xref: /netbsd-src/sys/kern/kern_synch.c (revision 817cd315412cb2ce0bc4e6bf3f12a866fd948396)
1 /*	$NetBSD: kern_synch.c,v 1.273 2009/12/05 22:38:19 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5  *    The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11  * Daniel Sieger.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*-
36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * (c) UNIX System Laboratories, Inc.
39  * All or some portions of this file are derived from material licensed
40  * to the University of California by American Telephone and Telegraph
41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42  * the permission of UNIX System Laboratories, Inc.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
69  */
70 
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.273 2009/12/05 22:38:19 pooka Exp $");
73 
74 #include "opt_kstack.h"
75 #include "opt_perfctrs.h"
76 #include "opt_sa.h"
77 
78 #define	__MUTEX_PRIVATE
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/kernel.h>
84 #if defined(PERFCTRS)
85 #include <sys/pmc.h>
86 #endif
87 #include <sys/cpu.h>
88 #include <sys/resourcevar.h>
89 #include <sys/sched.h>
90 #include <sys/sa.h>
91 #include <sys/savar.h>
92 #include <sys/syscall_stats.h>
93 #include <sys/sleepq.h>
94 #include <sys/lockdebug.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/lwpctl.h>
98 #include <sys/atomic.h>
99 #include <sys/simplelock.h>
100 
101 #include <uvm/uvm_extern.h>
102 
103 #include <dev/lockstat.h>
104 
105 static void	sched_unsleep(struct lwp *, bool);
106 static void	sched_changepri(struct lwp *, pri_t);
107 static void	sched_lendpri(struct lwp *, pri_t);
108 static void	resched_cpu(struct lwp *);
109 
110 syncobj_t sleep_syncobj = {
111 	SOBJ_SLEEPQ_SORTED,
112 	sleepq_unsleep,
113 	sleepq_changepri,
114 	sleepq_lendpri,
115 	syncobj_noowner,
116 };
117 
118 syncobj_t sched_syncobj = {
119 	SOBJ_SLEEPQ_SORTED,
120 	sched_unsleep,
121 	sched_changepri,
122 	sched_lendpri,
123 	syncobj_noowner,
124 };
125 
126 callout_t 	sched_pstats_ch;
127 unsigned	sched_pstats_ticks;
128 kcondvar_t	lbolt;			/* once a second sleep address */
129 
130 /* Preemption event counters */
131 static struct evcnt kpreempt_ev_crit;
132 static struct evcnt kpreempt_ev_klock;
133 static struct evcnt kpreempt_ev_immed;
134 
135 /*
136  * During autoconfiguration or after a panic, a sleep will simply lower the
137  * priority briefly to allow interrupts, then return.  The priority to be
138  * used (safepri) is machine-dependent, thus this value is initialized and
139  * maintained in the machine-dependent layers.  This priority will typically
140  * be 0, or the lowest priority that is safe for use on the interrupt stack;
141  * it can be made higher to block network software interrupts after panics.
142  */
143 int	safepri;
144 
145 void
146 synch_init(void)
147 {
148 
149 	cv_init(&lbolt, "lbolt");
150 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
151 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
152 
153 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
154 	   "kpreempt", "defer: critical section");
155 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
156 	   "kpreempt", "defer: kernel_lock");
157 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
158 	   "kpreempt", "immediate");
159 
160 	sched_pstats(NULL);
161 }
162 
163 /*
164  * OBSOLETE INTERFACE
165  *
166  * General sleep call.  Suspends the current LWP until a wakeup is
167  * performed on the specified identifier.  The LWP will then be made
168  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
169  * means no timeout).  If pri includes PCATCH flag, signals are checked
170  * before and after sleeping, else signals are not checked.  Returns 0 if
171  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
172  * signal needs to be delivered, ERESTART is returned if the current system
173  * call should be restarted if possible, and EINTR is returned if the system
174  * call should be interrupted by the signal (return EINTR).
175  *
176  * The interlock is held until we are on a sleep queue. The interlock will
177  * be locked before returning back to the caller unless the PNORELOCK flag
178  * is specified, in which case the interlock will always be unlocked upon
179  * return.
