1 /* $NetBSD: kern_synch.c,v 1.206 2007/11/10 17:45:10 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and 10 * Daniel Sieger. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the NetBSD 23 * Foundation, Inc. and its contributors. 24 * 4. Neither the name of The NetBSD Foundation nor the names of its 25 * contributors may be used to endorse or promote products derived 26 * from this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGE. 39 */ 40 41 /*- 42 * Copyright (c) 1982, 1986, 1990, 1991, 1993 43 * The Regents of the University of California. All rights reserved. 44 * (c) UNIX System Laboratories, Inc. 45 * All or some portions of this file are derived from material licensed 46 * to the University of California by American Telephone and Telegraph 47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 48 * the permission of UNIX System Laboratories, Inc. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 75 */ 76 77 #include <sys/cdefs.h> 78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.206 2007/11/10 17:45:10 ad Exp $"); 79 80 #include "opt_kstack.h" 81 #include "opt_lockdebug.h" 82 #include "opt_multiprocessor.h" 83 #include "opt_perfctrs.h" 84 85 #define __MUTEX_PRIVATE 86 87 #include <sys/param.h> 88 #include <sys/systm.h> 89 #include <sys/proc.h> 90 #include <sys/kernel.h> 91 #if defined(PERFCTRS) 92 #include <sys/pmc.h> 93 #endif 94 #include <sys/cpu.h> 95 #include <sys/resourcevar.h> 96 #include <sys/sched.h> 97 #include <sys/syscall_stats.h> 98 #include <sys/sleepq.h> 99 #include <sys/lockdebug.h> 100 #include <sys/evcnt.h> 101 #include <sys/intr.h> 102 103 #include <uvm/uvm_extern.h> 104 105 callout_t sched_pstats_ch; 106 unsigned int sched_pstats_ticks; 107 108 kcondvar_t lbolt; /* once a second sleep address */ 109 110 static void sched_unsleep(struct lwp *); 111 static void sched_changepri(struct lwp *, pri_t); 112 static void sched_lendpri(struct lwp *, pri_t); 113 114 syncobj_t sleep_syncobj = { 115 SOBJ_SLEEPQ_SORTED, 116 sleepq_unsleep, 117 sleepq_changepri, 118 sleepq_lendpri, 119 syncobj_noowner, 120 }; 121 122 syncobj_t sched_syncobj = { 123 SOBJ_SLEEPQ_SORTED, 124 sched_unsleep, 125 sched_changepri, 126 sched_lendpri, 127 syncobj_noowner, 128 }; 129 130 /* 131 * During autoconfiguration or after a panic, a sleep will simply lower the 132 * priority briefly to allow interrupts, then return. The priority to be 133 * used (safepri) is machine-dependent, thus this value is initialized and 134 * maintained in the machine-dependent layers. This priority will typically 135 * be 0, or the lowest priority that is safe for use on the interrupt stack; 136 * it can be made higher to block network software interrupts after panics. 137 */ 138 int safepri; 139 140 /* 141 * OBSOLETE INTERFACE 142 * 143 * General sleep call. Suspends the current process until a wakeup is 144 * performed on the specified identifier. The process will then be made 145 * runnable with the specified priority. Sleeps at most timo/hz seconds (0 146 * means no timeout). If pri includes PCATCH flag, signals are checked 147 * before and after sleeping, else signals are not checked. Returns 0 if 148 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 149 * signal needs to be delivered, ERESTART is returned if the current system 150 * call should be restarted if possible, and EINTR is returned if the system 151 * call should be interrupted by the signal (return EINTR). 