xref: /netbsd-src/sys/kern/kern_synch.c (revision c8a35b6227034951e874c2def577388e79ede4a5)
1 /*	$NetBSD: kern_synch.c,v 1.260 2009/02/04 21:29:54 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5  *    The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11  * Daniel Sieger.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*-
36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * (c) UNIX System Laboratories, Inc.
39  * All or some portions of this file are derived from material licensed
40  * to the University of California by American Telephone and Telegraph
41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42  * the permission of UNIX System Laboratories, Inc.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
69  */
70 
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.260 2009/02/04 21:29:54 ad Exp $");
73 
74 #include "opt_kstack.h"
75 #include "opt_perfctrs.h"
76 #include "opt_sa.h"
77 
78 #define	__MUTEX_PRIVATE
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/kernel.h>
84 #if defined(PERFCTRS)
85 #include <sys/pmc.h>
86 #endif
87 #include <sys/cpu.h>
88 #include <sys/resourcevar.h>
89 #include <sys/sched.h>
90 #include <sys/sa.h>
91 #include <sys/savar.h>
92 #include <sys/syscall_stats.h>
93 #include <sys/sleepq.h>
94 #include <sys/lockdebug.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/lwpctl.h>
98 #include <sys/atomic.h>
99 #include <sys/simplelock.h>
100 
101 #include <uvm/uvm_extern.h>
102 
103 #include <dev/lockstat.h>
104 
105 static u_int	sched_unsleep(struct lwp *, bool);
106 static void	sched_changepri(struct lwp *, pri_t);
107 static void	sched_lendpri(struct lwp *, pri_t);
108 static void	resched_cpu(struct lwp *);
109 
110 syncobj_t sleep_syncobj = {
111 	SOBJ_SLEEPQ_SORTED,
112 	sleepq_unsleep,
113 	sleepq_changepri,
114 	sleepq_lendpri,
115 	syncobj_noowner,
116 };
117 
118 syncobj_t sched_syncobj = {
119 	SOBJ_SLEEPQ_SORTED,
120 	sched_unsleep,
121 	sched_changepri,
122 	sched_lendpri,
123 	syncobj_noowner,
124 };
125 
126 callout_t 	sched_pstats_ch;
127 unsigned	sched_pstats_ticks;
128 kcondvar_t	lbolt;			/* once a second sleep address */
129 
130 /* Preemption event counters */
131 static struct evcnt kpreempt_ev_crit;
132 static struct evcnt kpreempt_ev_klock;
133 static struct evcnt kpreempt_ev_immed;
134 
135 /*
136  * During autoconfiguration or after a panic, a sleep will simply lower the
137  * priority briefly to allow interrupts, then return.  The priority to be
138  * used (safepri) is machine-dependent, thus this value is initialized and
139  * maintained in the machine-dependent layers.  This priority will typically
140  * be 0, or the lowest priority that is safe for use on the interrupt stack;
141  * it can be made higher to block network software interrupts after panics.
142  */
143 int	safepri;
144 
145 void
146 sched_init(void)
147 {
148 
149 	cv_init(&lbolt, "lbolt");
150 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
151 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
152 
153 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
154 	   "kpreempt", "defer: critical section");
155 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
156 	   "kpreempt", "defer: kernel_lock");
157 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
158 	   "kpreempt", "immediate");
159 
160 	sched_pstats(NULL);
161 }
162 
163 /*
164  * OBSOLETE INTERFACE
165  *
166  * General sleep call.  Suspends the current LWP until a wakeup is
167  * performed on the specified identifier.  The LWP will then be made
168  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
169  * means no timeout).  If pri includes PCATCH flag, signals are checked
170  * before and after sleeping, else signals are not checked.  Returns 0 if
171  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
172  * signal needs to be delivered, ERESTART is returned if the current system
173  * call should be restarted if possible, and EINTR is returned if the system
174  * call should be interrupted by the signal (return EINTR).
175  *
176  * The interlock is held until we are on a sleep queue. The interlock will
177  * be locked before returning back to the caller unless the PNORELOCK flag
178  * is specified, in which case the interlock will always be unlocked upon
179  * return.
