451 } 452 #endif 453 s = splhigh(); 454 if (cold || panicstr) { 455 /* 456 * After a panic, or during autoconfiguration, 457 * just give interrupts a chance, then just return; 458 * don't run any other procs or panic below, 459 * in case this is the idle process and already asleep. 460 */ 461 splx(safepri); 462 splx(s); 463 return; 464 } 465 #ifdef DIAGNOSTIC 466 if (ident == NULL || p->p_stat != SRUN || p->p_back) 467 panic("sleep"); 468 #endif 469 p->p_wchan = ident; 470 p->p_wmesg = NULL; 471 p->p_slptime = 0; 472 p->p_priority = priority; 473 qp = &slpque[LOOKUP(ident)]; 474 if (qp->sq_head == 0) 475 qp->sq_head = p; 476 else 477 *qp->sq_tailp = p; 478 *(qp->sq_tailp = &p->p_forw) = 0; 479 p->p_stat = SSLEEP; 480 p->p_stats->p_ru.ru_nvcsw++; 481 #ifdef KTRACE 482 if (KTRPOINT(p, KTR_CSW)) 483 ktrcsw(p->p_tracep, 1, 0); 484 #endif 485 mi_switch(); 486 #ifdef DDB 487 /* handy breakpoint location after process "wakes" */ 488 asm(".globl bpendsleep ; bpendsleep:"); 489 #endif 490 #ifdef KTRACE 491 if (KTRPOINT(p, KTR_CSW)) 492 ktrcsw(p->p_tracep, 0, 0); 493 #endif 494 curpriority = p->p_usrpri; 495 splx(s); 496 } 497 498 /* 499 * Remove a process from its wait queue 500 */ 501 void 502 unsleep(p) 503 register struct proc *p; 504 { 505 register struct slpque *qp; 506 register struct proc **hp; 507 int s; 508 509 s = splhigh(); 510 if (p->p_wchan) { 511 hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head; 512 while (*hp != p) 513 hp = &(*hp)->p_forw; 514 *hp = p->p_forw; 515 if (qp->sq_tailp == &p->p_forw) 516 qp->sq_tailp = hp; 517 p->p_wchan = 0; 518 } 519 splx(s); 520 } 521 522 /* 523 * Make all processes sleeping on the specified identifier runnable. 524 */ 525 void 526 wakeup(ident) 527 register void *ident; 528 { 529 register struct slpque *qp; 530 register struct proc *p, **q; 531 int s; 532 533 s = splhigh(); 534 qp = &slpque[LOOKUP(ident)]; 535 restart: 536 for (q = &qp->sq_head; (p = *q) != NULL; ) { 537 #ifdef DIAGNOSTIC 538 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP)) 539 panic("wakeup"); 540 #endif 541 if (p->p_wchan == ident) { 542 p->p_wchan = 0; 543 *q = p->p_forw; 544 if (qp->sq_tailp == &p->p_forw) 545 qp->sq_tailp = q; 546 if (p->p_stat == SSLEEP) { 547 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 548 if (p->p_slptime > 1) 549 updatepri(p); 550 p->p_slptime = 0; 551 p->p_stat = SRUN; 552 if (p->p_flag & P_INMEM) 553 setrunqueue(p); 554 /* 555 * Since curpriority is a user priority, 556 * p->p_priority is always better than 557 * curpriority. 558 */ 559 if ((p->p_flag & P_INMEM) == 0) 560 wakeup((caddr_t)&proc0); 561 else 562 need_resched(); 563 /* END INLINE EXPANSION */ 564 goto restart; 565 } 566 } else 567 q = &p->p_forw; 568 } 569 splx(s); 570 } 571 572 /* 573 * The machine independent parts of mi_switch(). 574 * Must be called at splstatclock() or higher. 