xref: /netbsd-src/sys/kern/kern_synch.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: kern_synch.c,v 1.206 2007/11/10 17:45:10 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10  * Daniel Sieger.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the NetBSD
23  *	Foundation, Inc. and its contributors.
24  * 4. Neither the name of The NetBSD Foundation nor the names of its
25  *    contributors may be used to endorse or promote products derived
26  *    from this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 /*-
42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
43  *	The Regents of the University of California.  All rights reserved.
44  * (c) UNIX System Laboratories, Inc.
45  * All or some portions of this file are derived from material licensed
46  * to the University of California by American Telephone and Telegraph
47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48  * the permission of UNIX System Laboratories, Inc.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
75  */
76 
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.206 2007/11/10 17:45:10 ad Exp $");
79 
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84 
85 #define	__MUTEX_PRIVATE
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #if defined(PERFCTRS)
92 #include <sys/pmc.h>
93 #endif
94 #include <sys/cpu.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/syscall_stats.h>
98 #include <sys/sleepq.h>
99 #include <sys/lockdebug.h>
100 #include <sys/evcnt.h>
101 #include <sys/intr.h>
102 
103 #include <uvm/uvm_extern.h>
104 
105 callout_t sched_pstats_ch;
106 unsigned int sched_pstats_ticks;
107 
108 kcondvar_t	lbolt;			/* once a second sleep address */
109 
110 static void	sched_unsleep(struct lwp *);
111 static void	sched_changepri(struct lwp *, pri_t);
112 static void	sched_lendpri(struct lwp *, pri_t);
113 
114 syncobj_t sleep_syncobj = {
115 	SOBJ_SLEEPQ_SORTED,
116 	sleepq_unsleep,
117 	sleepq_changepri,
118 	sleepq_lendpri,
119 	syncobj_noowner,
120 };
121 
122 syncobj_t sched_syncobj = {
123 	SOBJ_SLEEPQ_SORTED,
124 	sched_unsleep,
125 	sched_changepri,
126 	sched_lendpri,
127 	syncobj_noowner,
128 };
129 
130 /*
131  * During autoconfiguration or after a panic, a sleep will simply lower the
132  * priority briefly to allow interrupts, then return.  The priority to be
133  * used (safepri) is machine-dependent, thus this value is initialized and
134  * maintained in the machine-dependent layers.  This priority will typically
135  * be 0, or the lowest priority that is safe for use on the interrupt stack;
136  * it can be made higher to block network software interrupts after panics.
137  */
138 int	safepri;
139 
140 /*
141  * OBSOLETE INTERFACE
142  *
143  * General sleep call.  Suspends the current process until a wakeup is
144  * performed on the specified identifier.  The process will then be made
145  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
146  * means no timeout).  If pri includes PCATCH flag, signals are checked
147  * before and after sleeping, else signals are not checked.  Returns 0 if
148  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
149  * signal needs to be delivered, ERESTART is returned if the current system
150  * call should be restarted if possible, and EINTR is returned if the system
151  * call should be interrupted by the signal (return EINTR).
152  *
153  * The interlock is held until we are on a sleep queue. The interlock will
154  * be locked before returning back to the caller unless the PNORELOCK flag
155  * is specified, in which case the interlock will always be unlocked upon
156  * return.