180  */
181 int
182 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
183 	volatile struct simplelock *interlock)
184 {
185 	struct lwp *l = curlwp;
186 	sleepq_t *sq;
187 	kmutex_t *mp;
188 	int error;
189 
190 	KASSERT((l->l_pflag & LP_INTR) == 0);
191 
192 	if (sleepq_dontsleep(l)) {
193 		(void)sleepq_abort(NULL, 0);
194 		if ((priority & PNORELOCK) != 0)
195 			simple_unlock(interlock);
196 		return 0;
197 	}
198 
199 	l->l_kpriority = true;
200 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
201 	sleepq_enter(sq, l, mp);
202 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
203 
204 	if (interlock != NULL) {
205 		KASSERT(simple_lock_held(interlock));
206 		simple_unlock(interlock);
207 	}
208 
209 	error = sleepq_block(timo, priority & PCATCH);
210 
211 	if (interlock != NULL && (priority & PNORELOCK) == 0)
212 		simple_lock(interlock);
213 
214 	return error;
215 }
216 
217 int
218 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
219 	kmutex_t *mtx)
220 {
221 	struct lwp *l = curlwp;
222 	sleepq_t *sq;
223 	kmutex_t *mp;
224 	int error;
225 
226 	KASSERT((l->l_pflag & LP_INTR) == 0);
227 
228 	if (sleepq_dontsleep(l)) {
229 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
230 		return 0;
231 	}
232 
233 	l->l_kpriority = true;
234 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
235 	sleepq_enter(sq, l, mp);
236 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
237 	mutex_exit(mtx);
238 	error = sleepq_block(timo, priority & PCATCH);
239 
240 	if ((priority & PNORELOCK) == 0)
241 		mutex_enter(mtx);
242 
243 	return error;
244 }
245 
246 /*
247  * General sleep call for situations where a wake-up is not expected.
248  */
249 int
250 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
251 {
252 	struct lwp *l = curlwp;
253 	kmutex_t *mp;
254 	sleepq_t *sq;
255 	int error;
256 
257 	if (sleepq_dontsleep(l))
258 		return sleepq_abort(NULL, 0);
259 
260 	if (mtx != NULL)
261 		mutex_exit(mtx);
262 	l->l_kpriority = true;
263 	sq = sleeptab_lookup(&sleeptab, l, &mp);
264 	sleepq_enter(sq, l, mp);
265 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
266 	error = sleepq_block(timo, intr);
267 	if (mtx != NULL)
268 		mutex_enter(mtx);
269 
270 	return error;
271 }
272 
273 #ifdef KERN_SA
274 /*
275  * sa_awaken:
276  *
277  *	We believe this lwp is an SA lwp. If it's yielding,
278  * let it know it needs to wake up.
279  *
280  *	We are called and exit with the lwp locked. We are
281  * called in the middle of wakeup operations, so we need
282  * to not touch the locks at all.
283  */
284 void
285 sa_awaken(struct lwp *l)
286 {
287 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
288 
289 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
290 		l->l_flag &= ~LW_SA_IDLE;
291 }
292 #endif /* KERN_SA */
293 
294 /*
295  * OBSOLETE INTERFACE
296  *
297  * Make all LWPs sleeping on the specified identifier runnable.
298  */
299 void
300 wakeup(wchan_t ident)
301 {
302 	sleepq_t *sq;
303 	kmutex_t *mp;
304 
305 	if (cold)
306 		return;
307 
308 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
309 	sleepq_wake(sq, ident, (u_int)-1, mp);
310 }
311 
312 /*
313  * OBSOLETE INTERFACE
314  *
315  * Make the highest priority LWP first in line on the specified
316  * identifier runnable.
317  */
318 void
319 wakeup_one(wchan_t ident)
320 {
321 	sleepq_t *sq;
322 	kmutex_t *mp;
323 
324 	if (cold)
325 		return;
326 
327 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
328 	sleepq_wake(sq, ident, 1, mp);
329 }
330 
331 
332 /*
333  * General yield call.  Puts the current LWP back on its run queue and
334  * performs a voluntary context switch.  Should only be called when the
335  * current LWP explicitly requests it (eg sched_yield(2)).
336  */
337 void
338 yield(void)
339 {
340 	struct lwp *l = curlwp;
341 
342 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
343 	lwp_lock(l);
344 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
345 	KASSERT(l->l_stat == LSONPROC);
346 	l->l_kpriority = false;
347 	(void)mi_switch(l);
348 	KERNEL_LOCK(l->l_biglocks, l);
349 }
350 
351 /*
352  * General preemption call.  Puts the current LWP back on its run queue
353  * and performs an involuntary context switch.
354  */
355 void
356 preempt(void)
357 {
358 	struct lwp *l = curlwp;
359 
360 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
361 	lwp_lock(l);
362 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
363 	KASSERT(l->l_stat == LSONPROC);
364 	l->l_kpriority = false;
365 	l->l_nivcsw++;
366 	(void)mi_switch(l);
367 	KERNEL_LOCK(l->l_biglocks, l);
368 }
369 
370 /*
371  * Handle a request made by another agent to preempt the current LWP
372  * in-kernel.  Usually called when l_dopreempt may be non-zero.
