1 /* $NetBSD: kern_synch.c,v 1.260 2009/02/04 21:29:54 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and 11 * Daniel Sieger. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /*- 36 * Copyright (c) 1982, 1986, 1990, 1991, 1993 37 * The Regents of the University of California. All rights reserved. 38 * (c) UNIX System Laboratories, Inc. 39 * All or some portions of this file are derived from material licensed 40 * to the University of California by American Telephone and Telegraph 41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 42 * the permission of UNIX System Laboratories, Inc. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. Neither the name of the University nor the names of its contributors 53 * may be used to endorse or promote products derived from this software 54 * without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 66 * SUCH DAMAGE. 67 * 68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 69 */ 70 71 #include <sys/cdefs.h> 72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.260 2009/02/04 21:29:54 ad Exp $"); 73 74 #include "opt_kstack.h" 75 #include "opt_perfctrs.h" 76 #include "opt_sa.h" 77 78 #define __MUTEX_PRIVATE 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/proc.h> 83 #include <sys/kernel.h> 84 #if defined(PERFCTRS) 85 #include <sys/pmc.h> 86 #endif 87 #include <sys/cpu.h> 88 #include <sys/resourcevar.h> 89 #include <sys/sched.h> 90 #include <sys/sa.h> 91 #include <sys/savar.h> 92 #include <sys/syscall_stats.h> 93 #include <sys/sleepq.h> 94 #include <sys/lockdebug.h> 95 #include <sys/evcnt.h> 96 #include <sys/intr.h> 97 #include <sys/lwpctl.h> 98 #include <sys/atomic.h> 99 #include <sys/simplelock.h> 100 101 #include <uvm/uvm_extern.h> 102 103 #include <dev/lockstat.h> 104 105 static u_int sched_unsleep(struct lwp *, bool); 106 static void sched_changepri(struct lwp *, pri_t); 107 static void sched_lendpri(struct lwp *, pri_t); 108 static void resched_cpu(struct lwp *); 109 110 syncobj_t sleep_syncobj = { 111 SOBJ_SLEEPQ_SORTED, 112 sleepq_unsleep, 113 sleepq_changepri, 114 sleepq_lendpri, 115 syncobj_noowner, 116 }; 117 118 syncobj_t sched_syncobj = { 119 SOBJ_SLEEPQ_SORTED, 120 sched_unsleep, 121 sched_changepri, 122 sched_lendpri, 123 syncobj_noowner, 124 }; 125 126 callout_t sched_pstats_ch; 127 unsigned sched_pstats_ticks; 128 kcondvar_t lbolt; /* once a second sleep address */ 129 130 /* Preemption event counters */ 131 static struct evcnt kpreempt_ev_crit; 132 static struct evcnt kpreempt_ev_klock; 133 static struct evcnt kpreempt_ev_immed; 134 135 /* 136 * During autoconfiguration or after a panic, a sleep will simply lower the 137 * priority briefly to allow interrupts, then return. The priority to be 138 * used (safepri) is machine-dependent, thus this value is initialized and 139 * maintained in the machine-dependent layers. This priority will typically 140 * be 0, or the lowest priority that is safe for use on the interrupt stack; 141 * it can be made higher to block network software interrupts after panics. 142 */ 143 int safepri; 144 145 void 146 sched_init(void) 147 { 148 149 cv_init(&lbolt, "lbolt"); 150 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE); 151 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL); 152 153 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL, 154 "kpreempt", "defer: critical section"); 155 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL, 156 "kpreempt", "defer: kernel_lock"); 157 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL, 158 "kpreempt", "immediate"); 159 160 sched_pstats(NULL); 161 } 162 163 /* 164 * OBSOLETE INTERFACE 165 * 166 * General sleep call. Suspends the current LWP until a wakeup is 167 * performed on the specified identifier. The LWP will then be made 168 * runnable with the specified priority. Sleeps at most timo/hz seconds (0 169 * means no timeout). If pri includes PCATCH flag, signals are checked 170 * before and after sleeping, else signals are not checked. Returns 0 if 171 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 172 * signal needs to be delivered, ERESTART is returned if the current system 173 * call should be restarted if possible, and EINTR is returned if the system 174 * call should be interrupted by the signal (return EINTR). 