157  */
158 int
159 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
160 	volatile struct simplelock *interlock)
161 {
162 	struct lwp *l = curlwp;
163 	sleepq_t *sq;
164 	int error;
165 
166 	KASSERT((l->l_pflag & LP_INTR) == 0);
167 
168 	if (sleepq_dontsleep(l)) {
169 		(void)sleepq_abort(NULL, 0);
170 		if ((priority & PNORELOCK) != 0)
171 			simple_unlock(interlock);
172 		return 0;
173 	}
174 
175 	l->l_kpriority = true;
176 	sq = sleeptab_lookup(&sleeptab, ident);
177 	sleepq_enter(sq, l);
178 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
179 
180 	if (interlock != NULL) {
181 		KASSERT(simple_lock_held(interlock));
182 		simple_unlock(interlock);
183 	}
184 
185 	error = sleepq_block(timo, priority & PCATCH);
186 
187 	if (interlock != NULL && (priority & PNORELOCK) == 0)
188 		simple_lock(interlock);
189 
190 	return error;
191 }
192 
193 int
194 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
195 	kmutex_t *mtx)
196 {
197 	struct lwp *l = curlwp;
198 	sleepq_t *sq;
199 	int error;
200 
201 	KASSERT((l->l_pflag & LP_INTR) == 0);
202 
203 	if (sleepq_dontsleep(l)) {
204 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
205 		return 0;
206 	}
207 
208 	l->l_kpriority = true;
209 	sq = sleeptab_lookup(&sleeptab, ident);
210 	sleepq_enter(sq, l);
211 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
212 	mutex_exit(mtx);
213 	error = sleepq_block(timo, priority & PCATCH);
214 
215 	if ((priority & PNORELOCK) == 0)
216 		mutex_enter(mtx);
217 
218 	return error;
219 }
220 
221 /*
222  * General sleep call for situations where a wake-up is not expected.
223  */
224 int
225 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
226 {
227 	struct lwp *l = curlwp;
228 	sleepq_t *sq;
229 	int error;
230 
231 	if (sleepq_dontsleep(l))
232 		return sleepq_abort(NULL, 0);
233 
234 	if (mtx != NULL)
235 		mutex_exit(mtx);
236 	l->l_kpriority = true;
237 	sq = sleeptab_lookup(&sleeptab, l);
238 	sleepq_enter(sq, l);
239 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
240 	error = sleepq_block(timo, intr);
241 	if (mtx != NULL)
242 		mutex_enter(mtx);
243 
244 	return error;
245 }
246 
247 /*
248  * OBSOLETE INTERFACE
249  *
250  * Make all processes sleeping on the specified identifier runnable.
251  */
252 void
253 wakeup(wchan_t ident)
254 {
255 	sleepq_t *sq;
256 
257 	if (cold)
258 		return;
259 
260 	sq = sleeptab_lookup(&sleeptab, ident);
261 	sleepq_wake(sq, ident, (u_int)-1);
262 }
263 
264 /*
265  * OBSOLETE INTERFACE
266  *
267  * Make the highest priority process first in line on the specified
268  * identifier runnable.
269  */
270 void
271 wakeup_one(wchan_t ident)
272 {
273 	sleepq_t *sq;
274 
275 	if (cold)
276 		return;
277 
278 	sq = sleeptab_lookup(&sleeptab, ident);
279 	sleepq_wake(sq, ident, 1);
280 }
281 
282 
283 /*
284  * General yield call.  Puts the current process back on its run queue and
285  * performs a voluntary context switch.  Should only be called when the
286  * current process explicitly requests it (eg sched_yield(2)).
287  */
288 void
289 yield(void)
290 {
291 	struct lwp *l = curlwp;
292 
293 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
294 	lwp_lock(l);
295 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
296 	KASSERT(l->l_stat == LSONPROC);
297 	l->l_kpriority = false;
298 	if (l->l_class == SCHED_OTHER) {
299 		/*
300 		 * Only for timeshared threads.  It will be reset
301 		 * by the scheduler in due course.
302 		 */
303 		l->l_priority = 0;
304 	}
305 	(void)mi_switch(l);
306 	KERNEL_LOCK(l->l_biglocks, l);
307 }
308 
309 /*
310  * General preemption call.  Puts the current process back on its run queue
311  * and performs an involuntary context switch.
312  */
313 void
314 preempt(void)
315 {
316 	struct lwp *l = curlwp;
317 
318 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
319 	lwp_lock(l);
320 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
321 	KASSERT(l->l_stat == LSONPROC);
322 	l->l_kpriority = false;
323 	l->l_nivcsw++;
324 	(void)mi_switch(l);
325 	KERNEL_LOCK(l->l_biglocks, l);
326 }
327 
328 /*
329  * Compute the amount of time during which the current lwp was running.