373  *
374  * Character addresses for lockstat only.
375  */
376 static char	in_critical_section;
377 static char	kernel_lock_held;
378 static char	is_softint;
379 
380 bool
381 kpreempt(uintptr_t where)
382 {
383 	uintptr_t failed;
384 	lwp_t *l;
385 	int s, dop;
386 
387 	l = curlwp;
388 	failed = 0;
389 	while ((dop = l->l_dopreempt) != 0) {
390 		if (l->l_stat != LSONPROC) {
391 			/*
392 			 * About to block (or die), let it happen.
393 			 * Doesn't really count as "preemption has
394 			 * been blocked", since we're going to
395 			 * context switch.
396 			 */
397 			l->l_dopreempt = 0;
398 			return true;
399 		}
400 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
401 			/* Can't preempt idle loop, don't count as failure. */
402 		    	l->l_dopreempt = 0;
403 		    	return true;
404 		}
405 		if (__predict_false(l->l_nopreempt != 0)) {
406 			/* LWP holds preemption disabled, explicitly. */
407 			if ((dop & DOPREEMPT_COUNTED) == 0) {
408 				kpreempt_ev_crit.ev_count++;
409 			}
410 			failed = (uintptr_t)&in_critical_section;
411 			break;
412 		}
413 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
414 		    	/* Can't preempt soft interrupts yet. */
415 		    	l->l_dopreempt = 0;
416 		    	failed = (uintptr_t)&is_softint;
417 		    	break;
418 		}
419 		s = splsched();
420 		if (__predict_false(l->l_blcnt != 0 ||
421 		    curcpu()->ci_biglock_wanted != NULL)) {
422 			/* Hold or want kernel_lock, code is not MT safe. */
423 			splx(s);
424 			if ((dop & DOPREEMPT_COUNTED) == 0) {
425 				kpreempt_ev_klock.ev_count++;
426 			}
427 			failed = (uintptr_t)&kernel_lock_held;
428 			break;
429 		}
430 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
431 			/*
432 			 * It may be that the IPL is too high.
433 			 * kpreempt_enter() can schedule an
434 			 * interrupt to retry later.
435 			 */
436 			splx(s);
437 			break;
438 		}
439 		/* Do it! */
440 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
441 			kpreempt_ev_immed.ev_count++;
442 		}
443 		lwp_lock(l);
444 		mi_switch(l);
445 		l->l_nopreempt++;
446 		splx(s);
447 
448 		/* Take care of any MD cleanup. */
449 		cpu_kpreempt_exit(where);
450 		l->l_nopreempt--;
451 	}
452 
453 	/* Record preemption failure for reporting via lockstat. */
454 	if (__predict_false(failed)) {
455 		int lsflag = 0;
456 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
457 		LOCKSTAT_ENTER(lsflag);
458 		/* Might recurse, make it atomic. */
459 		if (__predict_false(lsflag)) {
460 			if (where == 0) {
461 				where = (uintptr_t)__builtin_return_address(0);
462 			}
463 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
464 			    NULL, (void *)where) == NULL) {
465 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
466 				l->l_pfaillock = failed;
467 			}
468 		}
469 		LOCKSTAT_EXIT(lsflag);
470 	}
471 
472 	return failed;
473 }
474 
475 /*
476  * Return true if preemption is explicitly disabled.
477  */
478 bool
479 kpreempt_disabled(void)
480 {
481 	lwp_t *l;
482 
483 	l = curlwp;
484 
485 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
486 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
487 }
488 
489 /*
490  * Disable kernel preemption.
491  */
492 void
493 kpreempt_disable(void)
494 {
495 
496 	KPREEMPT_DISABLE(curlwp);
497 }
498 
499 /*
500  * Reenable kernel preemption.
501  */
502 void
503 kpreempt_enable(void)
504 {
505 
506 	KPREEMPT_ENABLE(curlwp);
507 }
508 
509 /*
510  * Compute the amount of time during which the current lwp was running.
511  *
512  * - update l_rtime unless it's an idle lwp.
513  */
514 
515 void
516 updatertime(lwp_t *l, const struct bintime *now)
517 {
518 
519 	if ((l->l_flag & LW_IDLE) != 0)
520 		return;
521 
522 	/* rtime += now - stime */
523 	bintime_add(&l->l_rtime, now);
524 	bintime_sub(&l->l_rtime, &l->l_stime);
525 }
526 
527 /*
528  * Select next LWP from the current CPU to run..
529  */
530 static inline lwp_t *
531 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
532 {
533 	lwp_t *newl;
534 
535 	/*
536 	 * Let sched_nextlwp() select the LWP to run the CPU next.