152 * 153 * The interlock is held until we are on a sleep queue. The interlock will 154 * be locked before returning back to the caller unless the PNORELOCK flag 155 * is specified, in which case the interlock will always be unlocked upon 156 * return. 157 */ 158 int 159 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 160 volatile struct simplelock *interlock) 161 { 162 struct lwp *l = curlwp; 163 sleepq_t *sq; 164 int error; 165 166 KASSERT((l->l_pflag & LP_INTR) == 0); 167 168 if (sleepq_dontsleep(l)) { 169 (void)sleepq_abort(NULL, 0); 170 if ((priority & PNORELOCK) != 0) 171 simple_unlock(interlock); 172 return 0; 173 } 174 175 l->l_kpriority = true; 176 sq = sleeptab_lookup(&sleeptab, ident); 177 sleepq_enter(sq, l); 178 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj); 179 180 if (interlock != NULL) { 181 KASSERT(simple_lock_held(interlock)); 182 simple_unlock(interlock); 183 } 184 185 error = sleepq_block(timo, priority & PCATCH); 186 187 if (interlock != NULL && (priority & PNORELOCK) == 0) 188 simple_lock(interlock); 189 190 return error; 191 } 192 193 int 194 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 195 kmutex_t *mtx) 196 { 197 struct lwp *l = curlwp; 198 sleepq_t *sq; 199 int error; 200 201 KASSERT((l->l_pflag & LP_INTR) == 0); 202 203 if (sleepq_dontsleep(l)) { 204 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0); 205 return 0; 206 } 207 208 l->l_kpriority = true; 209 sq = sleeptab_lookup(&sleeptab, ident); 210 sleepq_enter(sq, l); 211 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj); 212 mutex_exit(mtx); 213 error = sleepq_block(timo, priority & PCATCH); 214 215 if ((priority & PNORELOCK) == 0) 216 mutex_enter(mtx); 217 218 return error; 219 } 220 221 /* 222 * General sleep call for situations where a wake-up is not expected. 223 */ 224 int 225 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx) 226 { 227 struct lwp *l = curlwp; 228 sleepq_t *sq; 229 int error; 230 231 if (sleepq_dontsleep(l)) 232 return sleepq_abort(NULL, 0); 233 234 if (mtx != NULL) 235 mutex_exit(mtx); 236 l->l_kpriority = true; 237 sq = sleeptab_lookup(&sleeptab, l); 238 sleepq_enter(sq, l); 239 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj); 240 error = sleepq_block(timo, intr); 241 if (mtx != NULL) 242 mutex_enter(mtx); 243 244 return error; 245 } 246 247 /* 248 * OBSOLETE INTERFACE 249 * 250 * Make all processes sleeping on the specified identifier runnable. 251 */ 252 void 253 wakeup(wchan_t ident) 254 { 255 sleepq_t *sq; 256 257 if (cold) 258 return; 259 260 sq = sleeptab_lookup(&sleeptab, ident); 261 sleepq_wake(sq, ident, (u_int)-1); 262 } 263 264 /* 265 * OBSOLETE INTERFACE 266 * 267 * Make the highest priority process first in line on the specified 268 * identifier runnable. 269 */ 270 void 271 wakeup_one(wchan_t ident) 272 { 273 sleepq_t *sq; 274 275 if (cold) 276 return; 277 278 sq = sleeptab_lookup(&sleeptab, ident); 279 sleepq_wake(sq, ident, 1); 280 } 281 282 283 /* 284 * General yield call. Puts the current process back on its run queue and 285 * performs a voluntary context switch. Should only be called when the 286 * current process explicitly requests it (eg sched_yield(2)). 287 */ 288 void 289 yield(void) 290 { 291 struct lwp *l = curlwp; 292 293 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 294 lwp_lock(l); 295 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock)); 296 KASSERT(l->l_stat == LSONPROC); 297 l->l_kpriority = false; 298 if (l->l_class == SCHED_OTHER) { 299 /* 300 * Only for timeshared threads. It will be reset 301 * by the scheduler in due course. 