180  */
181 int
182 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
183 	volatile struct simplelock *interlock)
184 {
185 	struct lwp *l = curlwp;
186 	sleepq_t *sq;
187 	kmutex_t *mp;
188 	int error;
189 
190 	KASSERT((l->l_pflag & LP_INTR) == 0);
191 	KASSERT(ident != &lbolt);
192 
193 	if (sleepq_dontsleep(l)) {
194 		(void)sleepq_abort(NULL, 0);
195 		if ((priority & PNORELOCK) != 0)
196 			simple_unlock(interlock);
197 		return 0;
198 	}
199 
200 	l->l_kpriority = true;
201 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
202 	sleepq_enter(sq, l, mp);
203 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
204 
205 	if (interlock != NULL) {
206 		KASSERT(simple_lock_held(interlock));
207 		simple_unlock(interlock);
208 	}
209 
210 	error = sleepq_block(timo, priority & PCATCH);
211 
212 	if (interlock != NULL && (priority & PNORELOCK) == 0)
213 		simple_lock(interlock);
214 
215 	return error;
216 }
217 
218 int
219 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
220 	kmutex_t *mtx)
221 {
222 	struct lwp *l = curlwp;
223 	sleepq_t *sq;
224 	kmutex_t *mp;
225 	int error;
226 
227 	KASSERT((l->l_pflag & LP_INTR) == 0);
228 	KASSERT(ident != &lbolt);
229 
230 	if (sleepq_dontsleep(l)) {
231 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
232 		return 0;
233 	}
234 
235 	l->l_kpriority = true;
236 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
237 	sleepq_enter(sq, l, mp);
238 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
239 	mutex_exit(mtx);
240 	error = sleepq_block(timo, priority & PCATCH);
241 
242 	if ((priority & PNORELOCK) == 0)
243 		mutex_enter(mtx);
244 
245 	return error;
246 }
247 
248 /*
249  * General sleep call for situations where a wake-up is not expected.
250  */
251 int
252 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
253 {
254 	struct lwp *l = curlwp;
255 	kmutex_t *mp;
256 	sleepq_t *sq;
257 	int error;
258 
259 	if (sleepq_dontsleep(l))
260 		return sleepq_abort(NULL, 0);
261 
262 	if (mtx != NULL)
263 		mutex_exit(mtx);
264 	l->l_kpriority = true;
265 	sq = sleeptab_lookup(&sleeptab, l, &mp);
266 	sleepq_enter(sq, l, mp);
267 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
268 	error = sleepq_block(timo, intr);
269 	if (mtx != NULL)
270 		mutex_enter(mtx);
271 
272 	return error;
273 }
274 
275 #ifdef KERN_SA
276 /*
277  * sa_awaken:
278  *
279  *	We believe this lwp is an SA lwp. If it's yielding,
280  * let it know it needs to wake up.
281  *
282  *	We are called and exit with the lwp locked. We are
283  * called in the middle of wakeup operations, so we need
284  * to not touch the locks at all.
285  */
286 void
287 sa_awaken(struct lwp *l)
288 {
289 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
290 
291 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
292 		l->l_flag &= ~LW_SA_IDLE;
293 }
294 #endif /* KERN_SA */
295 
296 /*
297  * OBSOLETE INTERFACE
298  *
299  * Make all LWPs sleeping on the specified identifier runnable.
300  */
301 void
302 wakeup(wchan_t ident)
303 {
304 	sleepq_t *sq;
305 	kmutex_t *mp;
306 
307 	if (__predict_false(cold))
308 		return;
309 
310 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
311 	sleepq_wake(sq, ident, (u_int)-1, mp);
312 }
313 
314 /*
315  * OBSOLETE INTERFACE
316  *
317  * Make the highest priority LWP first in line on the specified
318  * identifier runnable.
319  */
320 void
321 wakeup_one(wchan_t ident)
322 {
323 	sleepq_t *sq;
324 	kmutex_t *mp;
325 
326 	if (__predict_false(cold))
327 		return;
328 
329 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
330 	sleepq_wake(sq, ident, 1, mp);
331 }
332 
333 
334 /*
335  * General yield call.  Puts the current LWP back on its run queue and
336  * performs a voluntary context switch.  Should only be called when the
337  * current LWP explicitly requests it (eg sched_yield(2)).
338  */
339 void
340 yield(void)
341 {
342 	struct lwp *l = curlwp;
343 
344 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
345 	lwp_lock(l);
346 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
347 	KASSERT(l->l_stat == LSONPROC);
348 	l->l_kpriority = false;
349 	(void)mi_switch(l);
350 	KERNEL_LOCK(l->l_biglocks, l);
351 }
352 
353 /*
354  * General preemption call.  Puts the current LWP back on its run queue
355  * and performs an involuntary context switch.
356  */
357 void
358 preempt(void)
359 {
360 	struct lwp *l = curlwp;
361 
362 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
363 	lwp_lock(l);
364 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
365 	KASSERT(l->l_stat == LSONPROC);
366 	l->l_kpriority = false;
367 	l->l_nivcsw++;
368 	(void)mi_switch(l);
369 	KERNEL_LOCK(l->l_biglocks, l);
370 }
371 
372 /*
373  * Handle a request made by another agent to preempt the current LWP
374  * in-kernel.  Usually called when l_dopreempt may be non-zero.