537 	 * If no LWP is runnable, select the idle LWP.
538 	 *
539 	 * Note that spc_lwplock might not necessary be held, and
540 	 * new thread would be unlocked after setting the LWP-lock.
541 	 */
542 	newl = sched_nextlwp();
543 	if (newl != NULL) {
544 		sched_dequeue(newl);
545 		KASSERT(lwp_locked(newl, spc->spc_mutex));
546 		newl->l_stat = LSONPROC;
547 		newl->l_cpu = ci;
548 		newl->l_pflag |= LP_RUNNING;
549 		lwp_setlock(newl, spc->spc_lwplock);
550 	} else {
551 		newl = ci->ci_data.cpu_idlelwp;
552 		newl->l_stat = LSONPROC;
553 		newl->l_pflag |= LP_RUNNING;
554 	}
555 
556 	/*
557 	 * Only clear want_resched if there are no pending (slow)
558 	 * software interrupts.
559 	 */
560 	ci->ci_want_resched = ci->ci_data.cpu_softints;
561 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
562 	spc->spc_curpriority = lwp_eprio(newl);
563 
564 	return newl;
565 }
566 
567 /*
568  * The machine independent parts of context switch.
569  *
570  * Returns 1 if another LWP was actually run.
571  */
572 int
573 mi_switch(lwp_t *l)
574 {
575 	struct cpu_info *ci;
576 	struct schedstate_percpu *spc;
577 	struct lwp *newl;
578 	int retval, oldspl;
579 	struct bintime bt;
580 	bool returning;
581 
582 	KASSERT(lwp_locked(l, NULL));
583 	KASSERT(kpreempt_disabled());
584 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
585 
586 #ifdef KSTACK_CHECK_MAGIC
587 	kstack_check_magic(l);
588 #endif
589 
590 	binuptime(&bt);
591 
592 	KASSERT(l->l_cpu == curcpu());
593 	ci = l->l_cpu;
594 	spc = &ci->ci_schedstate;
595 	returning = false;
596 	newl = NULL;
597 
598 	/*
599 	 * If we have been asked to switch to a specific LWP, then there
600 	 * is no need to inspect the run queues.  If a soft interrupt is
601 	 * blocking, then return to the interrupted thread without adjusting
602 	 * VM context or its start time: neither have been changed in order
603 	 * to take the interrupt.
604 	 */
605 	if (l->l_switchto != NULL) {
606 		if ((l->l_pflag & LP_INTR) != 0) {
607 			returning = true;
608 			softint_block(l);
609 			if ((l->l_pflag & LP_TIMEINTR) != 0)
610 				updatertime(l, &bt);
611 		}
612 		newl = l->l_switchto;
613 		l->l_switchto = NULL;
614 	}
615 #ifndef __HAVE_FAST_SOFTINTS
616 	else if (ci->ci_data.cpu_softints != 0) {
617 		/* There are pending soft interrupts, so pick one. */
618 		newl = softint_picklwp();
619 		newl->l_stat = LSONPROC;
620 		newl->l_pflag |= LP_RUNNING;
621 	}
622 #endif	/* !__HAVE_FAST_SOFTINTS */
623 
624 	/* Count time spent in current system call */
625 	if (!returning) {
626 		SYSCALL_TIME_SLEEP(l);
627 
628 		/*
629 		 * XXXSMP If we are using h/w performance counters,
630 		 * save context.
631 		 */
632 #if PERFCTRS
633 		if (PMC_ENABLED(l->l_proc)) {
634 			pmc_save_context(l->l_proc);
635 		}
636 #endif
637 		updatertime(l, &bt);
638 	}
639 
640 	/* Lock the runqueue */
641 	KASSERT(l->l_stat != LSRUN);
642 	mutex_spin_enter(spc->spc_mutex);
643 
644 	/*
645 	 * If on the CPU and we have gotten this far, then we must yield.
646 	 */
647 	if (l->l_stat == LSONPROC && l != newl) {
648 		KASSERT(lwp_locked(l, spc->spc_lwplock));
649 		if ((l->l_flag & LW_IDLE) == 0) {
650 			l->l_stat = LSRUN;
651 			lwp_setlock(l, spc->spc_mutex);
652 			sched_enqueue(l, true);
653 			/* Handle migration case */
654 			KASSERT(spc->spc_migrating == NULL);
655 			if (l->l_target_cpu !=  NULL) {
656 				spc->spc_migrating = l;
657 			}
658 		} else
659 			l->l_stat = LSIDL;
660 	}
661 
662 	/* Pick new LWP to run. */
663 	if (newl == NULL) {
664 		newl = nextlwp(ci, spc);
665 	}
666 
667 	/* Items that must be updated with the CPU locked. */
668 	if (!returning) {
669 		/* Update the new LWP's start time. */
670 		newl->l_stime = bt;
671 
672 		/*
673 		 * ci_curlwp changes when a fast soft interrupt occurs.
