xref: /netbsd-src/sys/kern/kern_synch.c (revision c0179c282a5968435315a82f4128c61372c68fc3)
1 /*	$NetBSD: kern_synch.c,v 1.173 2006/11/03 20:46:00 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  * This code is derived from software contributed to The NetBSD Foundation
11  * by Charles M. Hannum.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the NetBSD
24  *	Foundation, Inc. and its contributors.
25  * 4. Neither the name of The NetBSD Foundation nor the names of its
26  *    contributors may be used to endorse or promote products derived
27  *    from this software without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39  * POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 /*-
43  * Copyright (c) 1982, 1986, 1990, 1991, 1993
44  *	The Regents of the University of California.  All rights reserved.
45  * (c) UNIX System Laboratories, Inc.
46  * All or some portions of this file are derived from material licensed
47  * to the University of California by American Telephone and Telegraph
48  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49  * the permission of UNIX System Laboratories, Inc.
50  *
51  * Redistribution and use in source and binary forms, with or without
52  * modification, are permitted provided that the following conditions
53  * are met:
54  * 1. Redistributions of source code must retain the above copyright
55  *    notice, this list of conditions and the following disclaimer.
56  * 2. Redistributions in binary form must reproduce the above copyright
57  *    notice, this list of conditions and the following disclaimer in the
58  *    documentation and/or other materials provided with the distribution.
59  * 3. Neither the name of the University nor the names of its contributors
60  *    may be used to endorse or promote products derived from this software
61  *    without specific prior written permission.
62  *
63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73  * SUCH DAMAGE.
74  *
75  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
76  */
77 
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.173 2006/11/03 20:46:00 ad Exp $");
80 
81 #include "opt_ddb.h"
82 #include "opt_ktrace.h"
83 #include "opt_kstack.h"
84 #include "opt_lockdebug.h"
85 #include "opt_multiprocessor.h"
86 #include "opt_perfctrs.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/proc.h>
92 #include <sys/kernel.h>
93 #include <sys/buf.h>
94 #if defined(PERFCTRS)
95 #include <sys/pmc.h>
96 #endif
97 #include <sys/signalvar.h>
98 #include <sys/resourcevar.h>
99 #include <sys/sched.h>
100 #include <sys/sa.h>
101 #include <sys/savar.h>
102 #include <sys/kauth.h>
103 
104 #include <uvm/uvm_extern.h>
105 
106 #ifdef KTRACE
107 #include <sys/ktrace.h>
108 #endif
109 
110 #include <machine/cpu.h>
111 
112 int	lbolt;			/* once a second sleep address */
113 int	rrticks;		/* number of hardclock ticks per roundrobin() */
114 
115 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
116 #define	XXX_SCHED_LOCK		simple_lock(&sched_lock)
117 #define	XXX_SCHED_UNLOCK	simple_unlock(&sched_lock)
118 #else
119 #define	XXX_SCHED_LOCK		/* nothing */
120 #define	XXX_SCHED_UNLOCK	/* nothing */
121 #endif
122 
123 /*
124  * Sleep queues.
125  *
126  * We're only looking at 7 bits of the address; everything is
127  * aligned to 4, lots of things are aligned to greater powers
128  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
129  */
130 #define	SLPQUE_TABLESIZE	128
131 #define	SLPQUE_LOOKUP(x)	(((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
132 
133 #define	SLPQUE(ident)	(&sched_slpque[SLPQUE_LOOKUP(ident)])
134 
135 /*
136  * The global scheduler state.
137  */
138 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
139 volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
140 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
141 
142 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
143 
144 void schedcpu(void *);
145 void updatepri(struct lwp *);
146 void endtsleep(void *);
147 
148 inline void sa_awaken(struct lwp *);
149 inline void awaken(struct lwp *);
150 
151 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
152 static unsigned int schedcpu_ticks;
153 
154 
155 /*
156  * Force switch among equal priority processes every 100ms.
157  * Called from hardclock every hz/10 == rrticks hardclock ticks.
158  */
159 /* ARGSUSED */
160 void
161 roundrobin(struct cpu_info *ci)
162 {
163 	struct schedstate_percpu *spc = &ci->ci_schedstate;
164 
165 	spc->spc_rrticks = rrticks;
166 
167 	if (curlwp != NULL) {
168 		if (spc->spc_flags & SPCF_SEENRR) {
169 			/*
170 			 * The process has already been through a roundrobin
171 			 * without switching and may be hogging the CPU.
172 			 * Indicate that the process should yield.
173 			 */
174 			spc->spc_flags |= SPCF_SHOULDYIELD;
175 		} else
176 			spc->spc_flags |= SPCF_SEENRR;
177 	}
178 	need_resched(curcpu());
179 }
180 
181 #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
182 #define	NICE_WEIGHT 2			/* priorities per nice level */
183 
184 #define	ESTCPU_SHIFT	11
185 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
186 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
187 
188 /*
189  * Constants for digital decay and forget:
190  *	90% of (p_estcpu) usage in 5 * loadav time
191  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
192  *          Note that, as ps(1) mentions, this can let percentages
193  *          total over 100% (I've seen 137.9% for 3 processes).
194  *
195  * Note that hardclock updates p_estcpu and p_cpticks independently.