330  *
331  * - update l_rtime unless it's an idle lwp.
332  */
333 
334 void
335 updatertime(lwp_t *l, const struct timeval *tv)
336 {
337 	long s, u;
338 
339 	if ((l->l_flag & LW_IDLE) != 0)
340 		return;
341 
342 	u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
343 	s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
344 	if (u < 0) {
345 		u += 1000000;
346 		s--;
347 	} else if (u >= 1000000) {
348 		u -= 1000000;
349 		s++;
350 	}
351 	l->l_rtime.tv_usec = u;
352 	l->l_rtime.tv_sec = s;
353 }
354 
355 /*
356  * The machine independent parts of context switch.
357  *
358  * Returns 1 if another LWP was actually run.
359  */
360 int
361 mi_switch(lwp_t *l)
362 {
363 	struct schedstate_percpu *spc;
364 	struct lwp *newl;
365 	int retval, oldspl;
366 	struct cpu_info *ci;
367 	struct timeval tv;
368 	bool returning;
369 
370 	KASSERT(lwp_locked(l, NULL));
371 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
372 
373 #ifdef KSTACK_CHECK_MAGIC
374 	kstack_check_magic(l);
375 #endif
376 
377 	microtime(&tv);
378 
379 	/*
380 	 * It's safe to read the per CPU schedstate unlocked here, as all we
381 	 * are after is the run time and that's guarenteed to have been last
382 	 * updated by this CPU.
383 	 */
384 	ci = l->l_cpu;
385 	KDASSERT(ci == curcpu());
386 
387 	/*
388 	 * Process is about to yield the CPU; clear the appropriate
389 	 * scheduling flags.
390 	 */
391 	spc = &ci->ci_schedstate;
392 	returning = false;
393 	newl = NULL;
394 
395 	/*
396 	 * If we have been asked to switch to a specific LWP, then there
397 	 * is no need to inspect the run queues.  If a soft interrupt is
398 	 * blocking, then return to the interrupted thread without adjusting
399 	 * VM context or its start time: neither have been changed in order
400 	 * to take the interrupt.
401 	 */
402 	if (l->l_switchto != NULL) {
403 		if ((l->l_pflag & LP_INTR) != 0) {
404 			returning = true;
405 			softint_block(l);
406 			if ((l->l_flag & LW_TIMEINTR) != 0)
407 				updatertime(l, &tv);
408 		}
409 		newl = l->l_switchto;
410 		l->l_switchto = NULL;
411 	}
412 #ifndef __HAVE_FAST_SOFTINTS
413 	else if (ci->ci_data.cpu_softints != 0) {
414 		/* There are pending soft interrupts, so pick one. */
415 		newl = softint_picklwp();
416 		newl->l_stat = LSONPROC;
417 		newl->l_flag |= LW_RUNNING;
418 	}
419 #endif	/* !__HAVE_FAST_SOFTINTS */
420 
421 	/* Count time spent in current system call */
422 	if (!returning) {
423 		SYSCALL_TIME_SLEEP(l);
424 
425 		/*
426 		 * XXXSMP If we are using h/w performance counters,
427 		 * save context.
428 		 */
429 #if PERFCTRS
430 		if (PMC_ENABLED(l->l_proc)) {
431 			pmc_save_context(l->l_proc);
432 		}
433 #endif
434 		updatertime(l, &tv);
435 	}
436 
437 	/*
438 	 * If on the CPU and we have gotten this far, then we must yield.
439 	 */
440 	mutex_spin_enter(spc->spc_mutex);
441 	KASSERT(l->l_stat != LSRUN);
442 	if (l->l_stat == LSONPROC && l != newl) {
443 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
444 		if ((l->l_flag & LW_IDLE) == 0) {
445 			l->l_stat = LSRUN;
446 			lwp_setlock(l, spc->spc_mutex);
447 			sched_enqueue(l, true);
448 		} else
449 			l->l_stat = LSIDL;
450 	}
451 
452 	/*
453 	 * Let sched_nextlwp() select the LWP to run the CPU next.