674 		 * We use cpu_onproc to keep track of which kernel or
675 		 * user thread is running 'underneath' the software
676 		 * interrupt.  This is important for time accounting,
677 		 * itimers and forcing user threads to preempt (aston).
678 		 */
679 		ci->ci_data.cpu_onproc = newl;
680 	}
681 
682 	/*
683 	 * Preemption related tasks.  Must be done with the current
684 	 * CPU locked.
685 	 */
686 	cpu_did_resched(l);
687 	l->l_dopreempt = 0;
688 	if (__predict_false(l->l_pfailaddr != 0)) {
689 		LOCKSTAT_FLAG(lsflag);
690 		LOCKSTAT_ENTER(lsflag);
691 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
692 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
693 		    1, l->l_pfailtime, l->l_pfailaddr);
694 		LOCKSTAT_EXIT(lsflag);
695 		l->l_pfailtime = 0;
696 		l->l_pfaillock = 0;
697 		l->l_pfailaddr = 0;
698 	}
699 
700 	if (l != newl) {
701 		struct lwp *prevlwp;
702 
703 		/* Release all locks, but leave the current LWP locked */
704 		if (l->l_mutex == spc->spc_mutex) {
705 			/*
706 			 * Drop spc_lwplock, if the current LWP has been moved
707 			 * to the run queue (it is now locked by spc_mutex).
708 			 */
709 			mutex_spin_exit(spc->spc_lwplock);
710 		} else {
711 			/*
712 			 * Otherwise, drop the spc_mutex, we are done with the
713 			 * run queues.
714 			 */
715 			mutex_spin_exit(spc->spc_mutex);
716 		}
717 
718 		/*
719 		 * Mark that context switch is going to be performed
720 		 * for this LWP, to protect it from being switched
721 		 * to on another CPU.
722 		 */
723 		KASSERT(l->l_ctxswtch == 0);
724 		l->l_ctxswtch = 1;
725 		l->l_ncsw++;
726 		l->l_pflag &= ~LP_RUNNING;
727 
728 		/*
729 		 * Increase the count of spin-mutexes before the release
730 		 * of the last lock - we must remain at IPL_SCHED during
731 		 * the context switch.
732 		 */
733 		oldspl = MUTEX_SPIN_OLDSPL(ci);
734 		ci->ci_mtx_count--;
735 		lwp_unlock(l);
736 
737 		/* Count the context switch on this CPU. */
738 		ci->ci_data.cpu_nswtch++;
739 
740 		/* Update status for lwpctl, if present. */
741 		if (l->l_lwpctl != NULL)
742 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
743 
744 		/*
745 		 * Save old VM context, unless a soft interrupt
746 		 * handler is blocking.
747 		 */
748 		if (!returning)
749 			pmap_deactivate(l);
750 
751 		/*
752 		 * We may need to spin-wait for if 'newl' is still
753 		 * context switching on another CPU.
754 		 */
755 		if (newl->l_ctxswtch != 0) {
756 			u_int count;
757 			count = SPINLOCK_BACKOFF_MIN;
758 			while (newl->l_ctxswtch)
759 				SPINLOCK_BACKOFF(count);
760 		}
761 
762 		/* Switch to the new LWP.. */
763 		prevlwp = cpu_switchto(l, newl, returning);
764 		ci = curcpu();
765 
766 		/*
767 		 * Switched away - we have new curlwp.
768 		 * Restore VM context and IPL.
769 		 */
770 		pmap_activate(l);
771 		if (prevlwp != NULL) {
772 			/* Normalize the count of the spin-mutexes */
773 			ci->ci_mtx_count++;
774 			/* Unmark the state of context switch */
775 			membar_exit();
776 			prevlwp->l_ctxswtch = 0;
777 		}
778 
779 		/* Update status for lwpctl, if present. */
780 		if (l->l_lwpctl != NULL) {
781 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
782 			l->l_lwpctl->lc_pctr++;
783 		}
784 
785 		KASSERT(l->l_cpu == ci);
786 		splx(oldspl);
787 		retval = 1;
788 	} else {
789 		/* Nothing to do - just unlock and return. */
790 		mutex_spin_exit(spc->spc_mutex);
791 		lwp_unlock(l);
792 		retval = 0;
793 	}
794 
795 	KASSERT(l == curlwp);
796 	KASSERT(l->l_stat == LSONPROC);
797 
798 	/*
799 	 * XXXSMP If we are using h/w performance counters, restore context.