196  *
197  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
198  * That is, the system wants to compute a value of decay such
199  * that the following for loop:
200  * 	for (i = 0; i < (5 * loadavg); i++)
201  * 		p_estcpu *= decay;
202  * will compute
203  * 	p_estcpu *= 0.1;
204  * for all values of loadavg:
205  *
206  * Mathematically this loop can be expressed by saying:
207  * 	decay ** (5 * loadavg) ~= .1
208  *
209  * The system computes decay as:
210  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
211  *
212  * We wish to prove that the system's computation of decay
213  * will always fulfill the equation:
214  * 	decay ** (5 * loadavg) ~= .1
215  *
216  * If we compute b as:
217  * 	b = 2 * loadavg
218  * then
219  * 	decay = b / (b + 1)
220  *
221  * We now need to prove two things:
222  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
223  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
224  *
225  * Facts:
226  *         For x close to zero, exp(x) =~ 1 + x, since
227  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
228  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
229  *         For x close to zero, ln(1+x) =~ x, since
230  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
231  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
232  *         ln(.1) =~ -2.30
233  *
234  * Proof of (1):
235  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
236  *	solving for factor,
237  *      ln(factor) =~ (-2.30/5*loadav), or
238  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
239  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
240  *
241  * Proof of (2):
242  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
243  *	solving for power,
244  *      power*ln(b/(b+1)) =~ -2.30, or
245  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
246  *
247  * Actual power values for the implemented algorithm are as follows:
248  *      loadav: 1       2       3       4
249  *      power:  5.68    10.32   14.94   19.55
250  */
251 
252 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
253 #define	loadfactor(loadav)	(2 * (loadav))
254 
255 static fixpt_t
256 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
257 {
258 
259 	if (estcpu == 0) {
260 		return 0;
261 	}
262 
263 #if !defined(_LP64)
264 	/* avoid 64bit arithmetics. */
265 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
266 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
267 		return estcpu * loadfac / (loadfac + FSCALE);
268 	}
269 #endif /* !defined(_LP64) */
270 
271 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
272 }
273 
274 /*
275  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
276  * sleeping for at least seven times the loadfactor will decay p_estcpu to
277  * less than (1 << ESTCPU_SHIFT).
278  *
279  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
280  */
281 static fixpt_t
282 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
283 {
284 
285 	if ((n << FSHIFT) >= 7 * loadfac) {
286 		return 0;
287 	}
288 
289 	while (estcpu != 0 && n > 1) {
290 		estcpu = decay_cpu(loadfac, estcpu);
291 		n--;
292 	}
293 
294 	return estcpu;
295 }
296 
297 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
298 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
299 
300 /*
301  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
302  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
303  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
304  *
305  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
306  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
307  *
308  * If you dont want to bother with the faster/more-accurate formula, you
309  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
310  * (more general) method of calculating the %age of CPU used by a process.
311  */
312 #define	CCPU_SHIFT	11
313 
314 /*
315  * Recompute process priorities, every hz ticks.
316  */
317 /* ARGSUSED */
318 void
319 schedcpu(void *arg)
320 {
321 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
322 	struct lwp *l;
323 	struct proc *p;
324 	int s, minslp;
325 	int clkhz;
326 
327 	schedcpu_ticks++;
328 
329 	proclist_lock_read();
330 	PROCLIST_FOREACH(p, &allproc) {
331 		/*
332 		 * Increment time in/out of memory and sleep time
333 		 * (if sleeping).  We ignore overflow; with 16-bit int's
334 		 * (remember them?) overflow takes 45 days.
335 		 */
336 		minslp = 2;
337 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
338 			l->l_swtime++;
339 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
340 			    l->l_stat == LSSUSPENDED) {
341 				l->l_slptime++;
342 				minslp = min(minslp, l->l_slptime);
343 			} else
344 				minslp = 0;
345 		}
346 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
347 		/*
348 		 * If the process has slept the entire second,
349 		 * stop recalculating its priority until it wakes up.
350 		 */
351 		if (minslp > 1)
352 			continue;
353 		s = splstatclock();	/* prevent state changes */
354 		/*
355 		 * p_pctcpu is only for ps.
356 		 */
357 		clkhz = stathz != 0 ? stathz : hz;
358 #if	(FSHIFT >= CCPU_SHIFT)
359 		p->p_pctcpu += (clkhz == 100)?
360 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
361                 	100 * (((fixpt_t) p->p_cpticks)
362 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
363 #else
364 		p->p_pctcpu += ((FSCALE - ccpu) *
365 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
366 #endif
367 		p->p_cpticks = 0;
368 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
369 		splx(s);	/* Done with the process CPU ticks update */
370 		SCHED_LOCK(s);
371 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
372 			if (l->l_slptime > 1)
373 				continue;
374 			resetpriority(l);
375 			if (l->l_priority >= PUSER) {
376 				if (l->l_stat == LSRUN &&
377 				    (l->l_flag & L_INMEM) &&
378 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
379 					remrunqueue(l);
380 					l->l_priority = l->l_usrpri;
381 					setrunqueue(l);
382 				} else
383 					l->l_priority = l->l_usrpri;
384 			}
385 		}
386 		SCHED_UNLOCK(s);
387 	}
388 	proclist_unlock_read();
389 	uvm_meter();
390 	wakeup((caddr_t)&lbolt);
391 	callout_schedule(&schedcpu_ch, hz);
392 }
393 
394 /*
395  * Recalculate the priority of a process after it has slept for a while.