175 * 176 * The interlock is held until we are on a sleep queue. The interlock will 177 * be locked before returning back to the caller unless the PNORELOCK flag 178 * is specified, in which case the interlock will always be unlocked upon 179 * return. 180 */ 181 int 182 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 183 volatile struct simplelock *interlock) 184 { 185 struct lwp *l = curlwp; 186 sleepq_t *sq; 187 kmutex_t *mp; 188 int error; 189 190 KASSERT((l->l_pflag & LP_INTR) == 0); 191 192 if (sleepq_dontsleep(l)) { 193 (void)sleepq_abort(NULL, 0); 194 if ((priority & PNORELOCK) != 0) 195 simple_unlock(interlock); 196 return 0; 197 } 198 199 l->l_kpriority = true; 200 sq = sleeptab_lookup(&sleeptab, ident, &mp); 201 sleepq_enter(sq, l, mp); 202 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj); 203 204 if (interlock != NULL) { 205 KASSERT(simple_lock_held(interlock)); 206 simple_unlock(interlock); 207 } 208 209 error = sleepq_block(timo, priority & PCATCH); 210 211 if (interlock != NULL && (priority & PNORELOCK) == 0) 212 simple_lock(interlock); 213 214 return error; 215 } 216 217 int 218 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 219 kmutex_t *mtx) 220 { 221 struct lwp *l = curlwp; 222 sleepq_t *sq; 223 kmutex_t *mp; 224 int error; 225 226 KASSERT((l->l_pflag & LP_INTR) == 0); 227 228 if (sleepq_dontsleep(l)) { 229 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0); 230 return 0; 231 } 232 233 l->l_kpriority = true; 234 sq = sleeptab_lookup(&sleeptab, ident, &mp); 235 sleepq_enter(sq, l, mp); 236 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj); 237 mutex_exit(mtx); 238 error = sleepq_block(timo, priority & PCATCH); 239 240 if ((priority & PNORELOCK) == 0) 241 mutex_enter(mtx); 242 243 return error; 244 } 245 246 /* 247 * General sleep call for situations where a wake-up is not expected. 248 */ 249 int 250 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx) 251 { 252 struct lwp *l = curlwp; 253 kmutex_t *mp; 254 sleepq_t *sq; 255 int error; 256 257 if (sleepq_dontsleep(l)) 258 return sleepq_abort(NULL, 0); 259 260 if (mtx != NULL) 261 mutex_exit(mtx); 262 l->l_kpriority = true; 263 sq = sleeptab_lookup(&sleeptab, l, &mp); 264 sleepq_enter(sq, l, mp); 265 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj); 266 error = sleepq_block(timo, intr); 267 if (mtx != NULL) 268 mutex_enter(mtx); 269 270 return error; 271 } 272 273 #ifdef KERN_SA 274 /* 275 * sa_awaken: 276 * 277 * We believe this lwp is an SA lwp. If it's yielding, 278 * let it know it needs to wake up. 279 * 280 * We are called and exit with the lwp locked. We are 281 * called in the middle of wakeup operations, so we need 282 * to not touch the locks at all. 283 */ 284 void 285 sa_awaken(struct lwp *l) 286 { 287 /* LOCK_ASSERT(lwp_locked(l, NULL)); */ 288 289 if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD) 290 l->l_flag &= ~LW_SA_IDLE; 291 } 292 #endif /* KERN_SA */ 293 294 /* 295 * OBSOLETE INTERFACE 296 * 297 * Make all LWPs sleeping on the specified identifier runnable. 298 */ 299 void 300 wakeup(wchan_t ident) 301 { 302 sleepq_t *sq; 303 kmutex_t *mp; 304 305 if (cold) 306 return; 307 308 sq = sleeptab_lookup(&sleeptab, ident, &mp); 309 sleepq_wake(sq, ident, (u_int)-1, mp); 310 } 311 312 /* 313 * OBSOLETE INTERFACE 314 * 315 * Make the highest priority LWP first in line on the specified 316 * identifier runnable. 