375  *
376  * Character addresses for lockstat only.
377  */
378 static char	in_critical_section;
379 static char	kernel_lock_held;
380 static char	is_softint;
381 static char	cpu_kpreempt_enter_fail;
382 
383 bool
384 kpreempt(uintptr_t where)
385 {
386 	uintptr_t failed;
387 	lwp_t *l;
388 	int s, dop, lsflag;
389 
390 	l = curlwp;
391 	failed = 0;
392 	while ((dop = l->l_dopreempt) != 0) {
393 		if (l->l_stat != LSONPROC) {
394 			/*
395 			 * About to block (or die), let it happen.
396 			 * Doesn't really count as "preemption has
397 			 * been blocked", since we're going to
398 			 * context switch.
399 			 */
400 			l->l_dopreempt = 0;
401 			return true;
402 		}
403 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
404 			/* Can't preempt idle loop, don't count as failure. */
405 			l->l_dopreempt = 0;
406 			return true;
407 		}
408 		if (__predict_false(l->l_nopreempt != 0)) {
409 			/* LWP holds preemption disabled, explicitly. */
410 			if ((dop & DOPREEMPT_COUNTED) == 0) {
411 				kpreempt_ev_crit.ev_count++;
412 			}
413 			failed = (uintptr_t)&in_critical_section;
414 			break;
415 		}
416 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
417 			/* Can't preempt soft interrupts yet. */
418 			l->l_dopreempt = 0;
419 			failed = (uintptr_t)&is_softint;
420 			break;
421 		}
422 		s = splsched();
423 		if (__predict_false(l->l_blcnt != 0 ||
424 		    curcpu()->ci_biglock_wanted != NULL)) {
425 			/* Hold or want kernel_lock, code is not MT safe. */
426 			splx(s);
427 			if ((dop & DOPREEMPT_COUNTED) == 0) {
428 				kpreempt_ev_klock.ev_count++;
429 			}
430 			failed = (uintptr_t)&kernel_lock_held;
431 			break;
432 		}
433 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
434 			/*
435 			 * It may be that the IPL is too high.
436 			 * kpreempt_enter() can schedule an
437 			 * interrupt to retry later.
438 			 */
439 			splx(s);
440 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
441 			break;
442 		}
443 		/* Do it! */
444 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
445 			kpreempt_ev_immed.ev_count++;
446 		}
447 		lwp_lock(l);
448 		mi_switch(l);
449 		l->l_nopreempt++;
450 		splx(s);
451 
452 		/* Take care of any MD cleanup. */
453 		cpu_kpreempt_exit(where);
454 		l->l_nopreempt--;
455 	}
456 
457 	if (__predict_true(!failed)) {
458 		return false;
459 	}
460 
461 	/* Record preemption failure for reporting via lockstat. */
462 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
463 	lsflag = 0;
464 	LOCKSTAT_ENTER(lsflag);
465 	if (__predict_false(lsflag)) {
466 		if (where == 0) {
467 			where = (uintptr_t)__builtin_return_address(0);
468 		}
469 		/* Preemption is on, might recurse, so make it atomic. */
470 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
471 		    (void *)where) == NULL) {
472 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
473 			l->l_pfaillock = failed;
474 		}
475 	}
476 	LOCKSTAT_EXIT(lsflag);
477 	return true;
478 }
479 
480 /*
481  * Return true if preemption is explicitly disabled.
482  */
483 bool
484 kpreempt_disabled(void)
485 {
486 	const lwp_t *l = curlwp;
487 
488 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
489 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
490 }
491 
492 /*
493  * Disable kernel preemption.
494  */
495 void
496 kpreempt_disable(void)
497 {
498 
499 	KPREEMPT_DISABLE(curlwp);
500 }
501 
502 /*
503  * Reenable kernel preemption.
504  */
505 void
506 kpreempt_enable(void)
507 {
508 
509 	KPREEMPT_ENABLE(curlwp);
510 }
511 
512 /*
513  * Compute the amount of time during which the current lwp was running.
514  *
515  * - update l_rtime unless it's an idle lwp.
516  */
517 
518 void
519 updatertime(lwp_t *l, const struct bintime *now)
520 {
521 
522 	if (__predict_false(l->l_flag & LW_IDLE))
523 		return;
524 
525 	/* rtime += now - stime */
526 	bintime_add(&l->l_rtime, now);
527 	bintime_sub(&l->l_rtime, &l->l_stime);
528 }
529 
530 /*
531  * Select next LWP from the current CPU to run..
