xref: /netbsd-src/sys/kern/kern_synch.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: kern_synch.c,v 1.316 2018/07/12 10:46:48 maxv Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5  *    The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11  * Daniel Sieger.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*-
36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * (c) UNIX System Laboratories, Inc.
39  * All or some portions of this file are derived from material licensed
40  * to the University of California by American Telephone and Telegraph
41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42  * the permission of UNIX System Laboratories, Inc.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
69  */
70 
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.316 2018/07/12 10:46:48 maxv Exp $");
73 
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76 
77 #define	__MUTEX_PRIVATE
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sched.h>
87 #include <sys/syscall_stats.h>
88 #include <sys/sleepq.h>
89 #include <sys/lockdebug.h>
90 #include <sys/evcnt.h>
91 #include <sys/intr.h>
92 #include <sys/lwpctl.h>
93 #include <sys/atomic.h>
94 #include <sys/syslog.h>
95 
96 #include <uvm/uvm_extern.h>
97 
98 #include <dev/lockstat.h>
99 
100 #include <sys/dtrace_bsd.h>
101 int                             dtrace_vtime_active=0;
102 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
103 
104 static void	sched_unsleep(struct lwp *, bool);
105 static void	sched_changepri(struct lwp *, pri_t);
106 static void	sched_lendpri(struct lwp *, pri_t);
107 static void	resched_cpu(struct lwp *);
108 
109 syncobj_t sleep_syncobj = {
110 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
111 	.sobj_unsleep	= sleepq_unsleep,
112 	.sobj_changepri	= sleepq_changepri,
113 	.sobj_lendpri	= sleepq_lendpri,
114 	.sobj_owner	= syncobj_noowner,
115 };
116 
117 syncobj_t sched_syncobj = {
118 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
119 	.sobj_unsleep	= sched_unsleep,
120 	.sobj_changepri	= sched_changepri,
121 	.sobj_lendpri	= sched_lendpri,
122 	.sobj_owner	= syncobj_noowner,
123 };
124 
125 /* "Lightning bolt": once a second sleep address. */
126 kcondvar_t		lbolt			__cacheline_aligned;
127 
128 u_int			sched_pstats_ticks	__cacheline_aligned;
129 
130 /* Preemption event counters. */
131 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
132 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
133 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
134 
135 void
136 synch_init(void)
137 {
138 
139 	cv_init(&lbolt, "lbolt");
140 
141 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
142 	   "kpreempt", "defer: critical section");
143 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
144 	   "kpreempt", "defer: kernel_lock");
145 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
146 	   "kpreempt", "immediate");
147 }
148 
149 /*
150  * OBSOLETE INTERFACE
151  *
152  * General sleep call.  Suspends the current LWP until a wakeup is
153  * performed on the specified identifier.  The LWP will then be made
154  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
155  * means no timeout).  If pri includes PCATCH flag, signals are checked
156  * before and after sleeping, else signals are not checked.  Returns 0 if
157  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
158  * signal needs to be delivered, ERESTART is returned if the current system
159  * call should be restarted if possible, and EINTR is returned if the system
160  * call should be interrupted by the signal (return EINTR).
161  */
162 int
163 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
164 {
165 	struct lwp *l = curlwp;
166 	sleepq_t *sq;
167 	kmutex_t *mp;
168 
169 	KASSERT((l->l_pflag & LP_INTR) == 0);
170 	KASSERT(ident != &lbolt);
171 
172 	if (sleepq_dontsleep(l)) {
173 		(void)sleepq_abort(NULL, 0);
174 		return 0;
175 	}
176 
177 	l->l_kpriority = true;
178 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
179 	sleepq_enter(sq, l, mp);
180 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
181 	return sleepq_block(timo, priority & PCATCH);
182 }
183 
184 int
185 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
186 	kmutex_t *mtx)
187 {
188 	struct lwp *l = curlwp;
189 	sleepq_t *sq;
190 	kmutex_t *mp;
191 	int error;
192 
193 	KASSERT((l->l_pflag & LP_INTR) == 0);
194 	KASSERT(ident != &lbolt);
195 
196 	if (sleepq_dontsleep(l)) {
197 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
198 		return 0;
199 	}
200 
201 	l->l_kpriority = true;
202 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
203 	sleepq_enter(sq, l, mp);
204 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
205 	mutex_exit(mtx);
206 	error = sleepq_block(timo, priority & PCATCH);
207 
208 	if ((priority & PNORELOCK) == 0)
209 		mutex_enter(mtx);
210 
211 	return error;
212 }
213 
214 /*
215  * General sleep call for situations where a wake-up is not expected.