396  */
397 void
398 updatepri(struct lwp *l)
399 {
400 	struct proc *p = l->l_proc;
401 	fixpt_t loadfac;
402 
403 	SCHED_ASSERT_LOCKED();
404 	KASSERT(l->l_slptime > 1);
405 
406 	loadfac = loadfactor(averunnable.ldavg[0]);
407 
408 	l->l_slptime--; /* the first time was done in schedcpu */
409 	/* XXX NJWLWP */
410 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
411 	resetpriority(l);
412 }
413 
414 /*
415  * During autoconfiguration or after a panic, a sleep will simply
416  * lower the priority briefly to allow interrupts, then return.
417  * The priority to be used (safepri) is machine-dependent, thus this
418  * value is initialized and maintained in the machine-dependent layers.
419  * This priority will typically be 0, or the lowest priority
420  * that is safe for use on the interrupt stack; it can be made
421  * higher to block network software interrupts after panics.
422  */
423 int safepri;
424 
425 /*
426  * General sleep call.  Suspends the current process until a wakeup is
427  * performed on the specified identifier.  The process will then be made
428  * runnable with the specified priority.  Sleeps at most timo/hz seconds
429  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
430  * before and after sleeping, else signals are not checked.  Returns 0 if
431  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
432  * signal needs to be delivered, ERESTART is returned if the current system
433  * call should be restarted if possible, and EINTR is returned if the system
434  * call should be interrupted by the signal (return EINTR).
435  *
436  * The interlock is held until the scheduler_slock is acquired.  The
437  * interlock will be locked before returning back to the caller
438  * unless the PNORELOCK flag is specified, in which case the
439  * interlock will always be unlocked upon return.
440  */
441 int
442 ltsleep(volatile const void *ident, int priority, const char *wmesg, int timo,
443     volatile struct simplelock *interlock)
444 {
445 	struct lwp *l = curlwp;
446 	struct proc *p = l ? l->l_proc : NULL;
447 	struct slpque *qp;
448 	struct sadata_upcall *sau;
449 	int sig, s;
450 	int catch = priority & PCATCH;
451 	int relock = (priority & PNORELOCK) == 0;
452 	int exiterr = (priority & PNOEXITERR) == 0;
453 
454 	/*
455 	 * XXXSMP
456 	 * This is probably bogus.  Figure out what the right
457 	 * thing to do here really is.
458 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
459 	 * in the shutdown case is disgusting but partly necessary given
460 	 * how shutdown (barely) works.
461 	 */
462 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
463 		/*
464 		 * After a panic, or during autoconfiguration,
465 		 * just give interrupts a chance, then just return;
466 		 * don't run any other procs or panic below,
467 		 * in case this is the idle process and already asleep.
468 		 */
469 		s = splhigh();
470 		splx(safepri);
471 		splx(s);
472 		if (interlock != NULL && relock == 0)
473 			simple_unlock(interlock);
474 		return (0);
475 	}
476 
477 	KASSERT(p != NULL);
478 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
479 
480 #ifdef KTRACE
481 	if (KTRPOINT(p, KTR_CSW))
482 		ktrcsw(l, 1, 0);
483 #endif
484 
485 	/*
486 	 * XXX We need to allocate the sadata_upcall structure here,
487 	 * XXX since we can't sleep while waiting for memory inside
488 	 * XXX sa_upcall().  It would be nice if we could safely
489 	 * XXX allocate the sadata_upcall structure on the stack, here.
490 	 */
491 	if (l->l_flag & L_SA) {
492 		sau = sadata_upcall_alloc(0);
493 	} else {
494 		sau = NULL;
495 	}
496 
497 	SCHED_LOCK(s);
498 
499 #ifdef DIAGNOSTIC
500 	if (ident == NULL)
501 		panic("ltsleep: ident == NULL");
502 	if (l->l_stat != LSONPROC)
503 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
504 	if (l->l_back != NULL)
505 		panic("ltsleep: p_back != NULL");
506 #endif
507 
508 	l->l_wchan = ident;
509 	l->l_wmesg = wmesg;
510 	l->l_slptime = 0;
511 	l->l_priority = priority & PRIMASK;
512 
513 	qp = SLPQUE(ident);
514 	if (qp->sq_head == 0)
515 		qp->sq_head = l;
516 	else {
517 		*qp->sq_tailp = l;
518 	}
519 	*(qp->sq_tailp = &l->l_forw) = 0;
520 
521 	if (timo)
522 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
523 
524 	/*
525 	 * We can now release the interlock; the scheduler_slock
526 	 * is held, so a thread can't get in to do wakeup() before
527 	 * we do the switch.
528 	 *
529 	 * XXX We leave the code block here, after inserting ourselves
530 	 * on the sleep queue, because we might want a more clever
531 	 * data structure for the sleep queues at some point.
532 	 */
533 	if (interlock != NULL)
534 		simple_unlock(interlock);
535 
536 	/*
537 	 * We put ourselves on the sleep queue and start our timeout
538 	 * before calling CURSIG, as we could stop there, and a wakeup
539 	 * or a SIGCONT (or both) could occur while we were stopped.