454 	 * If no LWP is runnable, switch to the idle LWP.
455 	 * Note that spc_lwplock might not necessary be held.
456 	 */
457 	if (newl == NULL) {
458 		newl = sched_nextlwp();
459 		if (newl != NULL) {
460 			sched_dequeue(newl);
461 			KASSERT(lwp_locked(newl, spc->spc_mutex));
462 			newl->l_stat = LSONPROC;
463 			newl->l_cpu = ci;
464 			newl->l_flag |= LW_RUNNING;
465 			lwp_setlock(newl, &spc->spc_lwplock);
466 		} else {
467 			newl = ci->ci_data.cpu_idlelwp;
468 			newl->l_stat = LSONPROC;
469 			newl->l_flag |= LW_RUNNING;
470 		}
471 		/*
472 		 * Only clear want_resched if there are no
473 		 * pending (slow) software interrupts.
474 		 */
475 		ci->ci_want_resched = ci->ci_data.cpu_softints;
476 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
477 		spc->spc_curpriority = lwp_eprio(newl);
478 	}
479 
480 	/* Items that must be updated with the CPU locked. */
481 	if (!returning) {
482 		/* Update the new LWP's start time. */
483 		newl->l_stime = tv;
484 
485 		/*
486 		 * ci_curlwp changes when a fast soft interrupt occurs.
487 		 * We use cpu_onproc to keep track of which kernel or
488 		 * user thread is running 'underneath' the software
489 		 * interrupt.  This is important for time accounting,
490 		 * itimers and forcing user threads to preempt (aston).
491 		 */
492 		ci->ci_data.cpu_onproc = newl;
493 	}
494 
495 	if (l != newl) {
496 		struct lwp *prevlwp;
497 
498 		/*
499 		 * If the old LWP has been moved to a run queue above,
500 		 * drop the general purpose LWP lock: it's now locked
501 		 * by the scheduler lock.
502 		 *
503 		 * Otherwise, drop the scheduler lock.  We're done with
504 		 * the run queues for now.
505 		 */
506 		if (l->l_mutex == spc->spc_mutex) {
507 			mutex_spin_exit(&spc->spc_lwplock);
508 		} else {
509 			mutex_spin_exit(spc->spc_mutex);
510 		}
511 
512 		/* Unlocked, but for statistics only. */
513 		uvmexp.swtch++;
514 
515 		/*
516 		 * Save old VM context, unless a soft interrupt
517 		 * handler is blocking.
518 		 */
519 		if (!returning)
520 			pmap_deactivate(l);
521 
522 		/* Switch to the new LWP.. */
523 		l->l_ncsw++;
524 		l->l_flag &= ~LW_RUNNING;
525 		oldspl = MUTEX_SPIN_OLDSPL(ci);
526 		prevlwp = cpu_switchto(l, newl, returning);
527 		/*
528 		 * .. we have switched away and are now back so we must
529 		 * be the new curlwp.  prevlwp is who we replaced.
530 		 */
531 		if (prevlwp != NULL) {
532 			curcpu()->ci_mtx_oldspl = oldspl;
533 			lwp_unlock(prevlwp);
534 		} else {
535 			splx(oldspl);
536 		}
537 
538 		/* Restore VM context. */
539 		pmap_activate(l);
540 		retval = 1;
541 	} else {
542 		/* Nothing to do - just unlock and return. */
543 		mutex_spin_exit(spc->spc_mutex);
544 		lwp_unlock(l);
545 		retval = 0;
546 	}
547 
548 	KASSERT(l == curlwp);
549 	KASSERT(l->l_stat == LSONPROC);
550 	KASSERT(l->l_cpu == curcpu());
551 
552 	/*
553 	 * XXXSMP If we are using h/w performance counters, restore context.
554 	 */
555 #if PERFCTRS
556 	if (PMC_ENABLED(l->l_proc)) {
557 		pmc_restore_context(l->l_proc);
558 	}
559 #endif
560 
561 	/*
562 	 * We're running again; record our new start time.  We might
563 	 * be running on a new CPU now, so don't use the cached
564 	 * schedstate_percpu pointer.