317 */ 318 void 319 wakeup_one(wchan_t ident) 320 { 321 sleepq_t *sq; 322 kmutex_t *mp; 323 324 if (cold) 325 return; 326 327 sq = sleeptab_lookup(&sleeptab, ident, &mp); 328 sleepq_wake(sq, ident, 1, mp); 329 } 330 331 332 /* 333 * General yield call. Puts the current LWP back on its run queue and 334 * performs a voluntary context switch. Should only be called when the 335 * current LWP explicitly requests it (eg sched_yield(2)). 336 */ 337 void 338 yield(void) 339 { 340 struct lwp *l = curlwp; 341 342 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 343 lwp_lock(l); 344 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 345 KASSERT(l->l_stat == LSONPROC); 346 l->l_kpriority = false; 347 (void)mi_switch(l); 348 KERNEL_LOCK(l->l_biglocks, l); 349 } 350 351 /* 352 * General preemption call. Puts the current LWP back on its run queue 353 * and performs an involuntary context switch. 354 */ 355 void 356 preempt(void) 357 { 358 struct lwp *l = curlwp; 359 360 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 361 lwp_lock(l); 362 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 363 KASSERT(l->l_stat == LSONPROC); 364 l->l_kpriority = false; 365 l->l_nivcsw++; 366 (void)mi_switch(l); 367 KERNEL_LOCK(l->l_biglocks, l); 368 } 369 370 /* 371 * Handle a request made by another agent to preempt the current LWP 372 * in-kernel. Usually called when l_dopreempt may be non-zero. 373 * 374 * Character addresses for lockstat only. 375 */ 376 static char in_critical_section; 377 static char kernel_lock_held; 378 static char is_softint; 379 380 bool 381 kpreempt(uintptr_t where) 382 { 383 uintptr_t failed; 384 lwp_t *l; 385 int s, dop; 386 387 l = curlwp; 388 failed = 0; 389 while ((dop = l->l_dopreempt) != 0) { 390 if (l->l_stat != LSONPROC) { 391 /* 392 * About to block (or die), let it happen. 393 * Doesn't really count as "preemption has 394 * been blocked", since we're going to 395 * context switch. 396 */ 397 l->l_dopreempt = 0; 398 return true; 399 } 400 if (__predict_false((l->l_flag & LW_IDLE) != 0)) { 401 /* Can't preempt idle loop, don't count as failure. */ 402 l->l_dopreempt = 0; 403 return true; 404 } 405 if (__predict_false(l->l_nopreempt != 0)) { 406 /* LWP holds preemption disabled, explicitly. */ 407 if ((dop & DOPREEMPT_COUNTED) == 0) { 408 kpreempt_ev_crit.ev_count++; 409 } 410 failed = (uintptr_t)&in_critical_section; 411 break; 412 } 413 if (__predict_false((l->l_pflag & LP_INTR) != 0)) { 414 /* Can't preempt soft interrupts yet. */ 415 l->l_dopreempt = 0; 416 failed = (uintptr_t)&is_softint; 417 break; 418 } 419 s = splsched(); 420 if (__predict_false(l->l_blcnt != 0 || 421 curcpu()->ci_biglock_wanted != NULL)) { 422 /* Hold or want kernel_lock, code is not MT safe. */ 423 splx(s); 424 if ((dop & DOPREEMPT_COUNTED) == 0) { 425 kpreempt_ev_klock.ev_count++; 426 } 427 failed = (uintptr_t)&kernel_lock_held; 428 break; 429 } 430 if (__predict_false(!cpu_kpreempt_enter(where, s))) { 431 /* 432 * It may be that the IPL is too high. 433 * kpreempt_enter() can schedule an 434 * interrupt to retry later. 435 */ 436 splx(s); 437 break; 438 } 439 /* Do it! */ 440 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) { 441 kpreempt_ev_immed.ev_count++; 442 } 443 lwp_lock(l); 444 mi_switch(l); 445 l->l_nopreempt++; 446 splx(s); 447 448 /* Take care of any MD cleanup. */ 449 cpu_kpreempt_exit(where); 450 l->l_nopreempt--; 451 } 452 453 /* Record preemption failure for reporting via lockstat. */ 454 if (__predict_false(failed)) { 455 int lsflag = 0; 456 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED); 457 LOCKSTAT_ENTER(lsflag); 458 /* Might recurse, make it atomic. */ 459 if (__predict_false(lsflag)) { 460 if (where == 0) { 461 where = (uintptr_t)__builtin_return_address(0); 462 } 463 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, 464 NULL, (void *)where) == NULL) { 465 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime); 466 l->l_pfaillock = failed; 467 } 468 } 469 LOCKSTAT_EXIT(lsflag); 470 } 471 472 return failed; 473 } 474 475 /* 476 * Return true if preemption is explicitly disabled. 