540 	 * A SIGCONT would cause us to be marked as SSLEEP
541 	 * without resuming us, thus we must be ready for sleep
542 	 * when CURSIG is called.  If the wakeup happens while we're
543 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
544 	 */
545 	if (catch) {
546 		XXX_SCHED_UNLOCK;
547 		l->l_flag |= L_SINTR;
548 		if (((sig = CURSIG(l)) != 0) ||
549 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
550 			XXX_SCHED_LOCK;
551 			if (l->l_wchan != NULL)
552 				unsleep(l);
553 			l->l_stat = LSONPROC;
554 			SCHED_UNLOCK(s);
555 			goto resume;
556 		}
557 		XXX_SCHED_LOCK;
558 		if (l->l_wchan == NULL) {
559 			SCHED_UNLOCK(s);
560 			catch = 0;
561 			goto resume;
562 		}
563 	} else
564 		sig = 0;
565 	l->l_stat = LSSLEEP;
566 	p->p_nrlwps--;
567 	p->p_stats->p_ru.ru_nvcsw++;
568 	SCHED_ASSERT_LOCKED();
569 	if (l->l_flag & L_SA)
570 		sa_switch(l, sau, SA_UPCALL_BLOCKED);
571 	else
572 		mi_switch(l, NULL);
573 
574 #ifdef KERN_SYNCH_BPENDTSLEEP_LABEL
575 	/*
576 	 * XXX
577 	 * gcc4 optimizer will duplicate this asm statement on some arch
578 	 * and it will cause a multiple symbol definition error in gas.
579 	 * the kernel Makefile is setup to use -fno-reorder-blocks if
580 	 * this option is set.
581 	 */
582 	/* handy breakpoint location after process "wakes" */
583 	__asm(".globl bpendtsleep\nbpendtsleep:");
584 #endif
585 	/*
586 	 * p->p_nrlwps is incremented by whoever made us runnable again,
587 	 * either setrunnable() or awaken().
588 	 */
589 
590 	SCHED_ASSERT_UNLOCKED();
591 	splx(s);
592 
593  resume:
594 	KDASSERT(l->l_cpu != NULL);
595 	KDASSERT(l->l_cpu == curcpu());
596 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
597 
598 	l->l_flag &= ~L_SINTR;
599 	if (l->l_flag & L_TIMEOUT) {
600 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
601 		if (sig == 0) {
602 #ifdef KTRACE
603 			if (KTRPOINT(p, KTR_CSW))
604 				ktrcsw(l, 0, 0);
605 #endif
606 			if (relock && interlock != NULL)
607 				simple_lock(interlock);
608 			return (EWOULDBLOCK);
609 		}
610 	} else if (timo)
611 		callout_stop(&l->l_tsleep_ch);
612 
613 	if (catch) {
614 		const int cancelled = l->l_flag & L_CANCELLED;
615 		l->l_flag &= ~L_CANCELLED;
616 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
617 #ifdef KTRACE
618 			if (KTRPOINT(p, KTR_CSW))
619 				ktrcsw(l, 0, 0);
620 #endif
621 			if (relock && interlock != NULL)
622 				simple_lock(interlock);
623 			/*
624 			 * If this sleep was canceled, don't let the syscall
625 			 * restart.
626 			 */
627 			if (cancelled ||
628 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
629 				return (EINTR);
630 			return (ERESTART);
631 		}
632 	}
633 
634 #ifdef KTRACE
635 	if (KTRPOINT(p, KTR_CSW))
636 		ktrcsw(l, 0, 0);
637 #endif
638 	if (relock && interlock != NULL)
639 		simple_lock(interlock);
640 
641 	/* XXXNJW this is very much a kluge.
642 	 * revisit. a better way of preventing looping/hanging syscalls like
643 	 * wait4() and _lwp_wait() from wedging an exiting process
644 	 * would be preferred.
645 	 */
646 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
647 		return (EINTR);
648 	return (0);
649 }
650 
651 /*
652  * Implement timeout for tsleep.
653  * If process hasn't been awakened (wchan non-zero),
654  * set timeout flag and undo the sleep.  If proc
655  * is stopped, just unsleep so it will remain stopped.
656  */
657 void
658 endtsleep(void *arg)
659 {
660 	struct lwp *l;
661 	int s;
662 
663 	l = (struct lwp *)arg;
664 	SCHED_LOCK(s);
665 	if (l->l_wchan) {
666 		if (l->l_stat == LSSLEEP)
667 			setrunnable(l);
668 		else
669 			unsleep(l);
670 		l->l_flag |= L_TIMEOUT;
671 	}
672 	SCHED_UNLOCK(s);
673 }
674 
675 /*
676  * Remove a process from its wait queue
677  */
678 void
679 unsleep(struct lwp *l)
680 {
681 	struct slpque *qp;
682 	struct lwp **hp;
683 
684 	SCHED_ASSERT_LOCKED();
685 
686 	if (l->l_wchan) {
687 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
688 		while (*hp != l)
689 			hp = &(*hp)->l_forw;
690 		*hp = l->l_forw;
691 		if (qp->sq_tailp == &l->l_forw)
692 			qp->sq_tailp = hp;
693 		l->l_wchan = 0;
694 	}
695 }
696 
697 inline void
698 sa_awaken(struct lwp *l)
699 {
700 
701 	SCHED_ASSERT_LOCKED();
702 
703 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
704 		l->l_flag &= ~L_SA_IDLE;
705 }
706 
707 /*
708  * Optimized-for-wakeup() version of setrunnable().
709  */
710 inline void
711 awaken(struct lwp *l)
712 {
713 
714 	SCHED_ASSERT_LOCKED();
715 
716 	if (l->l_proc->p_sa)
717 		sa_awaken(l);
718 
719 	if (l->l_slptime > 1)
720 		updatepri(l);
721 	l->l_slptime = 0;
722 	l->l_stat = LSRUN;
723 	l->l_proc->p_nrlwps++;
724 	/*
725 	 * Since curpriority is a user priority, p->p_priority
726 	 * is always better than curpriority on the last CPU on
727 	 * which it ran.
728 	 *
729 	 * XXXSMP See affinity comment in resched_proc().