800 	 * XXXSMP preemption problem.
801 	 */
802 #if PERFCTRS
803 	if (PMC_ENABLED(l->l_proc)) {
804 		pmc_restore_context(l->l_proc);
805 	}
806 #endif
807 	SYSCALL_TIME_WAKEUP(l);
808 	LOCKDEBUG_BARRIER(NULL, 1);
809 
810 	return retval;
811 }
812 
813 /*
814  * The machine independent parts of context switch to oblivion.
815  * Does not return.  Call with the LWP unlocked.
816  */
817 void
818 lwp_exit_switchaway(lwp_t *l)
819 {
820 	struct cpu_info *ci;
821 	struct lwp *newl;
822 	struct bintime bt;
823 
824 	ci = l->l_cpu;
825 
826 	KASSERT(kpreempt_disabled());
827 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
828 	KASSERT(ci == curcpu());
829 	LOCKDEBUG_BARRIER(NULL, 0);
830 
831 #ifdef KSTACK_CHECK_MAGIC
832 	kstack_check_magic(l);
833 #endif
834 
835 	/* Count time spent in current system call */
836 	SYSCALL_TIME_SLEEP(l);
837 	binuptime(&bt);
838 	updatertime(l, &bt);
839 
840 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
841 	(void)splsched();
842 
843 	/*
844 	 * Let sched_nextlwp() select the LWP to run the CPU next.
845 	 * If no LWP is runnable, select the idle LWP.
846 	 *
847 	 * Note that spc_lwplock might not necessary be held, and
848 	 * new thread would be unlocked after setting the LWP-lock.
849 	 */
850 	spc_lock(ci);
851 #ifndef __HAVE_FAST_SOFTINTS
852 	if (ci->ci_data.cpu_softints != 0) {
853 		/* There are pending soft interrupts, so pick one. */
854 		newl = softint_picklwp();
855 		newl->l_stat = LSONPROC;
856 		newl->l_pflag |= LP_RUNNING;
857 	} else
858 #endif	/* !__HAVE_FAST_SOFTINTS */
859 	{
860 		newl = nextlwp(ci, &ci->ci_schedstate);
861 	}
862 
863 	/* Update the new LWP's start time. */
864 	newl->l_stime = bt;
865 	l->l_pflag &= ~LP_RUNNING;
866 
867 	/*
868 	 * ci_curlwp changes when a fast soft interrupt occurs.
869 	 * We use cpu_onproc to keep track of which kernel or
870 	 * user thread is running 'underneath' the software
871 	 * interrupt.  This is important for time accounting,
872 	 * itimers and forcing user threads to preempt (aston).
873 	 */
874 	ci->ci_data.cpu_onproc = newl;
875 
876 	/*
877 	 * Preemption related tasks.  Must be done with the current
878 	 * CPU locked.
879 	 */
880 	cpu_did_resched(l);
881 
882 	/* Unlock the run queue. */
883 	spc_unlock(ci);
884 
885 	/* Count the context switch on this CPU. */
886 	ci->ci_data.cpu_nswtch++;
887 
888 	/* Update status for lwpctl, if present. */
889 	if (l->l_lwpctl != NULL)
890 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
891 
892 	/*
893 	 * We may need to spin-wait for if 'newl' is still
894 	 * context switching on another CPU.
895 	 */
896 	if (newl->l_ctxswtch != 0) {
897 		u_int count;
898 		count = SPINLOCK_BACKOFF_MIN;
899 		while (newl->l_ctxswtch)
900 			SPINLOCK_BACKOFF(count);
901 	}
902 
903 	/* Switch to the new LWP.. */
904 	(void)cpu_switchto(NULL, newl, false);
905 
906 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
907 	/* NOTREACHED */
908 }
909 
910 /*
911  * Change LWP state to be runnable, placing it on the run queue if it is
912  * in memory, and awakening the swapper if it isn't in memory.
913  *
914  * Call with the process and LWP locked.  Will return with the LWP unlocked.
915  */
916 void
917 setrunnable(struct lwp *l)
918 {
919 	struct proc *p = l->l_proc;
920 	struct cpu_info *ci;
921 
922 	KASSERT((l->l_flag & LW_IDLE) == 0);
923 	KASSERT(mutex_owned(p->p_lock));
924 	KASSERT(lwp_locked(l, NULL));
925 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
926 
927 	switch (l->l_stat) {
928 	case LSSTOP:
929 		/*
930 		 * If we're being traced (possibly because someone attached us
931 		 * while we were stopped), check for a signal from the debugger.