302 */ 303 l->l_priority = 0; 304 } 305 (void)mi_switch(l); 306 KERNEL_LOCK(l->l_biglocks, l); 307 } 308 309 /* 310 * General preemption call. Puts the current process back on its run queue 311 * and performs an involuntary context switch. 312 */ 313 void 314 preempt(void) 315 { 316 struct lwp *l = curlwp; 317 318 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 319 lwp_lock(l); 320 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock)); 321 KASSERT(l->l_stat == LSONPROC); 322 l->l_kpriority = false; 323 l->l_nivcsw++; 324 (void)mi_switch(l); 325 KERNEL_LOCK(l->l_biglocks, l); 326 } 327 328 /* 329 * Compute the amount of time during which the current lwp was running. 330 * 331 * - update l_rtime unless it's an idle lwp. 332 */ 333 334 void 335 updatertime(lwp_t *l, const struct timeval *tv) 336 { 337 long s, u; 338 339 if ((l->l_flag & LW_IDLE) != 0) 340 return; 341 342 u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec); 343 s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec); 344 if (u < 0) { 345 u += 1000000; 346 s--; 347 } else if (u >= 1000000) { 348 u -= 1000000; 349 s++; 350 } 351 l->l_rtime.tv_usec = u; 352 l->l_rtime.tv_sec = s; 353 } 354 355 /* 356 * The machine independent parts of context switch. 357 * 358 * Returns 1 if another LWP was actually run. 359 */ 360 int 361 mi_switch(lwp_t *l) 362 { 363 struct schedstate_percpu *spc; 364 struct lwp *newl; 365 int retval, oldspl; 366 struct cpu_info *ci; 367 struct timeval tv; 368 bool returning; 369 370 KASSERT(lwp_locked(l, NULL)); 371 LOCKDEBUG_BARRIER(l->l_mutex, 1); 372 373 #ifdef KSTACK_CHECK_MAGIC 374 kstack_check_magic(l); 375 #endif 376 377 microtime(&tv); 378 379 /* 380 * It's safe to read the per CPU schedstate unlocked here, as all we 381 * are after is the run time and that's guarenteed to have been last 382 * updated by this CPU. 383 */ 384 ci = l->l_cpu; 385 KDASSERT(ci == curcpu()); 386 387 /* 388 * Process is about to yield the CPU; clear the appropriate 389 * scheduling flags. 390 */ 391 spc = &ci->ci_schedstate; 392 returning = false; 393 newl = NULL; 394 395 /* 396 * If we have been asked to switch to a specific LWP, then there 397 * is no need to inspect the run queues. If a soft interrupt is 398 * blocking, then return to the interrupted thread without adjusting 399 * VM context or its start time: neither have been changed in order 400 * to take the interrupt. 401 */ 402 if (l->l_switchto != NULL) { 403 if ((l->l_pflag & LP_INTR) != 0) { 404 returning = true; 405 softint_block(l); 406 if ((l->l_flag & LW_TIMEINTR) != 0) 407 updatertime(l, &tv); 408 } 409 newl = l->l_switchto; 410 l->l_switchto = NULL; 411 } 412 #ifndef __HAVE_FAST_SOFTINTS 413 else if (ci->ci_data.cpu_softints != 0) { 414 /* There are pending soft interrupts, so pick one. */ 415 newl = softint_picklwp(); 416 newl->l_stat = LSONPROC; 417 newl->l_flag |= LW_RUNNING; 418 } 419 #endif /* !__HAVE_FAST_SOFTINTS */ 420 421 /* Count time spent in current system call */ 422 if (!returning) { 423 SYSCALL_TIME_SLEEP(l); 424 425 /* 426 * XXXSMP If we are using h/w performance counters, 427 * save context. 428 */ 429 #if PERFCTRS 430 if (PMC_ENABLED(l->l_proc)) { 431 pmc_save_context(l->l_proc); 432 } 433 #endif 434 updatertime(l, &tv); 435 } 436 437 /* 438 * If on the CPU and we have gotten this far, then we must yield. 