477 */ 478 bool 479 kpreempt_disabled(void) 480 { 481 lwp_t *l; 482 483 l = curlwp; 484 485 return l->l_nopreempt != 0 || l->l_stat == LSZOMB || 486 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled(); 487 } 488 489 /* 490 * Disable kernel preemption. 491 */ 492 void 493 kpreempt_disable(void) 494 { 495 496 KPREEMPT_DISABLE(curlwp); 497 } 498 499 /* 500 * Reenable kernel preemption. 501 */ 502 void 503 kpreempt_enable(void) 504 { 505 506 KPREEMPT_ENABLE(curlwp); 507 } 508 509 /* 510 * Compute the amount of time during which the current lwp was running. 511 * 512 * - update l_rtime unless it's an idle lwp. 513 */ 514 515 void 516 updatertime(lwp_t *l, const struct bintime *now) 517 { 518 519 if ((l->l_flag & LW_IDLE) != 0) 520 return; 521 522 /* rtime += now - stime */ 523 bintime_add(&l->l_rtime, now); 524 bintime_sub(&l->l_rtime, &l->l_stime); 525 } 526 527 /* 528 * Select next LWP from the current CPU to run.. 529 */ 530 static inline lwp_t * 531 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc) 532 { 533 lwp_t *newl; 534 535 /* 536 * Let sched_nextlwp() select the LWP to run the CPU next. 537 * If no LWP is runnable, select the idle LWP. 538 * 539 * Note that spc_lwplock might not necessary be held, and 540 * new thread would be unlocked after setting the LWP-lock. 541 */ 542 newl = sched_nextlwp(); 543 if (newl != NULL) { 544 sched_dequeue(newl); 545 KASSERT(lwp_locked(newl, spc->spc_mutex)); 546 newl->l_stat = LSONPROC; 547 newl->l_cpu = ci; 548 newl->l_pflag |= LP_RUNNING; 549 lwp_setlock(newl, spc->spc_lwplock); 550 } else { 551 newl = ci->ci_data.cpu_idlelwp; 552 newl->l_stat = LSONPROC; 553 newl->l_pflag |= LP_RUNNING; 554 } 555 556 /* 557 * Only clear want_resched if there are no pending (slow) 558 * software interrupts. 559 */ 560 ci->ci_want_resched = ci->ci_data.cpu_softints; 561 spc->spc_flags &= ~SPCF_SWITCHCLEAR; 562 spc->spc_curpriority = lwp_eprio(newl); 563 564 return newl; 565 } 566 567 /* 568 * The machine independent parts of context switch. 569 * 570 * Returns 1 if another LWP was actually run. 571 */ 572 int 573 mi_switch(lwp_t *l) 574 { 575 struct cpu_info *ci; 576 struct schedstate_percpu *spc; 577 struct lwp *newl; 578 int retval, oldspl; 579 struct bintime bt; 580 bool returning; 581 582 KASSERT(lwp_locked(l, NULL)); 583 KASSERT(kpreempt_disabled()); 584 LOCKDEBUG_BARRIER(l->l_mutex, 1); 585 586 #ifdef KSTACK_CHECK_MAGIC 587 kstack_check_magic(l); 588 #endif 589 590 binuptime(&bt); 591 592 KASSERT(l->l_cpu == curcpu()); 593 ci = l->l_cpu; 594 spc = &ci->ci_schedstate; 595 returning = false; 596 newl = NULL; 597 598 /* 599 * If we have been asked to switch to a specific LWP, then there 600 * is no need to inspect the run queues. If a soft interrupt is 601 * blocking, then return to the interrupted thread without adjusting 602 * VM context or its start time: neither have been changed in order 603 * to take the interrupt. 604 */ 605 if (l->l_switchto != NULL) { 606 if ((l->l_pflag & LP_INTR) != 0) { 607 returning = true; 608 softint_block(l); 609 if ((l->l_pflag & LP_TIMEINTR) != 0) 610 updatertime(l, &bt); 611 } 612 newl = l->l_switchto; 613 l->l_switchto = NULL; 614 } 615 #ifndef __HAVE_FAST_SOFTINTS 616 else if (ci->ci_data.cpu_softints != 0) { 617 /* There are pending soft interrupts, so pick one. */ 618 newl = softint_picklwp(); 619 newl->l_stat = LSONPROC; 620 newl->l_pflag |= LP_RUNNING; 621 } 622 #endif /* !__HAVE_FAST_SOFTINTS */ 623 624 /* Count time spent in current system call */ 625 if (!returning) { 626 SYSCALL_TIME_SLEEP(l); 627 628 /* 629 * XXXSMP If we are using h/w performance counters, 630 * save context. 