730 	 */
731 	if (l->l_flag & L_INMEM) {
732 		setrunqueue(l);
733 		KASSERT(l->l_cpu != NULL);
734 		need_resched(l->l_cpu);
735 	} else
736 		sched_wakeup(&proc0);
737 }
738 
739 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
740 void
741 sched_unlock_idle(void)
742 {
743 
744 	simple_unlock(&sched_lock);
745 }
746 
747 void
748 sched_lock_idle(void)
749 {
750 
751 	simple_lock(&sched_lock);
752 }
753 #endif /* MULTIPROCESSOR || LOCKDEBUG */
754 
755 /*
756  * Make all processes sleeping on the specified identifier runnable.
757  */
758 
759 void
760 wakeup(volatile const void *ident)
761 {
762 	int s;
763 
764 	SCHED_ASSERT_UNLOCKED();
765 
766 	SCHED_LOCK(s);
767 	sched_wakeup(ident);
768 	SCHED_UNLOCK(s);
769 }
770 
771 void
772 sched_wakeup(volatile const void *ident)
773 {
774 	struct slpque *qp;
775 	struct lwp *l, **q;
776 
777 	SCHED_ASSERT_LOCKED();
778 
779 	qp = SLPQUE(ident);
780  restart:
781 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
782 #ifdef DIAGNOSTIC
783 		if (l->l_back || (l->l_stat != LSSLEEP &&
784 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
785 			panic("wakeup");
786 #endif
787 		if (l->l_wchan == ident) {
788 			l->l_wchan = 0;
789 			*q = l->l_forw;
790 			if (qp->sq_tailp == &l->l_forw)
791 				qp->sq_tailp = q;
792 			if (l->l_stat == LSSLEEP) {
793 				awaken(l);
794 				goto restart;
795 			}
796 		} else
797 			q = &l->l_forw;
798 	}
799 }
800 
801 /*
802  * Make the highest priority process first in line on the specified
803  * identifier runnable.
804  */
805 void
806 wakeup_one(volatile const void *ident)
807 {
808 	struct slpque *qp;
809 	struct lwp *l, **q;
810 	struct lwp *best_sleepp, **best_sleepq;
811 	struct lwp *best_stopp, **best_stopq;
812 	int s;
813 
814 	best_sleepp = best_stopp = NULL;
815 	best_sleepq = best_stopq = NULL;
816 
817 	SCHED_LOCK(s);
818 
819 	qp = SLPQUE(ident);
820 
821 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
822 #ifdef DIAGNOSTIC
823 		if (l->l_back || (l->l_stat != LSSLEEP &&
824 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
825 			panic("wakeup_one");
826 #endif
827 		if (l->l_wchan == ident) {
828 			if (l->l_stat == LSSLEEP) {
829 				if (best_sleepp == NULL ||
830 				    l->l_priority < best_sleepp->l_priority) {
831 					best_sleepp = l;
832 					best_sleepq = q;
833 				}
834 			} else {
835 				if (best_stopp == NULL ||
836 				    l->l_priority < best_stopp->l_priority) {
837 				    	best_stopp = l;
838 					best_stopq = q;
839 				}
840 			}
841 		}
842 	}
843 
844 	/*
845 	 * Consider any SSLEEP process higher than the highest priority SSTOP
846 	 * process.
847 	 */
848 	if (best_sleepp != NULL) {
849 		l = best_sleepp;
850 		q = best_sleepq;
851 	} else {
852 		l = best_stopp;
853 		q = best_stopq;
854 	}
855 
856 	if (l != NULL) {
857 		l->l_wchan = NULL;
858 		*q = l->l_forw;
859 		if (qp->sq_tailp == &l->l_forw)
860 			qp->sq_tailp = q;
861 		if (l->l_stat == LSSLEEP)
862 			awaken(l);
863 	}
864 	SCHED_UNLOCK(s);
865 }
866 
867 /*
868  * General yield call.  Puts the current process back on its run queue and
869  * performs a voluntary context switch.  Should only be called when the
870  * current process explicitly requests it (eg sched_yield(2) in compat code).
871  */
872 void
873 yield(void)
874 {
875 	struct lwp *l = curlwp;
876 	int s;
877 
878 	SCHED_LOCK(s);
879 	l->l_priority = l->l_usrpri;
880 	l->l_stat = LSRUN;
881 	setrunqueue(l);
882 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
883 	mi_switch(l, NULL);
884 	SCHED_ASSERT_UNLOCKED();
885 	splx(s);
886 }
887 
888 /*
889  * General preemption call.  Puts the current process back on its run queue
890  * and performs an involuntary context switch.
891  * The 'more' ("more work to do") argument is boolean. Returning to userspace
892  * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
893  * This will be used to indicate to the SA subsystem that the LWP is
894  * not yet finished in the kernel.
895  */
896 
897 void
898 preempt(int more)
899 {
900 	struct lwp *l = curlwp;
901 	int r, s;
902 
903 	SCHED_LOCK(s);
904 	l->l_priority = l->l_usrpri;
905 	l->l_stat = LSRUN;
906 	setrunqueue(l);
907 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
908 	r = mi_switch(l, NULL);
909 	SCHED_ASSERT_UNLOCKED();
910 	splx(s);
911 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
912 		sa_preempt(l);
913 }
914 
915 /*
916  * The machine independent parts of context switch.
917  * Must be called at splsched() (no higher!) and with
918  * the sched_lock held.
919  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
920  * the next lwp.
921  *
922  * Returns 1 if another process was actually run.