532  */
533 static inline lwp_t *
534 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
535 {
536 	lwp_t *newl;
537 
538 	/*
539 	 * Let sched_nextlwp() select the LWP to run the CPU next.
540 	 * If no LWP is runnable, select the idle LWP.
541 	 *
542 	 * Note that spc_lwplock might not necessary be held, and
543 	 * new thread would be unlocked after setting the LWP-lock.
544 	 */
545 	newl = sched_nextlwp();
546 	if (newl != NULL) {
547 		sched_dequeue(newl);
548 		KASSERT(lwp_locked(newl, spc->spc_mutex));
549 		newl->l_stat = LSONPROC;
550 		newl->l_cpu = ci;
551 		newl->l_pflag |= LP_RUNNING;
552 		lwp_setlock(newl, spc->spc_lwplock);
553 	} else {
554 		newl = ci->ci_data.cpu_idlelwp;
555 		newl->l_stat = LSONPROC;
556 		newl->l_pflag |= LP_RUNNING;
557 	}
558 
559 	/*
560 	 * Only clear want_resched if there are no pending (slow)
561 	 * software interrupts.
562 	 */
563 	ci->ci_want_resched = ci->ci_data.cpu_softints;
564 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
565 	spc->spc_curpriority = lwp_eprio(newl);
566 
567 	return newl;
568 }
569 
570 /*
571  * The machine independent parts of context switch.
572  *
573  * Returns 1 if another LWP was actually run.
574  */
575 int
576 mi_switch(lwp_t *l)
577 {
578 	struct cpu_info *ci;
579 	struct schedstate_percpu *spc;
580 	struct lwp *newl;
581 	int retval, oldspl;
582 	struct bintime bt;
583 	bool returning;
584 
585 	KASSERT(lwp_locked(l, NULL));
586 	KASSERT(kpreempt_disabled());
587 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
588 
589 	kstack_check_magic(l);
590 
591 	binuptime(&bt);
592 
593 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
594 	KASSERT(l->l_cpu == curcpu());
595 	ci = l->l_cpu;
596 	spc = &ci->ci_schedstate;
597 	returning = false;
598 	newl = NULL;
599 
600 	/*
601 	 * If we have been asked to switch to a specific LWP, then there
602 	 * is no need to inspect the run queues.  If a soft interrupt is
603 	 * blocking, then return to the interrupted thread without adjusting
604 	 * VM context or its start time: neither have been changed in order
605 	 * to take the interrupt.
606 	 */
607 	if (l->l_switchto != NULL) {
608 		if ((l->l_pflag & LP_INTR) != 0) {
609 			returning = true;
610 			softint_block(l);
611 			if ((l->l_pflag & LP_TIMEINTR) != 0)
612 				updatertime(l, &bt);
613 		}
614 		newl = l->l_switchto;
615 		l->l_switchto = NULL;
616 	}
617 #ifndef __HAVE_FAST_SOFTINTS
618 	else if (ci->ci_data.cpu_softints != 0) {
619 		/* There are pending soft interrupts, so pick one. */
620 		newl = softint_picklwp();
621 		newl->l_stat = LSONPROC;
622 		newl->l_pflag |= LP_RUNNING;
623 	}
624 #endif	/* !__HAVE_FAST_SOFTINTS */
625 
626 	/* Count time spent in current system call */
627 	if (!returning) {
628 		SYSCALL_TIME_SLEEP(l);
629 
630 		/*
631 		 * XXXSMP If we are using h/w performance counters,
632 		 * save context.
633 		 */
634 #if PERFCTRS
635 		if (PMC_ENABLED(l->l_proc)) {
636 			pmc_save_context(l->l_proc);
637 		}
638 #endif
639 		updatertime(l, &bt);
640 	}
641 
642 	/* Lock the runqueue */
643 	KASSERT(l->l_stat != LSRUN);
644 	mutex_spin_enter(spc->spc_mutex);
645 
646 	/*
647 	 * If on the CPU and we have gotten this far, then we must yield.