565 	 */
566 	SYSCALL_TIME_WAKEUP(l);
567 	KASSERT(curlwp == l);
568 	KDASSERT(l->l_cpu == curcpu());
569 	LOCKDEBUG_BARRIER(NULL, 1);
570 
571 	return retval;
572 }
573 
574 /*
575  * Change process state to be runnable, placing it on the run queue if it is
576  * in memory, and awakening the swapper if it isn't in memory.
577  *
578  * Call with the process and LWP locked.  Will return with the LWP unlocked.
579  */
580 void
581 setrunnable(struct lwp *l)
582 {
583 	struct proc *p = l->l_proc;
584 	struct cpu_info *ci;
585 	sigset_t *ss;
586 
587 	KASSERT((l->l_flag & LW_IDLE) == 0);
588 	KASSERT(mutex_owned(&p->p_smutex));
589 	KASSERT(lwp_locked(l, NULL));
590 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
591 
592 	switch (l->l_stat) {
593 	case LSSTOP:
594 		/*
595 		 * If we're being traced (possibly because someone attached us
596 		 * while we were stopped), check for a signal from the debugger.
597 		 */
598 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
599 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
600 				ss = &l->l_sigpend.sp_set;
601 			else
602 				ss = &p->p_sigpend.sp_set;
603 			sigaddset(ss, p->p_xstat);
604 			signotify(l);
605 		}
606 		p->p_nrlwps++;
607 		break;
608 	case LSSUSPENDED:
609 		l->l_flag &= ~LW_WSUSPEND;
610 		p->p_nrlwps++;
611 		cv_broadcast(&p->p_lwpcv);
612 		break;
613 	case LSSLEEP:
614 		KASSERT(l->l_wchan != NULL);
615 		break;
616 	default:
617 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
618 	}
619 
620 	/*
621 	 * If the LWP was sleeping interruptably, then it's OK to start it
622 	 * again.  If not, mark it as still sleeping.
623 	 */
624 	if (l->l_wchan != NULL) {
625 		l->l_stat = LSSLEEP;
626 		/* lwp_unsleep() will release the lock. */
627 		lwp_unsleep(l);
628 		return;
629 	}
630 
631 	/*
632 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
633 	 * about to call mi_switch(), in which case it will yield.
634 	 */
635 	if ((l->l_flag & LW_RUNNING) != 0) {
636 		l->l_stat = LSONPROC;
637 		l->l_slptime = 0;
638 		lwp_unlock(l);
639 		return;
640 	}
641 
642 	/*
643 	 * Look for a CPU to run.
644 	 * Set the LWP runnable.
645 	 */
646 	ci = sched_takecpu(l);
647 	l->l_cpu = ci;
648 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
649 		lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
650 		lwp_lock(l);
651 	}
652 	sched_setrunnable(l);
653 	l->l_stat = LSRUN;
654 	l->l_slptime = 0;
655 
656 	/*
657 	 * If thread is swapped out - wake the swapper to bring it back in.
658 	 * Otherwise, enter it into a run queue.
659 	 */
660 	if (l->l_flag & LW_INMEM) {
661 		sched_enqueue(l, false);
662 		resched_cpu(l);
663 		lwp_unlock(l);
664 	} else {
665 		lwp_unlock(l);
666 		uvm_kick_scheduler();
667 	}
668 }
669 
670 /*
671  * suspendsched:
672  *
673  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
674  */
675 void
676 suspendsched(void)
677 {
678 	CPU_INFO_ITERATOR cii;
679 	struct cpu_info *ci;
680 	struct lwp *l;
681 	struct proc *p;
682 
683 	/*
684 	 * We do this by process in order not to violate the locking rules.