923  */
924 int
925 mi_switch(struct lwp *l, struct lwp *newl)
926 {
927 	struct schedstate_percpu *spc;
928 	struct rlimit *rlim;
929 	long s, u;
930 	struct timeval tv;
931 	int hold_count;
932 	struct proc *p = l->l_proc;
933 	int retval;
934 
935 	SCHED_ASSERT_LOCKED();
936 
937 	/*
938 	 * Release the kernel_lock, as we are about to yield the CPU.
939 	 * The scheduler lock is still held until cpu_switch()
940 	 * selects a new process and removes it from the run queue.
941 	 */
942 	hold_count = KERNEL_LOCK_RELEASE_ALL();
943 
944 	KDASSERT(l->l_cpu != NULL);
945 	KDASSERT(l->l_cpu == curcpu());
946 
947 	spc = &l->l_cpu->ci_schedstate;
948 
949 #ifdef LOCKDEBUG
950 	spinlock_switchcheck();
951 	simple_lock_switchcheck();
952 #endif
953 
954 	/*
955 	 * Compute the amount of time during which the current
956 	 * process was running.
957 	 */
958 	microtime(&tv);
959 	u = p->p_rtime.tv_usec +
960 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
961 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
962 	if (u < 0) {
963 		u += 1000000;
964 		s--;
965 	} else if (u >= 1000000) {
966 		u -= 1000000;
967 		s++;
968 	}
969 	p->p_rtime.tv_usec = u;
970 	p->p_rtime.tv_sec = s;
971 
972 	/*
973 	 * Process is about to yield the CPU; clear the appropriate
974 	 * scheduling flags.
975 	 */
976 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
977 
978 #ifdef KSTACK_CHECK_MAGIC
979 	kstack_check_magic(l);
980 #endif
981 
982 	/*
983 	 * If we are using h/w performance counters, save context.
984 	 */
985 #if PERFCTRS
986 	if (PMC_ENABLED(p)) {
987 		pmc_save_context(p);
988 	}
989 #endif
990 
991 	/*
992 	 * Switch to the new current process.  When we
993 	 * run again, we'll return back here.
994 	 */
995 	uvmexp.swtch++;
996 	if (newl == NULL) {
997 		retval = cpu_switch(l, NULL);
998 	} else {
999 		remrunqueue(newl);
1000 		cpu_switchto(l, newl);
1001 		retval = 0;
1002 	}
1003 
1004 	/*
1005 	 * If we are using h/w performance counters, restore context.
1006 	 */
1007 #if PERFCTRS
1008 	if (PMC_ENABLED(p)) {
1009 		pmc_restore_context(p);
1010 	}
1011 #endif
1012 
1013 	/*
1014 	 * Make sure that MD code released the scheduler lock before
1015 	 * resuming us.
1016 	 */
1017 	SCHED_ASSERT_UNLOCKED();
1018 
1019 	/*
1020 	 * We're running again; record our new start time.  We might
1021 	 * be running on a new CPU now, so don't use the cache'd
1022 	 * schedstate_percpu pointer.
1023 	 */
1024 	KDASSERT(l->l_cpu != NULL);
1025 	KDASSERT(l->l_cpu == curcpu());
1026 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
1027 
1028 	/*
1029 	 * Reacquire the kernel_lock now.  We do this after we've
1030 	 * released the scheduler lock to avoid deadlock, and before
1031 	 * we reacquire the interlock.
1032 	 */
1033 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
1034 
1035 	/*
1036 	 * Check if the process exceeds its CPU resource allocation.
1037 	 * If over max, kill it.  In any case, if it has run for more
1038 	 * than 10 minutes, reduce priority to give others a chance.
1039 	 */
1040 	rlim = &p->p_rlimit[RLIMIT_CPU];
1041 	if (s >= rlim->rlim_cur) {
1042 		if (s >= rlim->rlim_max) {
1043 			psignal(p, SIGKILL);
1044 		} else {
1045 			psignal(p, SIGXCPU);
1046 			if (rlim->rlim_cur < rlim->rlim_max)
1047 				rlim->rlim_cur += 5;
1048 		}
1049 	}
1050 	if (autonicetime && s > autonicetime &&
1051 	    kauth_cred_geteuid(p->p_cred) && p->p_nice == NZERO) {
1052 		SCHED_LOCK(s);
1053 		p->p_nice = autoniceval + NZERO;
1054 		resetpriority(l);
1055 		SCHED_UNLOCK(s);
1056 	}
1057 
1058 	return retval;
1059 }
1060 
1061 /*
1062  * Initialize the (doubly-linked) run queues
1063  * to be empty.
1064  */
1065 void
1066 rqinit()
1067 {
1068 	int i;
1069 
1070 	for (i = 0; i < RUNQUE_NQS; i++)
1071 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
1072 		    (struct lwp *)&sched_qs[i];
1073 }
1074 
1075 static inline void
1076 resched_proc(struct lwp *l, u_char pri)
1077 {
1078 	struct cpu_info *ci;
1079 
1080 	/*
1081 	 * XXXSMP
1082 	 * Since l->l_cpu persists across a context switch,
1083 	 * this gives us *very weak* processor affinity, in
1084 	 * that we notify the CPU on which the process last
1085 	 * ran that it should try to switch.
1086 	 *
1087 	 * This does not guarantee that the process will run on
1088 	 * that processor next, because another processor might
1089 	 * grab it the next time it performs a context switch.