216  */
217 int
218 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
219 {
220 	struct lwp *l = curlwp;
221 	kmutex_t *mp;
222 	sleepq_t *sq;
223 	int error;
224 
225 	KASSERT(!(timo == 0 && intr == false));
226 
227 	if (sleepq_dontsleep(l))
228 		return sleepq_abort(NULL, 0);
229 
230 	if (mtx != NULL)
231 		mutex_exit(mtx);
232 	l->l_kpriority = true;
233 	sq = sleeptab_lookup(&sleeptab, l, &mp);
234 	sleepq_enter(sq, l, mp);
235 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
236 	error = sleepq_block(timo, intr);
237 	if (mtx != NULL)
238 		mutex_enter(mtx);
239 
240 	return error;
241 }
242 
243 /*
244  * OBSOLETE INTERFACE
245  *
246  * Make all LWPs sleeping on the specified identifier runnable.
247  */
248 void
249 wakeup(wchan_t ident)
250 {
251 	sleepq_t *sq;
252 	kmutex_t *mp;
253 
254 	if (__predict_false(cold))
255 		return;
256 
257 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
258 	sleepq_wake(sq, ident, (u_int)-1, mp);
259 }
260 
261 /*
262  * General yield call.  Puts the current LWP back on its run queue and
263  * performs a voluntary context switch.  Should only be called when the
264  * current LWP explicitly requests it (eg sched_yield(2)).
265  */
266 void
267 yield(void)
268 {
269 	struct lwp *l = curlwp;
270 
271 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
272 	lwp_lock(l);
273 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
274 	KASSERT(l->l_stat == LSONPROC);
275 	l->l_kpriority = false;
276 	(void)mi_switch(l);
277 	KERNEL_LOCK(l->l_biglocks, l);
278 }
279 
280 /*
281  * General preemption call.  Puts the current LWP back on its run queue
282  * and performs an involuntary context switch.
283  */
284 void
285 preempt(void)
286 {
287 	struct lwp *l = curlwp;
288 
289 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
290 	lwp_lock(l);
291 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
292 	KASSERT(l->l_stat == LSONPROC);
293 	l->l_kpriority = false;
294 	l->l_nivcsw++;
295 	(void)mi_switch(l);
296 	KERNEL_LOCK(l->l_biglocks, l);
297 }
298 
299 /*
300  * Handle a request made by another agent to preempt the current LWP
301  * in-kernel.  Usually called when l_dopreempt may be non-zero.
302  *
303  * Character addresses for lockstat only.
304  */
305 static char	in_critical_section;
306 static char	kernel_lock_held;
307 static char	is_softint;
308 static char	cpu_kpreempt_enter_fail;
309 
310 bool
311 kpreempt(uintptr_t where)
312 {
313 	uintptr_t failed;
314 	lwp_t *l;
315 	int s, dop, lsflag;
316 
317 	l = curlwp;
318 	failed = 0;
319 	while ((dop = l->l_dopreempt) != 0) {
320 		if (l->l_stat != LSONPROC) {
321 			/*
322 			 * About to block (or die), let it happen.
323 			 * Doesn't really count as "preemption has
324 			 * been blocked", since we're going to
325 			 * context switch.
326 			 */
327 			l->l_dopreempt = 0;
328 			return true;
329 		}
330 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
331 			/* Can't preempt idle loop, don't count as failure. */
332 			l->l_dopreempt = 0;
333 			return true;
334 		}
335 		if (__predict_false(l->l_nopreempt != 0)) {
336 			/* LWP holds preemption disabled, explicitly. */
337 			if ((dop & DOPREEMPT_COUNTED) == 0) {
338 				kpreempt_ev_crit.ev_count++;
339 			}
340 			failed = (uintptr_t)&in_critical_section;
341 			break;
342 		}
343 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
344 			/* Can't preempt soft interrupts yet. */
345 			l->l_dopreempt = 0;
346 			failed = (uintptr_t)&is_softint;
347 			break;
348 		}
349 		s = splsched();
350 		if (__predict_false(l->l_blcnt != 0 ||
351 		    curcpu()->ci_biglock_wanted != NULL)) {
352 			/* Hold or want kernel_lock, code is not MT safe. */
353 			splx(s);
354 			if ((dop & DOPREEMPT_COUNTED) == 0) {
355 				kpreempt_ev_klock.ev_count++;
356 			}
357 			failed = (uintptr_t)&kernel_lock_held;
358 			break;
359 		}
360 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
361 			/*
362 			 * It may be that the IPL is too high.