631 */ 632 #if PERFCTRS 633 if (PMC_ENABLED(l->l_proc)) { 634 pmc_save_context(l->l_proc); 635 } 636 #endif 637 updatertime(l, &bt); 638 } 639 640 /* Lock the runqueue */ 641 KASSERT(l->l_stat != LSRUN); 642 mutex_spin_enter(spc->spc_mutex); 643 644 /* 645 * If on the CPU and we have gotten this far, then we must yield. 646 */ 647 if (l->l_stat == LSONPROC && l != newl) { 648 KASSERT(lwp_locked(l, spc->spc_lwplock)); 649 if ((l->l_flag & LW_IDLE) == 0) { 650 l->l_stat = LSRUN; 651 lwp_setlock(l, spc->spc_mutex); 652 sched_enqueue(l, true); 653 /* Handle migration case */ 654 KASSERT(spc->spc_migrating == NULL); 655 if (l->l_target_cpu != NULL) { 656 spc->spc_migrating = l; 657 } 658 } else 659 l->l_stat = LSIDL; 660 } 661 662 /* Pick new LWP to run. */ 663 if (newl == NULL) { 664 newl = nextlwp(ci, spc); 665 } 666 667 /* Items that must be updated with the CPU locked. */ 668 if (!returning) { 669 /* Update the new LWP's start time. */ 670 newl->l_stime = bt; 671 672 /* 673 * ci_curlwp changes when a fast soft interrupt occurs. 674 * We use cpu_onproc to keep track of which kernel or 675 * user thread is running 'underneath' the software 676 * interrupt. This is important for time accounting, 677 * itimers and forcing user threads to preempt (aston). 678 */ 679 ci->ci_data.cpu_onproc = newl; 680 } 681 682 /* 683 * Preemption related tasks. Must be done with the current 684 * CPU locked. 685 */ 686 cpu_did_resched(l); 687 l->l_dopreempt = 0; 688 if (__predict_false(l->l_pfailaddr != 0)) { 689 LOCKSTAT_FLAG(lsflag); 690 LOCKSTAT_ENTER(lsflag); 691 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime); 692 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN, 693 1, l->l_pfailtime, l->l_pfailaddr); 694 LOCKSTAT_EXIT(lsflag); 695 l->l_pfailtime = 0; 696 l->l_pfaillock = 0; 697 l->l_pfailaddr = 0; 698 } 699 700 if (l != newl) { 701 struct lwp *prevlwp; 702 703 /* Release all locks, but leave the current LWP locked */ 704 if (l->l_mutex == spc->spc_mutex) { 705 /* 706 * Drop spc_lwplock, if the current LWP has been moved 707 * to the run queue (it is now locked by spc_mutex). 708 */ 709 mutex_spin_exit(spc->spc_lwplock); 710 } else { 711 /* 712 * Otherwise, drop the spc_mutex, we are done with the 713 * run queues. 714 */ 715 mutex_spin_exit(spc->spc_mutex); 716 } 717 718 /* 719 * Mark that context switch is going to be performed 720 * for this LWP, to protect it from being switched 721 * to on another CPU. 722 */ 723 KASSERT(l->l_ctxswtch == 0); 724 l->l_ctxswtch = 1; 725 l->l_ncsw++; 726 l->l_pflag &= ~LP_RUNNING; 727 728 /* 729 * Increase the count of spin-mutexes before the release 730 * of the last lock - we must remain at IPL_SCHED during 731 * the context switch. 732 */ 733 oldspl = MUTEX_SPIN_OLDSPL(ci); 734 ci->ci_mtx_count--; 735 lwp_unlock(l); 736 737 /* Count the context switch on this CPU. */ 738 ci->ci_data.cpu_nswtch++; 739 740 /* Update status for lwpctl, if present. */ 741 if (l->l_lwpctl != NULL) 742 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE; 743 744 /* 745 * Save old VM context, unless a soft interrupt 746 * handler is blocking. 747 */ 748 if (!returning) 749 pmap_deactivate(l); 750 751 /* 752 * We may need to spin-wait for if 'newl' is still 753 * context switching on another CPU. 754 */ 755 if (newl->l_ctxswtch != 0) { 756 u_int count; 757 count = SPINLOCK_BACKOFF_MIN; 758 while (newl->l_ctxswtch) 759 SPINLOCK_BACKOFF(count); 760 } 761 762 /* Switch to the new LWP.. */ 763 prevlwp = cpu_switchto(l, newl, returning); 764 ci = curcpu(); 765 766 /* 767 * Switched away - we have new curlwp. 