648 	 */
649 	if (l->l_stat == LSONPROC && l != newl) {
650 		KASSERT(lwp_locked(l, spc->spc_lwplock));
651 		if ((l->l_flag & LW_IDLE) == 0) {
652 			l->l_stat = LSRUN;
653 			lwp_setlock(l, spc->spc_mutex);
654 			sched_enqueue(l, true);
655 			/* Handle migration case */
656 			KASSERT(spc->spc_migrating == NULL);
657 			if (l->l_target_cpu !=  NULL) {
658 				spc->spc_migrating = l;
659 			}
660 		} else
661 			l->l_stat = LSIDL;
662 	}
663 
664 	/* Pick new LWP to run. */
665 	if (newl == NULL) {
666 		newl = nextlwp(ci, spc);
667 	}
668 
669 	/* Items that must be updated with the CPU locked. */
670 	if (!returning) {
671 		/* Update the new LWP's start time. */
672 		newl->l_stime = bt;
673 
674 		/*
675 		 * ci_curlwp changes when a fast soft interrupt occurs.
676 		 * We use cpu_onproc to keep track of which kernel or
677 		 * user thread is running 'underneath' the software
678 		 * interrupt.  This is important for time accounting,
679 		 * itimers and forcing user threads to preempt (aston).
680 		 */
681 		ci->ci_data.cpu_onproc = newl;
682 	}
683 
684 	/*
685 	 * Preemption related tasks.  Must be done with the current
686 	 * CPU locked.
687 	 */
688 	cpu_did_resched(l);
689 	l->l_dopreempt = 0;
690 	if (__predict_false(l->l_pfailaddr != 0)) {
691 		LOCKSTAT_FLAG(lsflag);
692 		LOCKSTAT_ENTER(lsflag);
693 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
694 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
695 		    1, l->l_pfailtime, l->l_pfailaddr);
696 		LOCKSTAT_EXIT(lsflag);
697 		l->l_pfailtime = 0;
698 		l->l_pfaillock = 0;
699 		l->l_pfailaddr = 0;
700 	}
701 
702 	if (l != newl) {
703 		struct lwp *prevlwp;
704 
705 		/* Release all locks, but leave the current LWP locked */
706 		if (l->l_mutex == spc->spc_mutex) {
707 			/*
708 			 * Drop spc_lwplock, if the current LWP has been moved
709 			 * to the run queue (it is now locked by spc_mutex).
710 			 */
711 			mutex_spin_exit(spc->spc_lwplock);
712 		} else {
713 			/*
714 			 * Otherwise, drop the spc_mutex, we are done with the
715 			 * run queues.
716 			 */
717 			mutex_spin_exit(spc->spc_mutex);
718 		}
719 
720 		/*
721 		 * Mark that context switch is going to be performed
722 		 * for this LWP, to protect it from being switched
723 		 * to on another CPU.
724 		 */
725 		KASSERT(l->l_ctxswtch == 0);
726 		l->l_ctxswtch = 1;
727 		l->l_ncsw++;
728 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
729 		l->l_pflag &= ~LP_RUNNING;
730 
731 		/*
732 		 * Increase the count of spin-mutexes before the release
733 		 * of the last lock - we must remain at IPL_SCHED during
734 		 * the context switch.
735 		 */
736 		oldspl = MUTEX_SPIN_OLDSPL(ci);
737 		ci->ci_mtx_count--;
738 		lwp_unlock(l);
739 
740 		/* Count the context switch on this CPU. */
741 		ci->ci_data.cpu_nswtch++;
742 
743 		/* Update status for lwpctl, if present. */
744 		if (l->l_lwpctl != NULL)
745 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
746 
747 		/*
748 		 * Save old VM context, unless a soft interrupt
749 		 * handler is blocking.
750 		 */
751 		if (!returning)
752 			pmap_deactivate(l);
753 
754 		/*
755 		 * We may need to spin-wait for if 'newl' is still
756 		 * context switching on another CPU.
757 		 */
758 		if (__predict_false(newl->l_ctxswtch != 0)) {
759 			u_int count;
760 			count = SPINLOCK_BACKOFF_MIN;
761 			while (newl->l_ctxswtch)
762 				SPINLOCK_BACKOFF(count);
763 		}
764 
765 		/* Switch to the new LWP.. */
766 		prevlwp = cpu_switchto(l, newl, returning);
767 		ci = curcpu();
768 
769 		/*
770 		 * Switched away - we have new curlwp.
771 		 * Restore VM context and IPL.
772 		 */
773 		pmap_activate(l);
774 		uvm_emap_switch(l);
775 
776 		if (prevlwp != NULL) {
777 			/* Normalize the count of the spin-mutexes */
778 			ci->ci_mtx_count++;
779 			/* Unmark the state of context switch */
780 			membar_exit();
781 			prevlwp->l_ctxswtch = 0;
782 		}
783 
784 		/* Update status for lwpctl, if present. */
785 		if (l->l_lwpctl != NULL) {
786 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
787 			l->l_lwpctl->lc_pctr++;
788 		}
789 
790 		KASSERT(l->l_cpu == ci);
791 		splx(oldspl);
792 		retval = 1;
793 	} else {
794 		/* Nothing to do - just unlock and return. */
795 		mutex_spin_exit(spc->spc_mutex);
796 		lwp_unlock(l);
797 		retval = 0;
798 	}
799 
800 	KASSERT(l == curlwp);
801 	KASSERT(l->l_stat == LSONPROC);
802 
803 	/*
804 	 * XXXSMP If we are using h/w performance counters, restore context.