363 			 * kpreempt_enter() can schedule an
364 			 * interrupt to retry later.
365 			 */
366 			splx(s);
367 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
368 			break;
369 		}
370 		/* Do it! */
371 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
372 			kpreempt_ev_immed.ev_count++;
373 		}
374 		lwp_lock(l);
375 		mi_switch(l);
376 		l->l_nopreempt++;
377 		splx(s);
378 
379 		/* Take care of any MD cleanup. */
380 		cpu_kpreempt_exit(where);
381 		l->l_nopreempt--;
382 	}
383 
384 	if (__predict_true(!failed)) {
385 		return false;
386 	}
387 
388 	/* Record preemption failure for reporting via lockstat. */
389 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
390 	lsflag = 0;
391 	LOCKSTAT_ENTER(lsflag);
392 	if (__predict_false(lsflag)) {
393 		if (where == 0) {
394 			where = (uintptr_t)__builtin_return_address(0);
395 		}
396 		/* Preemption is on, might recurse, so make it atomic. */
397 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
398 		    (void *)where) == NULL) {
399 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
400 			l->l_pfaillock = failed;
401 		}
402 	}
403 	LOCKSTAT_EXIT(lsflag);
404 	return true;
405 }
406 
407 /*
408  * Return true if preemption is explicitly disabled.
409  */
410 bool
411 kpreempt_disabled(void)
412 {
413 	const lwp_t *l = curlwp;
414 
415 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
416 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
417 }
418 
419 /*
420  * Disable kernel preemption.
421  */
422 void
423 kpreempt_disable(void)
424 {
425 
426 	KPREEMPT_DISABLE(curlwp);
427 }
428 
429 /*
430  * Reenable kernel preemption.
431  */
432 void
433 kpreempt_enable(void)
434 {
435 
436 	KPREEMPT_ENABLE(curlwp);
437 }
438 
439 /*
440  * Compute the amount of time during which the current lwp was running.
441  *
442  * - update l_rtime unless it's an idle lwp.
443  */
444 
445 void
446 updatertime(lwp_t *l, const struct bintime *now)
447 {
448 
449 	if (__predict_false(l->l_flag & LW_IDLE))
450 		return;
451 
452 	/* rtime += now - stime */
453 	bintime_add(&l->l_rtime, now);
454 	bintime_sub(&l->l_rtime, &l->l_stime);
455 }
456 
457 /*
458  * Select next LWP from the current CPU to run..
459  */
460 static inline lwp_t *
461 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
462 {
463 	lwp_t *newl;
464 
465 	/*
466 	 * Let sched_nextlwp() select the LWP to run the CPU next.
467 	 * If no LWP is runnable, select the idle LWP.
468 	 *
469 	 * Note that spc_lwplock might not necessary be held, and
470 	 * new thread would be unlocked after setting the LWP-lock.
471 	 */
472 	newl = sched_nextlwp();
473 	if (newl != NULL) {
474 		sched_dequeue(newl);
475 		KASSERT(lwp_locked(newl, spc->spc_mutex));
476 		KASSERT(newl->l_cpu == ci);
477 		newl->l_stat = LSONPROC;
478 		newl->l_pflag |= LP_RUNNING;
479 		lwp_setlock(newl, spc->spc_lwplock);
480 	} else {
481 		newl = ci->ci_data.cpu_idlelwp;
482 		newl->l_stat = LSONPROC;
483 		newl->l_pflag |= LP_RUNNING;
484 	}
485 
486 	/*
487 	 * Only clear want_resched if there are no pending (slow)
488 	 * software interrupts.
489 	 */
490 	ci->ci_want_resched = ci->ci_data.cpu_softints;
491 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
492 	spc->spc_curpriority = lwp_eprio(newl);
493 
494 	return newl;
495 }
496 
497 /*
498  * The machine independent parts of context switch.
499  *
500  * Returns 1 if another LWP was actually run.
501  */
502 int
503 mi_switch(lwp_t *l)
504 {
505 	struct cpu_info *ci;
506 	struct schedstate_percpu *spc;
507 	struct lwp *newl;
508 	int retval, oldspl;
509 	struct bintime bt;
510 	bool returning;
511 
512 	KASSERT(lwp_locked(l, NULL));
513 	KASSERT(kpreempt_disabled());
514 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
515 
516 	kstack_check_magic(l);
517 
518 	binuptime(&bt);
519 
520 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
521 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
522 	KASSERT(l->l_cpu == curcpu());
523 	ci = l->l_cpu;
524 	spc = &ci->ci_schedstate;
525 	returning = false;
526 	newl = NULL;
527 
528 	/*
529 	 * If we have been asked to switch to a specific LWP, then there
530 	 * is no need to inspect the run queues.  If a soft interrupt is
531 	 * blocking, then return to the interrupted thread without adjusting
532 	 * VM context or its start time: neither have been changed in order
533 	 * to take the interrupt.