768 * Restore VM context and IPL. 769 */ 770 pmap_activate(l); 771 if (prevlwp != NULL) { 772 /* Normalize the count of the spin-mutexes */ 773 ci->ci_mtx_count++; 774 /* Unmark the state of context switch */ 775 membar_exit(); 776 prevlwp->l_ctxswtch = 0; 777 } 778 779 /* Update status for lwpctl, if present. */ 780 if (l->l_lwpctl != NULL) { 781 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci); 782 l->l_lwpctl->lc_pctr++; 783 } 784 785 KASSERT(l->l_cpu == ci); 786 splx(oldspl); 787 retval = 1; 788 } else { 789 /* Nothing to do - just unlock and return. */ 790 mutex_spin_exit(spc->spc_mutex); 791 lwp_unlock(l); 792 retval = 0; 793 } 794 795 KASSERT(l == curlwp); 796 KASSERT(l->l_stat == LSONPROC); 797 798 /* 799 * XXXSMP If we are using h/w performance counters, restore context. 800 * XXXSMP preemption problem. 801 */ 802 #if PERFCTRS 803 if (PMC_ENABLED(l->l_proc)) { 804 pmc_restore_context(l->l_proc); 805 } 806 #endif 807 SYSCALL_TIME_WAKEUP(l); 808 LOCKDEBUG_BARRIER(NULL, 1); 809 810 return retval; 811 } 812 813 /* 814 * The machine independent parts of context switch to oblivion. 815 * Does not return. Call with the LWP unlocked. 816 */ 817 void 818 lwp_exit_switchaway(lwp_t *l) 819 { 820 struct cpu_info *ci; 821 struct lwp *newl; 822 struct bintime bt; 823 824 ci = l->l_cpu; 825 826 KASSERT(kpreempt_disabled()); 827 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL); 828 KASSERT(ci == curcpu()); 829 LOCKDEBUG_BARRIER(NULL, 0); 830 831 #ifdef KSTACK_CHECK_MAGIC 832 kstack_check_magic(l); 833 #endif 834 835 /* Count time spent in current system call */ 836 SYSCALL_TIME_SLEEP(l); 837 binuptime(&bt); 838 updatertime(l, &bt); 839 840 /* Must stay at IPL_SCHED even after releasing run queue lock. */ 841 (void)splsched(); 842 843 /* 844 * Let sched_nextlwp() select the LWP to run the CPU next. 845 * If no LWP is runnable, select the idle LWP. 846 * 847 * Note that spc_lwplock might not necessary be held, and 848 * new thread would be unlocked after setting the LWP-lock. 849 */ 850 spc_lock(ci); 851 #ifndef __HAVE_FAST_SOFTINTS 852 if (ci->ci_data.cpu_softints != 0) { 853 /* There are pending soft interrupts, so pick one. */ 854 newl = softint_picklwp(); 855 newl->l_stat = LSONPROC; 856 newl->l_pflag |= LP_RUNNING; 857 } else 858 #endif /* !__HAVE_FAST_SOFTINTS */ 859 { 860 newl = nextlwp(ci, &ci->ci_schedstate); 861 } 862 863 /* Update the new LWP's start time. */ 864 newl->l_stime = bt; 865 l->l_pflag &= ~LP_RUNNING; 866 867 /* 868 * ci_curlwp changes when a fast soft interrupt occurs. 869 * We use cpu_onproc to keep track of which kernel or 870 * user thread is running 'underneath' the software 871 * interrupt. This is important for time accounting, 872 * itimers and forcing user threads to preempt (aston). 873 */ 874 ci->ci_data.cpu_onproc = newl; 875 876 /* 877 * Preemption related tasks. Must be done with the current 878 * CPU locked. 879 */ 880 cpu_did_resched(l); 881 882 /* Unlock the run queue. */ 883 spc_unlock(ci); 884 885 /* Count the context switch on this CPU. */ 886 ci->ci_data.cpu_nswtch++; 887 888 /* Update status for lwpctl, if present. */ 889 if (l->l_lwpctl != NULL) 890 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 891 892 /* 893 * We may need to spin-wait for if 'newl' is still 894 * context switching on another CPU. 895 */ 896 if (newl->l_ctxswtch != 0) { 897 u_int count; 898 count = SPINLOCK_BACKOFF_MIN; 899 while (newl->l_ctxswtch) 900 SPINLOCK_BACKOFF(count); 901 } 902 903 /* Switch to the new LWP.. */ 904 (void)cpu_switchto(NULL, newl, false); 905 906 for (;;) continue; /* XXX: convince gcc about "noreturn" */ 907 /* NOTREACHED */ 908 } 909 910 /* 911 * Change LWP state to be runnable, placing it on the run queue if it is 912 * in memory, and awakening the swapper if it isn't in memory. 913 * 914 * Call with the process and LWP locked. Will return with the LWP unlocked. 