805 	 * XXXSMP preemption problem.
806 	 */
807 #if PERFCTRS
808 	if (PMC_ENABLED(l->l_proc)) {
809 		pmc_restore_context(l->l_proc);
810 	}
811 #endif
812 	SYSCALL_TIME_WAKEUP(l);
813 	LOCKDEBUG_BARRIER(NULL, 1);
814 
815 	return retval;
816 }
817 
818 /*
819  * The machine independent parts of context switch to oblivion.
820  * Does not return.  Call with the LWP unlocked.
821  */
822 void
823 lwp_exit_switchaway(lwp_t *l)
824 {
825 	struct cpu_info *ci;
826 	struct lwp *newl;
827 	struct bintime bt;
828 
829 	ci = l->l_cpu;
830 
831 	KASSERT(kpreempt_disabled());
832 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
833 	KASSERT(ci == curcpu());
834 	LOCKDEBUG_BARRIER(NULL, 0);
835 
836 	kstack_check_magic(l);
837 
838 	/* Count time spent in current system call */
839 	SYSCALL_TIME_SLEEP(l);
840 	binuptime(&bt);
841 	updatertime(l, &bt);
842 
843 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
844 	(void)splsched();
845 
846 	/*
847 	 * Let sched_nextlwp() select the LWP to run the CPU next.
848 	 * If no LWP is runnable, select the idle LWP.
849 	 *
850 	 * Note that spc_lwplock might not necessary be held, and
851 	 * new thread would be unlocked after setting the LWP-lock.
852 	 */
853 	spc_lock(ci);
854 #ifndef __HAVE_FAST_SOFTINTS
855 	if (ci->ci_data.cpu_softints != 0) {
856 		/* There are pending soft interrupts, so pick one. */
857 		newl = softint_picklwp();
858 		newl->l_stat = LSONPROC;
859 		newl->l_pflag |= LP_RUNNING;
860 	} else
861 #endif	/* !__HAVE_FAST_SOFTINTS */
862 	{
863 		newl = nextlwp(ci, &ci->ci_schedstate);
864 	}
865 
866 	/* Update the new LWP's start time. */
867 	newl->l_stime = bt;
868 	l->l_pflag &= ~LP_RUNNING;
869 
870 	/*
871 	 * ci_curlwp changes when a fast soft interrupt occurs.
872 	 * We use cpu_onproc to keep track of which kernel or
873 	 * user thread is running 'underneath' the software
874 	 * interrupt.  This is important for time accounting,
875 	 * itimers and forcing user threads to preempt (aston).
876 	 */
877 	ci->ci_data.cpu_onproc = newl;
878 
879 	/*
880 	 * Preemption related tasks.  Must be done with the current
881 	 * CPU locked.
882 	 */
883 	cpu_did_resched(l);
884 
885 	/* Unlock the run queue. */
886 	spc_unlock(ci);
887 
888 	/* Count the context switch on this CPU. */
889 	ci->ci_data.cpu_nswtch++;
890 
891 	/* Update status for lwpctl, if present. */
892 	if (l->l_lwpctl != NULL)
893 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
894 
895 	/*
896 	 * We may need to spin-wait for if 'newl' is still
897 	 * context switching on another CPU.
898 	 */
899 	if (__predict_false(newl->l_ctxswtch != 0)) {
900 		u_int count;
901 		count = SPINLOCK_BACKOFF_MIN;
902 		while (newl->l_ctxswtch)
903 			SPINLOCK_BACKOFF(count);
904 	}
905 
906 	/* Switch to the new LWP.. */
907 	(void)cpu_switchto(NULL, newl, false);
908 
909 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
910 	/* NOTREACHED */
911 }
912 
913 /*
914  * setrunnable: change LWP state to be runnable, placing it on the run queue.
915  *
916  * Call with the process and LWP locked.  Will return with the LWP unlocked.