534 	 */
535 	if (l->l_switchto != NULL) {
536 		if ((l->l_pflag & LP_INTR) != 0) {
537 			returning = true;
538 			softint_block(l);
539 			if ((l->l_pflag & LP_TIMEINTR) != 0)
540 				updatertime(l, &bt);
541 		}
542 		newl = l->l_switchto;
543 		l->l_switchto = NULL;
544 	}
545 #ifndef __HAVE_FAST_SOFTINTS
546 	else if (ci->ci_data.cpu_softints != 0) {
547 		/* There are pending soft interrupts, so pick one. */
548 		newl = softint_picklwp();
549 		newl->l_stat = LSONPROC;
550 		newl->l_pflag |= LP_RUNNING;
551 	}
552 #endif	/* !__HAVE_FAST_SOFTINTS */
553 
554 	/* Count time spent in current system call */
555 	if (!returning) {
556 		SYSCALL_TIME_SLEEP(l);
557 
558 		updatertime(l, &bt);
559 	}
560 
561 	/* Lock the runqueue */
562 	KASSERT(l->l_stat != LSRUN);
563 	mutex_spin_enter(spc->spc_mutex);
564 
565 	/*
566 	 * If on the CPU and we have gotten this far, then we must yield.
567 	 */
568 	if (l->l_stat == LSONPROC && l != newl) {
569 		KASSERT(lwp_locked(l, spc->spc_lwplock));
570 		if ((l->l_flag & LW_IDLE) == 0) {
571 			l->l_stat = LSRUN;
572 			lwp_setlock(l, spc->spc_mutex);
573 			sched_enqueue(l, true);
574 			/*
575 			 * Handle migration.  Note that "migrating LWP" may
576 			 * be reset here, if interrupt/preemption happens
577 			 * early in idle LWP.
578 			 */
579 			if (l->l_target_cpu != NULL &&
580 			    (l->l_pflag & LP_BOUND) == 0) {
581 				KASSERT((l->l_pflag & LP_INTR) == 0);
582 				spc->spc_migrating = l;
583 			}
584 		} else
585 			l->l_stat = LSIDL;
586 	}
587 
588 	/* Pick new LWP to run. */
589 	if (newl == NULL) {
590 		newl = nextlwp(ci, spc);
591 	}
592 
593 	/* Items that must be updated with the CPU locked. */
594 	if (!returning) {
595 		/* Update the new LWP's start time. */
596 		newl->l_stime = bt;
597 
598 		/*
599 		 * ci_curlwp changes when a fast soft interrupt occurs.
600 		 * We use cpu_onproc to keep track of which kernel or
601 		 * user thread is running 'underneath' the software
602 		 * interrupt.  This is important for time accounting,
603 		 * itimers and forcing user threads to preempt (aston).
604 		 */
605 		ci->ci_data.cpu_onproc = newl;
606 	}
607 
608 	/*
609 	 * Preemption related tasks.  Must be done with the current
610 	 * CPU locked.
611 	 */
612 	cpu_did_resched(l);
613 	l->l_dopreempt = 0;
614 	if (__predict_false(l->l_pfailaddr != 0)) {
615 		LOCKSTAT_FLAG(lsflag);
616 		LOCKSTAT_ENTER(lsflag);
617 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
618 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
619 		    1, l->l_pfailtime, l->l_pfailaddr);
620 		LOCKSTAT_EXIT(lsflag);
621 		l->l_pfailtime = 0;
622 		l->l_pfaillock = 0;
623 		l->l_pfailaddr = 0;
624 	}
625 
626 	if (l != newl) {
627 		struct lwp *prevlwp;
628 
629 		/* Release all locks, but leave the current LWP locked */
630 		if (l->l_mutex == spc->spc_mutex) {
631 			/*
632 			 * Drop spc_lwplock, if the current LWP has been moved
633 			 * to the run queue (it is now locked by spc_mutex).
634 			 */
635 			mutex_spin_exit(spc->spc_lwplock);
636 		} else {
637 			/*
638 			 * Otherwise, drop the spc_mutex, we are done with the
639 			 * run queues.
640 			 */
641 			mutex_spin_exit(spc->spc_mutex);
642 		}
643 
644 		/*
645 		 * Mark that context switch is going to be performed
646 		 * for this LWP, to protect it from being switched
647 		 * to on another CPU.