915 */ 916 void 917 setrunnable(struct lwp *l) 918 { 919 struct proc *p = l->l_proc; 920 struct cpu_info *ci; 921 922 KASSERT((l->l_flag & LW_IDLE) == 0); 923 KASSERT(mutex_owned(p->p_lock)); 924 KASSERT(lwp_locked(l, NULL)); 925 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex); 926 927 switch (l->l_stat) { 928 case LSSTOP: 929 /* 930 * If we're being traced (possibly because someone attached us 931 * while we were stopped), check for a signal from the debugger. 932 */ 933 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) 934 signotify(l); 935 p->p_nrlwps++; 936 break; 937 case LSSUSPENDED: 938 l->l_flag &= ~LW_WSUSPEND; 939 p->p_nrlwps++; 940 cv_broadcast(&p->p_lwpcv); 941 break; 942 case LSSLEEP: 943 KASSERT(l->l_wchan != NULL); 944 break; 945 default: 946 panic("setrunnable: lwp %p state was %d", l, l->l_stat); 947 } 948 949 #ifdef KERN_SA 950 if (l->l_proc->p_sa) 951 sa_awaken(l); 952 #endif /* KERN_SA */ 953 954 /* 955 * If the LWP was sleeping interruptably, then it's OK to start it 956 * again. If not, mark it as still sleeping. 957 */ 958 if (l->l_wchan != NULL) { 959 l->l_stat = LSSLEEP; 960 /* lwp_unsleep() will release the lock. */ 961 lwp_unsleep(l, true); 962 return; 963 } 964 965 /* 966 * If the LWP is still on the CPU, mark it as LSONPROC. It may be 967 * about to call mi_switch(), in which case it will yield. 968 */ 969 if ((l->l_pflag & LP_RUNNING) != 0) { 970 l->l_stat = LSONPROC; 971 l->l_slptime = 0; 972 lwp_unlock(l); 973 return; 974 } 975 976 /* 977 * Look for a CPU to run. 978 * Set the LWP runnable. 979 */ 980 ci = sched_takecpu(l); 981 l->l_cpu = ci; 982 spc_lock(ci); 983 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex); 984 sched_setrunnable(l); 985 l->l_stat = LSRUN; 986 l->l_slptime = 0; 987 988 /* 989 * If thread is swapped out - wake the swapper to bring it back in. 990 * Otherwise, enter it into a run queue. 991 */ 992 if (l->l_flag & LW_INMEM) { 993 sched_enqueue(l, false); 994 resched_cpu(l); 995 lwp_unlock(l); 996 } else { 997 lwp_unlock(l); 998 uvm_kick_scheduler(); 999 } 1000 } 1001 1002 /* 1003 * suspendsched: 1004 * 1005 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED. 1006 */ 1007 void 1008 suspendsched(void) 1009 { 1010 CPU_INFO_ITERATOR cii; 1011 struct cpu_info *ci; 1012 struct lwp *l; 1013 struct proc *p; 1014 1015 /* 1016 * We do this by process in order not to violate the locking rules. 1017 */ 1018 mutex_enter(proc_lock); 1019 PROCLIST_FOREACH(p, &allproc) { 1020 if ((p->p_flag & PK_MARKER) != 0) 1021 continue; 1022 1023 mutex_enter(p->p_lock); 1024 if ((p->p_flag & PK_SYSTEM) != 0) { 1025 mutex_exit(p->p_lock); 1026 continue; 1027 } 1028 1029 p->p_stat = SSTOP; 1030 1031 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1032 if (l == curlwp) 1033 continue; 1034 1035 lwp_lock(l); 1036 1037 /* 1038 * Set L_WREBOOT so that the LWP will suspend itself 1039 * when it tries to return to user mode. We want to 1040 * try and get to get as many LWPs as possible to 1041 * the user / kernel boundary, so that they will 1042 * release any locks that they hold. 1043 */ 1044 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND); 1045 1046 if (l->l_stat == LSSLEEP && 1047 (l->l_flag & LW_SINTR) != 0) { 1048 /* setrunnable() will release the lock. */ 1049 setrunnable(l); 1050 continue; 1051 } 1052 1053 lwp_unlock(l); 1054 } 1055 1056 mutex_exit(p->p_lock); 1057 } 1058 mutex_exit(proc_lock); 1059 1060 /* 1061 * Kick all CPUs to make them preempt any LWPs running in user mode. 1062 * They'll trap into the kernel and suspend themselves in userret(). 