1090 	 *
1091 	 * This also does not handle the case where its last
1092 	 * CPU is running a higher-priority process, but every
1093 	 * other CPU is running a lower-priority process.  There
1094 	 * are ways to handle this situation, but they're not
1095 	 * currently very pretty, and we also need to weigh the
1096 	 * cost of moving a process from one CPU to another.
1097 	 *
1098 	 * XXXSMP
1099 	 * There is also the issue of locking the other CPU's
1100 	 * sched state, which we currently do not do.
1101 	 */
1102 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1103 	if (pri < ci->ci_schedstate.spc_curpriority)
1104 		need_resched(ci);
1105 }
1106 
1107 /*
1108  * Change process state to be runnable,
1109  * placing it on the run queue if it is in memory,
1110  * and awakening the swapper if it isn't in memory.
1111  */
1112 void
1113 setrunnable(struct lwp *l)
1114 {
1115 	struct proc *p = l->l_proc;
1116 
1117 	SCHED_ASSERT_LOCKED();
1118 
1119 	switch (l->l_stat) {
1120 	case 0:
1121 	case LSRUN:
1122 	case LSONPROC:
1123 	case LSZOMB:
1124 	case LSDEAD:
1125 	default:
1126 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1127 	case LSSTOP:
1128 		/*
1129 		 * If we're being traced (possibly because someone attached us
1130 		 * while we were stopped), check for a signal from the debugger.
1131 		 */
1132 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1133 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1134 			CHECKSIGS(p);
1135 		}
1136 	case LSSLEEP:
1137 		unsleep(l);		/* e.g. when sending signals */
1138 		break;
1139 
1140 	case LSIDL:
1141 		break;
1142 	case LSSUSPENDED:
1143 		break;
1144 	}
1145 
1146 	if (l->l_proc->p_sa)
1147 		sa_awaken(l);
1148 
1149 	l->l_stat = LSRUN;
1150 	p->p_nrlwps++;
1151 
1152 	if (l->l_flag & L_INMEM)
1153 		setrunqueue(l);
1154 
1155 	if (l->l_slptime > 1)
1156 		updatepri(l);
1157 	l->l_slptime = 0;
1158 	if ((l->l_flag & L_INMEM) == 0)
1159 		sched_wakeup((caddr_t)&proc0);
1160 	else
1161 		resched_proc(l, l->l_priority);
1162 }
1163 
1164 /*
1165  * Compute the priority of a process when running in user mode.
1166  * Arrange to reschedule if the resulting priority is better
1167  * than that of the current process.
1168  */
1169 void
1170 resetpriority(struct lwp *l)
1171 {
1172 	unsigned int newpriority;
1173 	struct proc *p = l->l_proc;
1174 
1175 	SCHED_ASSERT_LOCKED();
1176 
1177 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
1178 			NICE_WEIGHT * (p->p_nice - NZERO);
1179 	newpriority = min(newpriority, MAXPRI);
1180 	l->l_usrpri = newpriority;
1181 	resched_proc(l, l->l_usrpri);
1182 }
1183 
1184 /*
1185  * Recompute priority for all LWPs in a process.
1186  */
1187 void
1188 resetprocpriority(struct proc *p)
1189 {
1190 	struct lwp *l;
1191 
1192 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
1193 	    resetpriority(l);
1194 }
1195 
1196 /*
1197  * We adjust the priority of the current process.  The priority of a process
1198  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
1199  * is increased here.  The formula for computing priorities (in kern_synch.c)
1200  * will compute a different value each time p_estcpu increases. This can
1201  * cause a switch, but unless the priority crosses a PPQ boundary the actual
1202  * queue will not change.  The CPU usage estimator ramps up quite quickly
1203  * when the process is running (linearly), and decays away exponentially, at
1204  * a rate which is proportionally slower when the system is busy.  The basic
1205  * principle is that the system will 90% forget that the process used a lot
1206  * of CPU time in 5 * loadav seconds.  This causes the system to favor
1207  * processes which haven't run much recently, and to round-robin among other
1208  * processes.
1209  */
1210 
1211 void
1212 schedclock(struct lwp *l)
1213 {
1214 	struct proc *p = l->l_proc;
1215 	int s;
1216 
1217 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
1218 	SCHED_LOCK(s);
1219 	resetpriority(l);
1220 	SCHED_UNLOCK(s);
1221 
1222 	if (l->l_priority >= PUSER)
1223 		l->l_priority = l->l_usrpri;
1224 }
1225 
1226 void
1227 suspendsched()
1228 {
1229 	struct lwp *l;
1230 	int s;
1231 
1232 	/*
1233 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1234 	 * LSSUSPENDED.
1235 	 */
1236 	proclist_lock_read();
1237 	SCHED_LOCK(s);
1238 	LIST_FOREACH(l, &alllwp, l_list) {
1239 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1240 			continue;
1241 
1242 		switch (l->l_stat) {
1243 		case LSRUN:
1244 			l->l_proc->p_nrlwps--;
1245 			if ((l->l_flag & L_INMEM) != 0)
1246 				remrunqueue(l);
1247 			/* FALLTHROUGH */
1248 		case LSSLEEP:
1249 			l->l_stat = LSSUSPENDED;
1250 			break;
1251 		case LSONPROC:
1252 			/*
1253 			 * XXX SMP: we need to deal with processes on
1254 			 * others CPU !
1255 			 */
1256 			break;
1257 		default:
1258 			break;
1259 		}
1260 	}
1261 	SCHED_UNLOCK(s);
1262 	proclist_unlock_read();
1263 }
1264 
1265 /*
1266  * scheduler_fork_hook:
1267  *
1268  *	Inherit the parent's scheduler history.