648 		 */
649 		KASSERT(l->l_ctxswtch == 0);
650 		l->l_ctxswtch = 1;
651 		l->l_ncsw++;
652 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
653 		l->l_pflag &= ~LP_RUNNING;
654 
655 		/*
656 		 * Increase the count of spin-mutexes before the release
657 		 * of the last lock - we must remain at IPL_SCHED during
658 		 * the context switch.
659 		 */
660 		KASSERTMSG(ci->ci_mtx_count == -1,
661 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
662 		    "(block with spin-mutex held)",
663 		     __func__, cpu_index(ci), ci->ci_mtx_count);
664 		oldspl = MUTEX_SPIN_OLDSPL(ci);
665 		ci->ci_mtx_count--;
666 		lwp_unlock(l);
667 
668 		/* Count the context switch on this CPU. */
669 		ci->ci_data.cpu_nswtch++;
670 
671 		/* Update status for lwpctl, if present. */
672 		if (l->l_lwpctl != NULL)
673 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
674 
675 		/*
676 		 * Save old VM context, unless a soft interrupt
677 		 * handler is blocking.
678 		 */
679 		if (!returning)
680 			pmap_deactivate(l);
681 
682 		/*
683 		 * We may need to spin-wait if 'newl' is still
684 		 * context switching on another CPU.
685 		 */
686 		if (__predict_false(newl->l_ctxswtch != 0)) {
687 			u_int count;
688 			count = SPINLOCK_BACKOFF_MIN;
689 			while (newl->l_ctxswtch)
690 				SPINLOCK_BACKOFF(count);
691 		}
692 
693 		/*
694 		 * If DTrace has set the active vtime enum to anything
695 		 * other than INACTIVE (0), then it should have set the
696 		 * function to call.
697 		 */
698 		if (__predict_false(dtrace_vtime_active)) {
699 			(*dtrace_vtime_switch_func)(newl);
700 		}
701 
702 		/* Switch to the new LWP.. */
703 #ifdef MULTIPROCESSOR
704 		KASSERT(curlwp == ci->ci_curlwp);
705 #endif
706 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
707 		prevlwp = cpu_switchto(l, newl, returning);
708 		ci = curcpu();
709 #ifdef MULTIPROCESSOR
710 		KASSERT(curlwp == ci->ci_curlwp);
711 #endif
712 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
713 		    l, curlwp, prevlwp);
714 
715 		/*
716 		 * Switched away - we have new curlwp.
717 		 * Restore VM context and IPL.
718 		 */
719 		pmap_activate(l);
720 		pcu_switchpoint(l);
721 
722 		if (prevlwp != NULL) {
723 			/* Normalize the count of the spin-mutexes */
724 			ci->ci_mtx_count++;
725 			/* Unmark the state of context switch */
726 			membar_exit();
727 			prevlwp->l_ctxswtch = 0;
728 		}
729 
730 		/* Update status for lwpctl, if present. */
731 		if (l->l_lwpctl != NULL) {
732 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
733 			l->l_lwpctl->lc_pctr++;
734 		}
735 
736 		/* Note trip through cpu_switchto(). */
737 		pserialize_switchpoint();
738 
739 		KASSERT(l->l_cpu == ci);
740 		splx(oldspl);
741 		/*
742 		 * note that, unless the caller disabled preemption,
743 		 * we can be preempted at any time after the above splx() call.
744 		 */
745 		retval = 1;
746 	} else {
747 		/* Nothing to do - just unlock and return. */
748 		mutex_spin_exit(spc->spc_mutex);
749 		lwp_unlock(l);
750 		retval = 0;
751 	}
752 
753 	KASSERT(l == curlwp);
754 	KASSERT(l->l_stat == LSONPROC);
755 
756 	SYSCALL_TIME_WAKEUP(l);
757 	LOCKDEBUG_BARRIER(NULL, 1);
758 
759 	return retval;
760 }
761 
762 /*
763  * The machine independent parts of context switch to oblivion.
764  * Does not return.  Call with the LWP unlocked.
765  */
766 void
767 lwp_exit_switchaway(lwp_t *l)
768 {
769 	struct cpu_info *ci;
770 	struct lwp *newl;
771 	struct bintime bt;
772 
773 	ci = l->l_cpu;
774 
775 	KASSERT(kpreempt_disabled());
776 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
777 	KASSERT(ci == curcpu());
778 	LOCKDEBUG_BARRIER(NULL, 0);
779 
780 	kstack_check_magic(l);
781 
782 	/* Count time spent in current system call */
783 	SYSCALL_TIME_SLEEP(l);
784 	binuptime(&bt);
785 	updatertime(l, &bt);
786 
787 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
788 	(void)splsched();
789 
790 	/*
791 	 * Let sched_nextlwp() select the LWP to run the CPU next.