917  */
918 void
919 setrunnable(struct lwp *l)
920 {
921 	struct proc *p = l->l_proc;
922 	struct cpu_info *ci;
923 
924 	KASSERT((l->l_flag & LW_IDLE) == 0);
925 	KASSERT(mutex_owned(p->p_lock));
926 	KASSERT(lwp_locked(l, NULL));
927 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
928 
929 	switch (l->l_stat) {
930 	case LSSTOP:
931 		/*
932 		 * If we're being traced (possibly because someone attached us
933 		 * while we were stopped), check for a signal from the debugger.
934 		 */
935 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
936 			signotify(l);
937 		p->p_nrlwps++;
938 		break;
939 	case LSSUSPENDED:
940 		l->l_flag &= ~LW_WSUSPEND;
941 		p->p_nrlwps++;
942 		cv_broadcast(&p->p_lwpcv);
943 		break;
944 	case LSSLEEP:
945 		KASSERT(l->l_wchan != NULL);
946 		break;
947 	default:
948 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
949 	}
950 
951 #ifdef KERN_SA
952 	if (l->l_proc->p_sa)
953 		sa_awaken(l);
954 #endif /* KERN_SA */
955 
956 	/*
957 	 * If the LWP was sleeping interruptably, then it's OK to start it
958 	 * again.  If not, mark it as still sleeping.
959 	 */
960 	if (l->l_wchan != NULL) {
961 		l->l_stat = LSSLEEP;
962 		/* lwp_unsleep() will release the lock. */
963 		lwp_unsleep(l, true);
964 		return;
965 	}
966 
967 	/*
968 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
969 	 * about to call mi_switch(), in which case it will yield.
970 	 */
971 	if ((l->l_pflag & LP_RUNNING) != 0) {
972 		l->l_stat = LSONPROC;
973 		l->l_slptime = 0;
974 		lwp_unlock(l);
975 		return;
976 	}
977 
978 	/*
979 	 * Look for a CPU to run.
980 	 * Set the LWP runnable.
981 	 */
982 	ci = sched_takecpu(l);
983 	l->l_cpu = ci;
984 	spc_lock(ci);
985 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
986 	sched_setrunnable(l);
987 	l->l_stat = LSRUN;
988 	l->l_slptime = 0;
989 
990 	sched_enqueue(l, false);
991 	resched_cpu(l);
992 	lwp_unlock(l);
993 }
994 
995 /*
996  * suspendsched:
997  *
998  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
999  */
1000 void
1001 suspendsched(void)
1002 {
1003 	CPU_INFO_ITERATOR cii;
1004 	struct cpu_info *ci;
1005 	struct lwp *l;
1006 	struct proc *p;
1007 
1008 	/*
1009 	 * We do this by process in order not to violate the locking rules.
1010 	 */
1011 	mutex_enter(proc_lock);
1012 	PROCLIST_FOREACH(p, &allproc) {
1013 		if ((p->p_flag & PK_MARKER) != 0)
1014 			continue;
1015 
1016 		mutex_enter(p->p_lock);
1017 		if ((p->p_flag & PK_SYSTEM) != 0) {
1018 			mutex_exit(p->p_lock);
1019 			continue;
1020 		}
1021 
1022 		p->p_stat = SSTOP;
1023 
1024 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1025 			if (l == curlwp)
1026 				continue;
1027 
1028 			lwp_lock(l);
1029 
1030 			/*
1031 			 * Set L_WREBOOT so that the LWP will suspend itself
1032 			 * when it tries to return to user mode.  We want to
1033 			 * try and get to get as many LWPs as possible to
1034 			 * the user / kernel boundary, so that they will
1035 			 * release any locks that they hold.
1036 			 */
1037 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1038 
1039 			if (l->l_stat == LSSLEEP &&
1040 			    (l->l_flag & LW_SINTR) != 0) {
1041 				/* setrunnable() will release the lock. */
1042 				setrunnable(l);
1043 				continue;
1044 			}
1045 
1046 			lwp_unlock(l);
1047 		}
1048 
1049 		mutex_exit(p->p_lock);
1050 	}
1051 	mutex_exit(proc_lock);
1052 
1053 	/*
1054 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
1055 	 * They'll trap into the kernel and suspend themselves in userret().
1056 	 */
1057 	for (CPU_INFO_FOREACH(cii, ci)) {
1058 		spc_lock(ci);
1059 		cpu_need_resched(ci, RESCHED_IMMED);
1060 		spc_unlock(ci);
1061 	}
1062 }
1063 
1064 /*
1065  * sched_unsleep:
1066  *
1067  *	The is called when the LWP has not been awoken normally but instead
1068  *	interrupted: for example, if the sleep timed out.  Because of this,
1069  *	it's not a valid action for running or idle LWPs.