932 		 */
933 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
934 			signotify(l);
935 		p->p_nrlwps++;
936 		break;
937 	case LSSUSPENDED:
938 		l->l_flag &= ~LW_WSUSPEND;
939 		p->p_nrlwps++;
940 		cv_broadcast(&p->p_lwpcv);
941 		break;
942 	case LSSLEEP:
943 		KASSERT(l->l_wchan != NULL);
944 		break;
945 	default:
946 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
947 	}
948 
949 #ifdef KERN_SA
950 	if (l->l_proc->p_sa)
951 		sa_awaken(l);
952 #endif /* KERN_SA */
953 
954 	/*
955 	 * If the LWP was sleeping interruptably, then it's OK to start it
956 	 * again.  If not, mark it as still sleeping.
957 	 */
958 	if (l->l_wchan != NULL) {
959 		l->l_stat = LSSLEEP;
960 		/* lwp_unsleep() will release the lock. */
961 		lwp_unsleep(l, true);
962 		return;
963 	}
964 
965 	/*
966 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
967 	 * about to call mi_switch(), in which case it will yield.
968 	 */
969 	if ((l->l_pflag & LP_RUNNING) != 0) {
970 		l->l_stat = LSONPROC;
971 		l->l_slptime = 0;
972 		lwp_unlock(l);
973 		return;
974 	}
975 
976 	/*
977 	 * Look for a CPU to run.
978 	 * Set the LWP runnable.
979 	 */
980 	ci = sched_takecpu(l);
981 	l->l_cpu = ci;
982 	spc_lock(ci);
983 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
984 	sched_setrunnable(l);
985 	l->l_stat = LSRUN;
986 	l->l_slptime = 0;
987 
988 	/*
989 	 * If thread is swapped out - wake the swapper to bring it back in.
990 	 * Otherwise, enter it into a run queue.
991 	 */
992 	if (l->l_flag & LW_INMEM) {
993 		sched_enqueue(l, false);
994 		resched_cpu(l);
995 		lwp_unlock(l);
996 	} else {
997 		lwp_unlock(l);
998 		uvm_kick_scheduler();
999 	}
1000 }
1001 
1002 /*
1003  * suspendsched:
1004  *
1005  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1006  */
1007 void
1008 suspendsched(void)
1009 {
1010 	CPU_INFO_ITERATOR cii;
1011 	struct cpu_info *ci;
1012 	struct lwp *l;
1013 	struct proc *p;
1014 
1015 	/*
1016 	 * We do this by process in order not to violate the locking rules.
1017 	 */
1018 	mutex_enter(proc_lock);
1019 	PROCLIST_FOREACH(p, &allproc) {
1020 		if ((p->p_flag & PK_MARKER) != 0)
1021 			continue;
1022 
1023 		mutex_enter(p->p_lock);
1024 		if ((p->p_flag & PK_SYSTEM) != 0) {
1025 			mutex_exit(p->p_lock);
1026 			continue;
1027 		}
1028 
1029 		p->p_stat = SSTOP;
1030 
1031 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1032 			if (l == curlwp)
1033 				continue;
1034 
1035 			lwp_lock(l);
1036 
1037 			/*
1038 			 * Set L_WREBOOT so that the LWP will suspend itself
1039 			 * when it tries to return to user mode.  We want to
1040 			 * try and get to get as many LWPs as possible to
1041 			 * the user / kernel boundary, so that they will
1042 			 * release any locks that they hold.
1043 			 */
1044 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1045 
1046 			if (l->l_stat == LSSLEEP &&
1047 			    (l->l_flag & LW_SINTR) != 0) {
1048 				/* setrunnable() will release the lock. */
1049 				setrunnable(l);
1050 				continue;
1051 			}
1052 
1053 			lwp_unlock(l);
1054 		}
1055 
1056 		mutex_exit(p->p_lock);
1057 	}
1058 	mutex_exit(proc_lock);
1059 
1060 	/*
1061 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
1062 	 * They'll trap into the kernel and suspend themselves in userret().
1063 	 */
1064 	for (CPU_INFO_FOREACH(cii, ci)) {
1065 		spc_lock(ci);
1066 		cpu_need_resched(ci, RESCHED_IMMED);
1067 		spc_unlock(ci);
1068 	}
1069 }
1070 
1071 /*
1072  * sched_unsleep:
1073  *
1074  *	The is called when the LWP has not been awoken normally but instead
1075  *	interrupted: for example, if the sleep timed out.  Because of this,
1076  *	it's not a valid action for running or idle LWPs.