792 	 * If no LWP is runnable, select the idle LWP.
793 	 *
794 	 * Note that spc_lwplock might not necessary be held, and
795 	 * new thread would be unlocked after setting the LWP-lock.
796 	 */
797 	spc_lock(ci);
798 #ifndef __HAVE_FAST_SOFTINTS
799 	if (ci->ci_data.cpu_softints != 0) {
800 		/* There are pending soft interrupts, so pick one. */
801 		newl = softint_picklwp();
802 		newl->l_stat = LSONPROC;
803 		newl->l_pflag |= LP_RUNNING;
804 	} else
805 #endif	/* !__HAVE_FAST_SOFTINTS */
806 	{
807 		newl = nextlwp(ci, &ci->ci_schedstate);
808 	}
809 
810 	/* Update the new LWP's start time. */
811 	newl->l_stime = bt;
812 	l->l_pflag &= ~LP_RUNNING;
813 
814 	/*
815 	 * ci_curlwp changes when a fast soft interrupt occurs.
816 	 * We use cpu_onproc to keep track of which kernel or
817 	 * user thread is running 'underneath' the software
818 	 * interrupt.  This is important for time accounting,
819 	 * itimers and forcing user threads to preempt (aston).
820 	 */
821 	ci->ci_data.cpu_onproc = newl;
822 
823 	/*
824 	 * Preemption related tasks.  Must be done with the current
825 	 * CPU locked.
826 	 */
827 	cpu_did_resched(l);
828 
829 	/* Unlock the run queue. */
830 	spc_unlock(ci);
831 
832 	/* Count the context switch on this CPU. */
833 	ci->ci_data.cpu_nswtch++;
834 
835 	/* Update status for lwpctl, if present. */
836 	if (l->l_lwpctl != NULL)
837 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
838 
839 	/*
840 	 * We may need to spin-wait if 'newl' is still
841 	 * context switching on another CPU.
842 	 */
843 	if (__predict_false(newl->l_ctxswtch != 0)) {
844 		u_int count;
845 		count = SPINLOCK_BACKOFF_MIN;
846 		while (newl->l_ctxswtch)
847 			SPINLOCK_BACKOFF(count);
848 	}
849 
850 	/*
851 	 * If DTrace has set the active vtime enum to anything
852 	 * other than INACTIVE (0), then it should have set the
853 	 * function to call.
854 	 */
855 	if (__predict_false(dtrace_vtime_active)) {
856 		(*dtrace_vtime_switch_func)(newl);
857 	}
858 
859 	/* Switch to the new LWP.. */
860 	(void)cpu_switchto(NULL, newl, false);
861 
862 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
863 	/* NOTREACHED */
864 }
865 
866 /*
867  * setrunnable: change LWP state to be runnable, placing it on the run queue.
868  *
869  * Call with the process and LWP locked.  Will return with the LWP unlocked.
870  */
871 void
872 setrunnable(struct lwp *l)
873 {
874 	struct proc *p = l->l_proc;
875 	struct cpu_info *ci;
876 
877 	KASSERT((l->l_flag & LW_IDLE) == 0);
878 	KASSERT(mutex_owned(p->p_lock));
879 	KASSERT(lwp_locked(l, NULL));
880 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
881 
882 	switch (l->l_stat) {
883 	case LSSTOP:
884 		/*
885 		 * If we're being traced (possibly because someone attached us
886 		 * while we were stopped), check for a signal from the debugger.
887 		 */
888 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
889 			signotify(l);
890 		p->p_nrlwps++;
891 		break;
892 	case LSSUSPENDED:
893 		l->l_flag &= ~LW_WSUSPEND;
894 		p->p_nrlwps++;
895 		cv_broadcast(&p->p_lwpcv);
896 		break;
897 	case LSSLEEP:
898 		KASSERT(l->l_wchan != NULL);
899 		break;
900 	default:
901 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
902 	}
903 
904 	/*
905 	 * If the LWP was sleeping, start it again.
906 	 */
907 	if (l->l_wchan != NULL) {
908 		l->l_stat = LSSLEEP;
909 		/* lwp_unsleep() will release the lock. */
910 		lwp_unsleep(l, true);
911 		return;
912 	}
913 
914 	/*
915 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
916 	 * about to call mi_switch(), in which case it will yield.