575 */ 576 void 577 mi_switch() 578 { 579 register struct proc *p = curproc; /* XXX */ 580 register struct rlimit *rlim; 581 register long s, u; 582 struct timeval tv; 583 584 #ifdef DEBUG 585 if (p->p_simple_locks) { 586 printf("p->p_simple_locks %d\n", p->p_simple_locks); 587 #ifdef LOCKDEBUG 588 simple_lock_dump(); 589 #endif 590 panic("sleep: holding simple lock"); 591 } 592 #endif 593 /* 594 * Compute the amount of time during which the current 595 * process was running, and add that to its total so far. 596 */ 597 microtime(&tv); 598 u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec); 599 s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec); 600 if (u < 0) { 601 u += 1000000; 602 s--; 603 } else if (u >= 1000000) { 604 u -= 1000000; 605 s++; 606 } 607 p->p_rtime.tv_usec = u; 608 p->p_rtime.tv_sec = s; 609 610 /* 611 * Check if the process exceeds its cpu resource allocation. 612 * If over max, kill it. In any case, if it has run for more 613 * than 10 minutes, reduce priority to give others a chance. 614 */ 615 rlim = &p->p_rlimit[RLIMIT_CPU]; 616 if (s >= rlim->rlim_cur) { 617 if (s >= rlim->rlim_max) 618 psignal(p, SIGKILL); 619 else { 620 psignal(p, SIGXCPU); 621 if (rlim->rlim_cur < rlim->rlim_max) 622 rlim->rlim_cur += 5; 623 } 624 } 625 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) { 626 p->p_nice = autoniceval + NZERO; 627 resetpriority(p); 628 } 629 630 /* 631 * Pick a new current process and record its start time. 632 */ 633 #if defined(UVM) 634 uvmexp.swtch++; 635 #else 636 cnt.v_swtch++; 637 #endif 638 cpu_switch(p); 639 microtime(&runtime); 640 } 641 642 /* 643 * Initialize the (doubly-linked) run queues 644 * to be empty. 645 */ 646 void 647 rqinit() 648 { 649 register int i; 650 651 for (i = 0; i < NQS; i++) 652 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i]; 653 } 654 655 /* 656 * Change process state to be runnable, 657 * placing it on the run queue if it is in memory, 658 * and awakening the swapper if it isn't in memory. 659 */ 660 void 661 setrunnable(p) 662 register struct proc *p; 663 { 664 register int s; 665 666 s = splhigh(); 667 switch (p->p_stat) { 668 case 0: 669 case SRUN: 670 case SZOMB: 671 default: 672 panic("setrunnable"); 673 case SSTOP: 674 /* 675 * If we're being traced (possibly because someone attached us 676 * while we were stopped), check for a signal from the debugger. 677 */ 678 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) { 679 sigaddset(&p->p_siglist, p->p_xstat); 680 p->p_sigcheck = 1; 681 } 682 case SSLEEP: 683 unsleep(p); /* e.g. when sending signals */ 684 break; 685 686 case SIDL: 687 break; 688 } 689 p->p_stat = SRUN; 690 if (p->p_flag & P_INMEM) 691 setrunqueue(p); 692 splx(s); 693 if (p->p_slptime > 1) 694 updatepri(p); 695 p->p_slptime = 0; 696 if ((p->p_flag & P_INMEM) == 0) 697 wakeup((caddr_t)&proc0); 698 else if (p->p_priority < curpriority) 699 need_resched(); 700 } 701 702 /* 703 * Compute the priority of a process when running in user mode. 704 * Arrange to reschedule if the resulting priority is better 705 * than that of the current process. 706 */ 707 void 708 resetpriority(p) 709 register struct proc *p; 710 { 711 register unsigned int newpriority; 712 713 newpriority = PUSER + p->p_estcpu / 4 + 2 * (p->p_nice - NZERO); 714 newpriority = min(newpriority, MAXPRI); 715 p->p_usrpri = newpriority; 716 if (newpriority < curpriority) 717 need_resched(); 718 } 719