1077  */
1078 static u_int
1079 sched_unsleep(struct lwp *l, bool cleanup)
1080 {
1081 
1082 	lwp_unlock(l);
1083 	panic("sched_unsleep");
1084 }
1085 
1086 static void
1087 resched_cpu(struct lwp *l)
1088 {
1089 	struct cpu_info *ci = ci = l->l_cpu;
1090 
1091 	KASSERT(lwp_locked(l, NULL));
1092 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1093 		cpu_need_resched(ci, 0);
1094 }
1095 
1096 static void
1097 sched_changepri(struct lwp *l, pri_t pri)
1098 {
1099 
1100 	KASSERT(lwp_locked(l, NULL));
1101 
1102 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1103 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1104 		sched_dequeue(l);
1105 		l->l_priority = pri;
1106 		sched_enqueue(l, false);
1107 	} else {
1108 		l->l_priority = pri;
1109 	}
1110 	resched_cpu(l);
1111 }
1112 
1113 static void
1114 sched_lendpri(struct lwp *l, pri_t pri)
1115 {
1116 
1117 	KASSERT(lwp_locked(l, NULL));
1118 
1119 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1120 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1121 		sched_dequeue(l);
1122 		l->l_inheritedprio = pri;
1123 		sched_enqueue(l, false);
1124 	} else {
1125 		l->l_inheritedprio = pri;
1126 	}
1127 	resched_cpu(l);
1128 }
1129 
1130 struct lwp *
1131 syncobj_noowner(wchan_t wchan)
1132 {
1133 
1134 	return NULL;
1135 }
1136 
1137 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1138 const fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;
1139 
1140 /*
1141  * sched_pstats:
1142  *
1143  * Update process statistics and check CPU resource allocation.
1144  * Call scheduler-specific hook to eventually adjust process/LWP
1145  * priorities.
1146  */
1147 /* ARGSUSED */
1148 void
1149 sched_pstats(void *arg)
1150 {
1151 	const int clkhz = (stathz != 0 ? stathz : hz);
1152 	static bool backwards;
1153 	struct rlimit *rlim;
1154 	struct lwp *l;
1155 	struct proc *p;
1156 	long runtm;
1157 	fixpt_t lpctcpu;
1158 	u_int lcpticks;
1159 	int sig;
1160 
1161 	sched_pstats_ticks++;
1162 
1163 	mutex_enter(proc_lock);
1164 	PROCLIST_FOREACH(p, &allproc) {
1165 		if (__predict_false((p->p_flag & PK_MARKER) != 0))
1166 			continue;
1167 
1168 		/*
1169 		 * Increment time in/out of memory and sleep
1170 		 * time (if sleeping), ignore overflow.
1171 		 */
1172 		mutex_enter(p->p_lock);
1173 		runtm = p->p_rtime.sec;
1174 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1175 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
1176 				continue;
1177 			lwp_lock(l);
1178 			runtm += l->l_rtime.sec;
1179 			l->l_swtime++;
1180 			sched_lwp_stats(l);
1181 			lwp_unlock(l);
1182 
1183 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1184 			if (l->l_slptime != 0)
1185 				continue;
1186 
1187 			lpctcpu = l->l_pctcpu;
1188 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1189 			lpctcpu += ((FSCALE - ccpu) *
1190 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1191 			l->l_pctcpu = lpctcpu;
1192 		}
1193 		/* Calculating p_pctcpu only for ps(1) */
1194 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1195 
1196 		/*
1197 		 * Check if the process exceeds its CPU resource allocation.
1198 		 * If over max, kill it.
1199 		 */
1200 		rlim = &p->p_rlimit[RLIMIT_CPU];
1201 		sig = 0;
1202 		if (__predict_false(runtm >= rlim->rlim_cur)) {
1203 			if (runtm >= rlim->rlim_max)
1204 				sig = SIGKILL;
1205 			else {
1206 				sig = SIGXCPU;
1207 				if (rlim->rlim_cur < rlim->rlim_max)
1208 					rlim->rlim_cur += 5;
1209 			}
1210 		}
1211 		mutex_exit(p->p_lock);
1212 		if (__predict_false(runtm < 0)) {
1213 			if (!backwards) {
1214 				backwards = true;
1215 				printf("WARNING: negative runtime; "
1216 				    "monotonic clock has gone backwards\n");
1217 			}
1218 		} else if (__predict_false(sig)) {
1219 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
1220 			psignal(p, sig);
1221 		}
1222 	}
1223 	mutex_exit(proc_lock);
1224 	uvm_meter();
1225 	cv_wakeup(&lbolt);
1226 	callout_schedule(&sched_pstats_ch, hz);
1227 }
1228