917 	 */
918 	if ((l->l_pflag & LP_RUNNING) != 0) {
919 		l->l_stat = LSONPROC;
920 		l->l_slptime = 0;
921 		lwp_unlock(l);
922 		return;
923 	}
924 
925 	/*
926 	 * Look for a CPU to run.
927 	 * Set the LWP runnable.
928 	 */
929 	ci = sched_takecpu(l);
930 	l->l_cpu = ci;
931 	spc_lock(ci);
932 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
933 	sched_setrunnable(l);
934 	l->l_stat = LSRUN;
935 	l->l_slptime = 0;
936 
937 	sched_enqueue(l, false);
938 	resched_cpu(l);
939 	lwp_unlock(l);
940 }
941 
942 /*
943  * suspendsched:
944  *
945  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
946  */
947 void
948 suspendsched(void)
949 {
950 	CPU_INFO_ITERATOR cii;
951 	struct cpu_info *ci;
952 	struct lwp *l;
953 	struct proc *p;
954 
955 	/*
956 	 * We do this by process in order not to violate the locking rules.
957 	 */
958 	mutex_enter(proc_lock);
959 	PROCLIST_FOREACH(p, &allproc) {
960 		mutex_enter(p->p_lock);
961 		if ((p->p_flag & PK_SYSTEM) != 0) {
962 			mutex_exit(p->p_lock);
963 			continue;
964 		}
965 
966 		if (p->p_stat != SSTOP) {
967 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
968 				p->p_pptr->p_nstopchild++;
969 				p->p_waited = 0;
970 			}
971 			p->p_stat = SSTOP;
972 		}
973 
974 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
975 			if (l == curlwp)
976 				continue;
977 
978 			lwp_lock(l);
979 
980 			/*
981 			 * Set L_WREBOOT so that the LWP will suspend itself
982 			 * when it tries to return to user mode.  We want to
983 			 * try and get to get as many LWPs as possible to
984 			 * the user / kernel boundary, so that they will
985 			 * release any locks that they hold.
986 			 */
987 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
988 
989 			if (l->l_stat == LSSLEEP &&
990 			    (l->l_flag & LW_SINTR) != 0) {
991 				/* setrunnable() will release the lock. */
992 				setrunnable(l);
993 				continue;
994 			}
995 
996 			lwp_unlock(l);
997 		}
998 
999 		mutex_exit(p->p_lock);
1000 	}
1001 	mutex_exit(proc_lock);
1002 
1003 	/*
1004 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
1005 	 * They'll trap into the kernel and suspend themselves in userret().
1006 	 */
1007 	for (CPU_INFO_FOREACH(cii, ci)) {
1008 		spc_lock(ci);
1009 		cpu_need_resched(ci, RESCHED_IMMED);
1010 		spc_unlock(ci);
1011 	}
1012 }
1013 
1014 /*
1015  * sched_unsleep:
1016  *
1017  *	The is called when the LWP has not been awoken normally but instead
1018  *	interrupted: for example, if the sleep timed out.  Because of this,
1019  *	it's not a valid action for running or idle LWPs.
1020  */
1021 static void
1022 sched_unsleep(struct lwp *l, bool cleanup)
1023 {
1024 
1025 	lwp_unlock(l);
1026 	panic("sched_unsleep");
1027 }
1028 
1029 static void
1030 resched_cpu(struct lwp *l)
1031 {
1032 	struct cpu_info *ci = l->l_cpu;
1033 
1034 	KASSERT(lwp_locked(l, NULL));
1035 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1036 		cpu_need_resched(ci, 0);
1037 }
1038 
1039 static void
1040 sched_changepri(struct lwp *l, pri_t pri)
1041 {
1042 
1043 	KASSERT(lwp_locked(l, NULL));
1044 
1045 	if (l->l_stat == LSRUN) {
1046 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1047 		sched_dequeue(l);
1048 		l->l_priority = pri;
1049 		sched_enqueue(l, false);
1050 	} else {
1051 		l->l_priority = pri;
1052 	}
1053 	resched_cpu(l);
1054 }
1055 
1056 static void
1057 sched_lendpri(struct lwp *l, pri_t pri)
1058 {
1059 
1060 	KASSERT(lwp_locked(l, NULL));
1061 
1062 	if (l->l_stat == LSRUN) {
1063 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1064 		sched_dequeue(l);
1065 		l->l_inheritedprio = pri;
1066 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1067 		sched_enqueue(l, false);
1068 	} else {
1069 		l->l_inheritedprio = pri;
1070 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1071 	}
1072 	resched_cpu(l);
1073 }
1074 
1075 struct lwp *
1076 syncobj_noowner(wchan_t wchan)
1077 {
1078 
1079 	return NULL;
1080 }
1081 
1082 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1083 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1084 
1085 /*
1086  * Constants for averages over 1, 5 and 15 minutes when sampling at
1087  * 5 second intervals.