685 	 */
686 	mutex_enter(&proclist_lock);
687 	PROCLIST_FOREACH(p, &allproc) {
688 		mutex_enter(&p->p_smutex);
689 
690 		if ((p->p_flag & PK_SYSTEM) != 0) {
691 			mutex_exit(&p->p_smutex);
692 			continue;
693 		}
694 
695 		p->p_stat = SSTOP;
696 
697 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
698 			if (l == curlwp)
699 				continue;
700 
701 			lwp_lock(l);
702 
703 			/*
704 			 * Set L_WREBOOT so that the LWP will suspend itself
705 			 * when it tries to return to user mode.  We want to
706 			 * try and get to get as many LWPs as possible to
707 			 * the user / kernel boundary, so that they will
708 			 * release any locks that they hold.
709 			 */
710 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
711 
712 			if (l->l_stat == LSSLEEP &&
713 			    (l->l_flag & LW_SINTR) != 0) {
714 				/* setrunnable() will release the lock. */
715 				setrunnable(l);
716 				continue;
717 			}
718 
719 			lwp_unlock(l);
720 		}
721 
722 		mutex_exit(&p->p_smutex);
723 	}
724 	mutex_exit(&proclist_lock);
725 
726 	/*
727 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
728 	 * They'll trap into the kernel and suspend themselves in userret().
729 	 */
730 	for (CPU_INFO_FOREACH(cii, ci)) {
731 		spc_lock(ci);
732 		cpu_need_resched(ci, RESCHED_IMMED);
733 		spc_unlock(ci);
734 	}
735 }
736 
737 /*
738  * sched_kpri:
739  *
740  *	Scale a priority level to a kernel priority level, usually
741  *	for an LWP that is about to sleep.
742  */
743 pri_t
744 sched_kpri(struct lwp *l)
745 {
746 	pri_t pri;
747 
748 #ifndef __HAVE_FAST_SOFTINTS
749 	/*
750 	 * Hack: if a user thread is being used to run a soft
751 	 * interrupt, we need to boost the priority here.
752 	 */
753 	if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
754 		return softint_kpri(l);
755 #endif
756 
757 	/*
758 	 * Scale user priorities (0 -> 63) up to kernel priorities
759 	 * in the range (64 -> 95).  This makes assumptions about
760 	 * the priority space and so should be kept in sync with
761 	 * param.h.
762 	 */
763 	if ((pri = l->l_priority) >= PRI_KERNEL)
764 		return pri;
765 	return (pri >> 1) + PRI_KERNEL;
766 }
767 
768 /*
769  * sched_unsleep:
770  *
771  *	The is called when the LWP has not been awoken normally but instead
772  *	interrupted: for example, if the sleep timed out.  Because of this,
773  *	it's not a valid action for running or idle LWPs.
774  */
775 static void
776 sched_unsleep(struct lwp *l)
777 {
778 
779 	lwp_unlock(l);
780 	panic("sched_unsleep");
781 }
782 
783 void
784 resched_cpu(struct lwp *l)
785 {
786 	struct cpu_info *ci;
787 
788 	/*
789 	 * XXXSMP
790 	 * Since l->l_cpu persists across a context switch,
791 	 * this gives us *very weak* processor affinity, in
792 	 * that we notify the CPU on which the process last
793 	 * ran that it should try to switch.
794 	 *
795 	 * This does not guarantee that the process will run on
796 	 * that processor next, because another processor might
797 	 * grab it the next time it performs a context switch.
798 	 *
799 	 * This also does not handle the case where its last
800 	 * CPU is running a higher-priority process, but every
801 	 * other CPU is running a lower-priority process.  There
802 	 * are ways to handle this situation, but they're not
803 	 * currently very pretty, and we also need to weigh the
804 	 * cost of moving a process from one CPU to another.