1070  */
1071 static void
1072 sched_unsleep(struct lwp *l, bool cleanup)
1073 {
1074 
1075 	lwp_unlock(l);
1076 	panic("sched_unsleep");
1077 }
1078 
1079 static void
1080 resched_cpu(struct lwp *l)
1081 {
1082 	struct cpu_info *ci = ci = l->l_cpu;
1083 
1084 	KASSERT(lwp_locked(l, NULL));
1085 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1086 		cpu_need_resched(ci, 0);
1087 }
1088 
1089 static void
1090 sched_changepri(struct lwp *l, pri_t pri)
1091 {
1092 
1093 	KASSERT(lwp_locked(l, NULL));
1094 
1095 	if (l->l_stat == LSRUN) {
1096 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1097 		sched_dequeue(l);
1098 		l->l_priority = pri;
1099 		sched_enqueue(l, false);
1100 	} else {
1101 		l->l_priority = pri;
1102 	}
1103 	resched_cpu(l);
1104 }
1105 
1106 static void
1107 sched_lendpri(struct lwp *l, pri_t pri)
1108 {
1109 
1110 	KASSERT(lwp_locked(l, NULL));
1111 
1112 	if (l->l_stat == LSRUN) {
1113 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1114 		sched_dequeue(l);
1115 		l->l_inheritedprio = pri;
1116 		sched_enqueue(l, false);
1117 	} else {
1118 		l->l_inheritedprio = pri;
1119 	}
1120 	resched_cpu(l);
1121 }
1122 
1123 struct lwp *
1124 syncobj_noowner(wchan_t wchan)
1125 {
1126 
1127 	return NULL;
1128 }
1129 
1130 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1131 const fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;
1132 
1133 /*
1134  * sched_pstats:
1135  *
1136  * Update process statistics and check CPU resource allocation.
1137  * Call scheduler-specific hook to eventually adjust process/LWP
1138  * priorities.
1139  */
1140 void
1141 sched_pstats(void *arg)
1142 {
1143 	const int clkhz = (stathz != 0 ? stathz : hz);
1144 	static bool backwards;
1145 	struct rlimit *rlim;
1146 	struct lwp *l;
1147 	struct proc *p;
1148 	long runtm;
1149 	fixpt_t lpctcpu;
1150 	u_int lcpticks;
1151 	int sig;
1152 
1153 	sched_pstats_ticks++;
1154 
1155 	mutex_enter(proc_lock);
1156 	PROCLIST_FOREACH(p, &allproc) {
1157 		if (__predict_false((p->p_flag & PK_MARKER) != 0))
1158 			continue;
1159 
1160 		/* Increment sleep time (if sleeping), ignore overflow. */
1161 		mutex_enter(p->p_lock);
1162 		runtm = p->p_rtime.sec;
1163 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1164 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
1165 				continue;
1166 			lwp_lock(l);
1167 			runtm += l->l_rtime.sec;
1168 			l->l_swtime++;
1169 			sched_lwp_stats(l);
1170 			lwp_unlock(l);
1171 
1172 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1173 			if (l->l_slptime != 0)
1174 				continue;
1175 
1176 			lpctcpu = l->l_pctcpu;
1177 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1178 			lpctcpu += ((FSCALE - ccpu) *
1179 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1180 			l->l_pctcpu = lpctcpu;
1181 		}
1182 		/* Calculating p_pctcpu only for ps(1) */
1183 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1184 
1185 		/*
1186 		 * Check if the process exceeds its CPU resource allocation.
1187 		 * If over max, kill it.
1188 		 */
1189 		rlim = &p->p_rlimit[RLIMIT_CPU];
1190 		sig = 0;
1191 		if (__predict_false(runtm >= rlim->rlim_cur)) {
1192 			if (runtm >= rlim->rlim_max)
1193 				sig = SIGKILL;
1194 			else {
1195 				sig = SIGXCPU;
1196 				if (rlim->rlim_cur < rlim->rlim_max)
1197 					rlim->rlim_cur += 5;
1198 			}
1199 		}
1200 		mutex_exit(p->p_lock);
1201 		if (__predict_false(runtm < 0)) {
1202 			if (!backwards) {
1203 				backwards = true;
1204 				printf("WARNING: negative runtime; "
1205 				    "monotonic clock has gone backwards\n");
1206 			}
1207 		} else if (__predict_false(sig)) {
1208 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
1209 			psignal(p, sig);
1210 		}
1211 	}
1212 	mutex_exit(proc_lock);
1213 	uvm_meter();
1214 	cv_broadcast(&lbolt);
1215 	callout_schedule(&sched_pstats_ch, hz);
1216 }
1217