1088  */
1089 static const fixpt_t cexp[ ] = {
1090 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
1091 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
1092 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
1093 };
1094 
1095 /*
1096  * sched_pstats:
1097  *
1098  * => Update process statistics and check CPU resource allocation.
1099  * => Call scheduler-specific hook to eventually adjust LWP priorities.
1100  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1101  */
1102 void
1103 sched_pstats(void)
1104 {
1105 	extern struct loadavg averunnable;
1106 	struct loadavg *avg = &averunnable;
1107 	const int clkhz = (stathz != 0 ? stathz : hz);
1108 	static bool backwards = false;
1109 	static u_int lavg_count = 0;
1110 	struct proc *p;
1111 	int nrun;
1112 
1113 	sched_pstats_ticks++;
1114 	if (++lavg_count >= 5) {
1115 		lavg_count = 0;
1116 		nrun = 0;
1117 	}
1118 	mutex_enter(proc_lock);
1119 	PROCLIST_FOREACH(p, &allproc) {
1120 		struct lwp *l;
1121 		struct rlimit *rlim;
1122 		time_t runtm;
1123 		int sig;
1124 
1125 		/* Increment sleep time (if sleeping), ignore overflow. */
1126 		mutex_enter(p->p_lock);
1127 		runtm = p->p_rtime.sec;
1128 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1129 			fixpt_t lpctcpu;
1130 			u_int lcpticks;
1131 
1132 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
1133 				continue;
1134 			lwp_lock(l);
1135 			runtm += l->l_rtime.sec;
1136 			l->l_swtime++;
1137 			sched_lwp_stats(l);
1138 
1139 			/* For load average calculation. */
1140 			if (__predict_false(lavg_count == 0) &&
1141 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1142 				switch (l->l_stat) {
1143 				case LSSLEEP:
1144 					if (l->l_slptime > 1) {
1145 						break;
1146 					}
1147 				case LSRUN:
1148 				case LSONPROC:
1149 				case LSIDL:
1150 					nrun++;
1151 				}
1152 			}
1153 			lwp_unlock(l);
1154 
1155 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1156 			if (l->l_slptime != 0)
1157 				continue;
1158 
1159 			lpctcpu = l->l_pctcpu;
1160 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1161 			lpctcpu += ((FSCALE - ccpu) *
1162 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1163 			l->l_pctcpu = lpctcpu;
1164 		}
1165 		/* Calculating p_pctcpu only for ps(1) */
1166 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1167 
1168 		if (__predict_false(runtm < 0)) {
1169 			if (!backwards) {
1170 				backwards = true;
1171 				printf("WARNING: negative runtime; "
1172 				    "monotonic clock has gone backwards\n");
1173 			}
1174 			mutex_exit(p->p_lock);
1175 			continue;
1176 		}
1177 
1178 		/*
1179 		 * Check if the process exceeds its CPU resource allocation.
1180 		 * If over the hard limit, kill it with SIGKILL.
1181 		 * If over the soft limit, send SIGXCPU and raise
1182 		 * the soft limit a little.
1183 		 */
1184 		rlim = &p->p_rlimit[RLIMIT_CPU];
1185 		sig = 0;
1186 		if (__predict_false(runtm >= rlim->rlim_cur)) {
1187 			if (runtm >= rlim->rlim_max) {
1188 				sig = SIGKILL;
1189 				log(LOG_NOTICE,
1190 				    "pid %d, command %s, is killed: %s\n",
1191 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1192 				uprintf("pid %d, command %s, is killed: %s\n",
1193 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1194 			} else {
1195 				sig = SIGXCPU;
1196 				if (rlim->rlim_cur < rlim->rlim_max)
1197 					rlim->rlim_cur += 5;
1198 			}
1199 		}
1200 		mutex_exit(p->p_lock);
1201 		if (__predict_false(sig)) {
1202 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
1203 			psignal(p, sig);
1204 		}
1205 	}
1206 	mutex_exit(proc_lock);
1207 
1208 	/* Load average calculation. */
1209 	if (__predict_false(lavg_count == 0)) {
1210 		int i;
1211 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1212 		for (i = 0; i < __arraycount(cexp); i++) {
1213 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1214 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1215 		}
1216 	}
1217 
1218 	/* Lightning bolt. */
1219 	cv_broadcast(&lbolt);
1220 }
1221