805 	 */
806 	ci = l->l_cpu;
807 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
808 		cpu_need_resched(ci, 0);
809 }
810 
811 static void
812 sched_changepri(struct lwp *l, pri_t pri)
813 {
814 
815 	KASSERT(lwp_locked(l, NULL));
816 
817 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
818 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
819 		sched_dequeue(l);
820 		l->l_priority = pri;
821 		sched_enqueue(l, false);
822 	} else {
823 		l->l_priority = pri;
824 	}
825 	resched_cpu(l);
826 }
827 
828 static void
829 sched_lendpri(struct lwp *l, pri_t pri)
830 {
831 
832 	KASSERT(lwp_locked(l, NULL));
833 
834 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
835 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
836 		sched_dequeue(l);
837 		l->l_inheritedprio = pri;
838 		sched_enqueue(l, false);
839 	} else {
840 		l->l_inheritedprio = pri;
841 	}
842 	resched_cpu(l);
843 }
844 
845 struct lwp *
846 syncobj_noowner(wchan_t wchan)
847 {
848 
849 	return NULL;
850 }
851 
852 
853 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
854 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
855 
856 /*
857  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
858  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
859  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
860  *
861  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
862  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
863  *
864  * If you dont want to bother with the faster/more-accurate formula, you
865  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
866  * (more general) method of calculating the %age of CPU used by a process.
867  */
868 #define	CCPU_SHIFT	(FSHIFT + 1)
869 
870 /*
871  * sched_pstats:
872  *
873  * Update process statistics and check CPU resource allocation.
874  * Call scheduler-specific hook to eventually adjust process/LWP
875  * priorities.
876  */
877 /* ARGSUSED */
878 void
879 sched_pstats(void *arg)
880 {
881 	struct rlimit *rlim;
882 	struct lwp *l;
883 	struct proc *p;
884 	int sig, clkhz;
885 	long runtm;
886 
887 	sched_pstats_ticks++;
888 
889 	mutex_enter(&proclist_mutex);
890 	PROCLIST_FOREACH(p, &allproc) {
891 		/*
892 		 * Increment time in/out of memory and sleep time (if
893 		 * sleeping).  We ignore overflow; with 16-bit int's
894 		 * (remember them?) overflow takes 45 days.
895 		 */
896 		mutex_enter(&p->p_smutex);
897 		mutex_spin_enter(&p->p_stmutex);
898 		runtm = p->p_rtime.tv_sec;
899 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
900 			if ((l->l_flag & LW_IDLE) != 0)
901 				continue;
902 			lwp_lock(l);
903 			runtm += l->l_rtime.tv_sec;
904 			l->l_swtime++;
905 			sched_pstats_hook(l);
906 			lwp_unlock(l);
907 
908 			/*
909 			 * p_pctcpu is only for ps.
910 			 */
911 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
912 			if (l->l_slptime < 1) {
913 				clkhz = stathz != 0 ? stathz : hz;
914 #if	(FSHIFT >= CCPU_SHIFT)
915 				l->l_pctcpu += (clkhz == 100) ?
916 				    ((fixpt_t)l->l_cpticks) <<
917 				        (FSHIFT - CCPU_SHIFT) :
918 				    100 * (((fixpt_t) p->p_cpticks)
919 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
920 #else
921 				l->l_pctcpu += ((FSCALE - ccpu) *
922 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
923 #endif
924 				l->l_cpticks = 0;
925 			}
926 		}
927 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
928 		mutex_spin_exit(&p->p_stmutex);
929 
930 		/*
931 		 * Check if the process exceeds its CPU resource allocation.
932 		 * If over max, kill it.
933 		 */
934 		rlim = &p->p_rlimit[RLIMIT_CPU];
935 		sig = 0;
936 		if (runtm >= rlim->rlim_cur) {
937 			if (runtm >= rlim->rlim_max)
938 				sig = SIGKILL;
939 			else {
940 				sig = SIGXCPU;
941 				if (rlim->rlim_cur < rlim->rlim_max)
942 					rlim->rlim_cur += 5;
943 			}
944 		}
945 		mutex_exit(&p->p_smutex);
946 		if (sig) {
947 			psignal(p, sig);
948 		}
949 	}
950 	mutex_exit(&proclist_mutex);
951 	uvm_meter();
952 	cv_wakeup(&lbolt);
953 	callout_schedule(&sched_pstats_ch, hz);
954 }
955 
956 void
957 sched_init(void)
958 {
959 
960 	callout_init(&sched_pstats_ch, 0);
961 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
962 	sched_setup();
963 	sched_pstats(NULL);
964 }
965