1063 */ 1064 for (CPU_INFO_FOREACH(cii, ci)) { 1065 spc_lock(ci); 1066 cpu_need_resched(ci, RESCHED_IMMED); 1067 spc_unlock(ci); 1068 } 1069 } 1070 1071 /* 1072 * sched_unsleep: 1073 * 1074 * The is called when the LWP has not been awoken normally but instead 1075 * interrupted: for example, if the sleep timed out. Because of this, 1076 * it's not a valid action for running or idle LWPs. 1077 */ 1078 static u_int 1079 sched_unsleep(struct lwp *l, bool cleanup) 1080 { 1081 1082 lwp_unlock(l); 1083 panic("sched_unsleep"); 1084 } 1085 1086 static void 1087 resched_cpu(struct lwp *l) 1088 { 1089 struct cpu_info *ci = ci = l->l_cpu; 1090 1091 KASSERT(lwp_locked(l, NULL)); 1092 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority) 1093 cpu_need_resched(ci, 0); 1094 } 1095 1096 static void 1097 sched_changepri(struct lwp *l, pri_t pri) 1098 { 1099 1100 KASSERT(lwp_locked(l, NULL)); 1101 1102 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) { 1103 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex)); 1104 sched_dequeue(l); 1105 l->l_priority = pri; 1106 sched_enqueue(l, false); 1107 } else { 1108 l->l_priority = pri; 1109 } 1110 resched_cpu(l); 1111 } 1112 1113 static void 1114 sched_lendpri(struct lwp *l, pri_t pri) 1115 { 1116 1117 KASSERT(lwp_locked(l, NULL)); 1118 1119 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) { 1120 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex)); 1121 sched_dequeue(l); 1122 l->l_inheritedprio = pri; 1123 sched_enqueue(l, false); 1124 } else { 1125 l->l_inheritedprio = pri; 1126 } 1127 resched_cpu(l); 1128 } 1129 1130 struct lwp * 1131 syncobj_noowner(wchan_t wchan) 1132 { 1133 1134 return NULL; 1135 } 1136 1137 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */ 1138 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE; 1139 1140 /* 1141 * sched_pstats: 1142 * 1143 * Update process statistics and check CPU resource allocation. 1144 * Call scheduler-specific hook to eventually adjust process/LWP 1145 * priorities. 1146 */ 1147 /* ARGSUSED */ 1148 void 1149 sched_pstats(void *arg) 1150 { 1151 const int clkhz = (stathz != 0 ? stathz : hz); 1152 static bool backwards; 1153 struct rlimit *rlim; 1154 struct lwp *l; 1155 struct proc *p; 1156 long runtm; 1157 fixpt_t lpctcpu; 1158 u_int lcpticks; 1159 int sig; 1160 1161 sched_pstats_ticks++; 1162 1163 mutex_enter(proc_lock); 1164 PROCLIST_FOREACH(p, &allproc) { 1165 if (__predict_false((p->p_flag & PK_MARKER) != 0)) 1166 continue; 1167 1168 /* 1169 * Increment time in/out of memory and sleep 1170 * time (if sleeping), ignore overflow. 1171 */ 1172 mutex_enter(p->p_lock); 1173 runtm = p->p_rtime.sec; 1174 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1175 if (__predict_false((l->l_flag & LW_IDLE) != 0)) 1176 continue; 1177 lwp_lock(l); 1178 runtm += l->l_rtime.sec; 1179 l->l_swtime++; 1180 sched_lwp_stats(l); 1181 lwp_unlock(l); 1182 1183 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT; 1184 if (l->l_slptime != 0) 1185 continue; 1186 1187 lpctcpu = l->l_pctcpu; 1188 lcpticks = atomic_swap_uint(&l->l_cpticks, 0); 1189 lpctcpu += ((FSCALE - ccpu) * 1190 (lcpticks * FSCALE / clkhz)) >> FSHIFT; 1191 l->l_pctcpu = lpctcpu; 1192 } 1193 /* Calculating p_pctcpu only for ps(1) */ 1194 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 1195 1196 /* 1197 * Check if the process exceeds its CPU resource allocation. 1198 * If over max, kill it. 1199 */ 1200 rlim = &p->p_rlimit[RLIMIT_CPU]; 1201 sig = 0; 1202 if (__predict_false(runtm >= rlim->rlim_cur)) { 1203 if (runtm >= rlim->rlim_max) 1204 sig = SIGKILL; 1205 else { 1206 sig = SIGXCPU; 1207 if (rlim->rlim_cur < rlim->rlim_max) 1208 rlim->rlim_cur += 5; 1209 } 1210 } 1211 mutex_exit(p->p_lock); 1212 if (__predict_false(runtm < 0)) { 1213 if (!backwards) { 1214 backwards = true; 1215 printf("WARNING: negative runtime; " 1216 "monotonic clock has gone backwards\n"); 1217 } 1218 } else if (__predict_false(sig)) { 1219 KASSERT((p->p_flag & PK_SYSTEM) == 0); 1220 psignal(p, sig); 1221 } 1222 } 1223 mutex_exit(proc_lock); 1224 uvm_meter(); 1225 cv_wakeup(&lbolt); 1226 callout_schedule(&sched_pstats_ch, hz); 1227 } 1228