1269  */
1270 void
1271 scheduler_fork_hook(struct proc *parent, struct proc *child)
1272 {
1273 
1274 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1275 	child->p_forktime = schedcpu_ticks;
1276 }
1277 
1278 /*
1279  * scheduler_wait_hook:
1280  *
1281  *	Chargeback parents for the sins of their children.
1282  */
1283 void
1284 scheduler_wait_hook(struct proc *parent, struct proc *child)
1285 {
1286 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1287 	fixpt_t estcpu;
1288 
1289 	/* XXX Only if parent != init?? */
1290 
1291 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1292 	    schedcpu_ticks - child->p_forktime);
1293 	if (child->p_estcpu > estcpu) {
1294 		parent->p_estcpu =
1295 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1296 	}
1297 }
1298 
1299 /*
1300  * Low-level routines to access the run queue.  Optimised assembler
1301  * routines can override these.
1302  */
1303 
1304 #ifndef __HAVE_MD_RUNQUEUE
1305 
1306 /*
1307  * On some architectures, it's faster to use a MSB ordering for the priorites
1308  * than the traditional LSB ordering.
1309  */
1310 #ifdef __HAVE_BIGENDIAN_BITOPS
1311 #define	RQMASK(n) (0x80000000 >> (n))
1312 #else
1313 #define	RQMASK(n) (0x00000001 << (n))
1314 #endif
1315 
1316 /*
1317  * The primitives that manipulate the run queues.  whichqs tells which
1318  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
1319  * into queues, remrunqueue removes them from queues.  The running process is
1320  * on no queue, other processes are on a queue related to p->p_priority,
1321  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1322  * available queues.
1323  */
1324 
1325 #ifdef RQDEBUG
1326 static void
1327 checkrunqueue(int whichq, struct lwp *l)
1328 {
1329 	const struct prochd * const rq = &sched_qs[whichq];
1330 	struct lwp *l2;
1331 	int found = 0;
1332 	int die = 0;
1333 	int empty = 1;
1334 	for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
1335 		if (l2->l_stat != LSRUN) {
1336 			printf("checkrunqueue[%d]: lwp %p state (%d) "
1337 			    " != LSRUN\n", whichq, l2, l2->l_stat);
1338 		}
1339 		if (l2->l_back->l_forw != l2) {
1340 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1341 			    "corrupt %p\n", whichq, l2, l2->l_back,
1342 			    l2->l_back->l_forw);
1343 			die = 1;
1344 		}
1345 		if (l2->l_forw->l_back != l2) {
1346 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1347 			    "corrupt %p\n", whichq, l2, l2->l_forw,
1348 			    l2->l_forw->l_back);
1349 			die = 1;
1350 		}
1351 		if (l2 == l)
1352 			found = 1;
1353 		empty = 0;
1354 	}
1355 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1356 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1357 		    whichq, rq);
1358 		die = 1;
1359 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1360 		printf("checkrunqueue[%d]: bit clear for non-empty "
1361 		    "run-queue %p\n", whichq, rq);
1362 		die = 1;
1363 	}
1364 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1365 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1366 		    whichq, l);
1367 		die = 1;
1368 	}
1369 	if (l != NULL && empty) {
1370 		printf("checkrunqueue[%d]: empty run-queue %p with "
1371 		    "active lwp %p\n", whichq, rq, l);
1372 		die = 1;
1373 	}
1374 	if (l != NULL && !found) {
1375 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1376 		    whichq, l, rq);
1377 		die = 1;
1378 	}
1379 	if (die)
1380 		panic("checkrunqueue: inconsistency found");
1381 }
1382 #endif /* RQDEBUG */
1383 
1384 void
1385 setrunqueue(struct lwp *l)
1386 {
1387 	struct prochd *rq;
1388 	struct lwp *prev;
1389 	const int whichq = l->l_priority / PPQ;
1390 
1391 #ifdef RQDEBUG
1392 	checkrunqueue(whichq, NULL);
1393 #endif
1394 #ifdef DIAGNOSTIC
1395 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1396 		panic("setrunqueue");
1397 #endif
1398 	sched_whichqs |= RQMASK(whichq);
1399 	rq = &sched_qs[whichq];
1400 	prev = rq->ph_rlink;
1401 	l->l_forw = (struct lwp *)rq;
1402 	rq->ph_rlink = l;
1403 	prev->l_forw = l;
1404 	l->l_back = prev;
1405 #ifdef RQDEBUG
1406 	checkrunqueue(whichq, l);
1407 #endif
1408 }
1409 
1410 void
1411 remrunqueue(struct lwp *l)
1412 {
1413 	struct lwp *prev, *next;
1414 	const int whichq = l->l_priority / PPQ;
1415 #ifdef RQDEBUG
1416 	checkrunqueue(whichq, l);
1417 #endif
1418 #ifdef DIAGNOSTIC
1419 	if (((sched_whichqs & RQMASK(whichq)) == 0))
1420 		panic("remrunqueue: bit %d not set", whichq);
1421 #endif
1422 	prev = l->l_back;
1423 	l->l_back = NULL;
1424 	next = l->l_forw;
1425 	prev->l_forw = next;
1426 	next->l_back = prev;
1427 	if (prev == next)
1428 		sched_whichqs &= ~RQMASK(whichq);
1429 #ifdef RQDEBUG
1430 	checkrunqueue(whichq, NULL);
1431 #endif
1432 }
1433 
1434 #undef RQMASK
1435 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1436