439 */ 440 mutex_spin_enter(spc->spc_mutex); 441 KASSERT(l->l_stat != LSRUN); 442 if (l->l_stat == LSONPROC && l != newl) { 443 KASSERT(lwp_locked(l, &spc->spc_lwplock)); 444 if ((l->l_flag & LW_IDLE) == 0) { 445 l->l_stat = LSRUN; 446 lwp_setlock(l, spc->spc_mutex); 447 sched_enqueue(l, true); 448 } else 449 l->l_stat = LSIDL; 450 } 451 452 /* 453 * Let sched_nextlwp() select the LWP to run the CPU next. 454 * If no LWP is runnable, switch to the idle LWP. 455 * Note that spc_lwplock might not necessary be held. 456 */ 457 if (newl == NULL) { 458 newl = sched_nextlwp(); 459 if (newl != NULL) { 460 sched_dequeue(newl); 461 KASSERT(lwp_locked(newl, spc->spc_mutex)); 462 newl->l_stat = LSONPROC; 463 newl->l_cpu = ci; 464 newl->l_flag |= LW_RUNNING; 465 lwp_setlock(newl, &spc->spc_lwplock); 466 } else { 467 newl = ci->ci_data.cpu_idlelwp; 468 newl->l_stat = LSONPROC; 469 newl->l_flag |= LW_RUNNING; 470 } 471 /* 472 * Only clear want_resched if there are no 473 * pending (slow) software interrupts. 474 */ 475 ci->ci_want_resched = ci->ci_data.cpu_softints; 476 spc->spc_flags &= ~SPCF_SWITCHCLEAR; 477 spc->spc_curpriority = lwp_eprio(newl); 478 } 479 480 /* Items that must be updated with the CPU locked. */ 481 if (!returning) { 482 /* Update the new LWP's start time. */ 483 newl->l_stime = tv; 484 485 /* 486 * ci_curlwp changes when a fast soft interrupt occurs. 487 * We use cpu_onproc to keep track of which kernel or 488 * user thread is running 'underneath' the software 489 * interrupt. This is important for time accounting, 490 * itimers and forcing user threads to preempt (aston). 491 */ 492 ci->ci_data.cpu_onproc = newl; 493 } 494 495 if (l != newl) { 496 struct lwp *prevlwp; 497 498 /* 499 * If the old LWP has been moved to a run queue above, 500 * drop the general purpose LWP lock: it's now locked 501 * by the scheduler lock. 502 * 503 * Otherwise, drop the scheduler lock. We're done with 504 * the run queues for now. 505 */ 506 if (l->l_mutex == spc->spc_mutex) { 507 mutex_spin_exit(&spc->spc_lwplock); 508 } else { 509 mutex_spin_exit(spc->spc_mutex); 510 } 511 512 /* Unlocked, but for statistics only. */ 513 uvmexp.swtch++; 514 515 /* 516 * Save old VM context, unless a soft interrupt 517 * handler is blocking. 518 */ 519 if (!returning) 520 pmap_deactivate(l); 521 522 /* Switch to the new LWP.. */ 523 l->l_ncsw++; 524 l->l_flag &= ~LW_RUNNING; 525 oldspl = MUTEX_SPIN_OLDSPL(ci); 526 prevlwp = cpu_switchto(l, newl, returning); 527 /* 528 * .. we have switched away and are now back so we must 529 * be the new curlwp. prevlwp is who we replaced. 530 */ 531 if (prevlwp != NULL) { 532 curcpu()->ci_mtx_oldspl = oldspl; 533 lwp_unlock(prevlwp); 534 } else { 535 splx(oldspl); 536 } 537 538 /* Restore VM context. */ 539 pmap_activate(l); 540 retval = 1; 541 } else { 542 /* Nothing to do - just unlock and return. */ 543 mutex_spin_exit(spc->spc_mutex); 544 lwp_unlock(l); 545 retval = 0; 546 } 547 548 KASSERT(l == curlwp); 549 KASSERT(l->l_stat == LSONPROC); 550 KASSERT(l->l_cpu == curcpu()); 551 552 /* 553 * XXXSMP If we are using h/w performance counters, restore context. 554 */ 555 #if PERFCTRS 556 if (PMC_ENABLED(l->l_proc)) { 557 pmc_restore_context(l->l_proc); 558 } 559 #endif 560 561 /* 562 * We're running again; record our new start time. We might 563 * be running on a new CPU now, so don't use the cached 564 * schedstate_percpu pointer. 565 */ 566 SYSCALL_TIME_WAKEUP(l); 567 KASSERT(curlwp == l); 568 KDASSERT(l->l_cpu == curcpu()); 569 LOCKDEBUG_BARRIER(NULL, 1); 570 571 return retval; 572 } 573 574 /* 575 * Change process state to be runnable, placing it on the run queue if it is 576 * in memory, and awakening the swapper if it isn't in memory. 577 * 578 * Call with the process and LWP locked. Will return with the LWP unlocked. 579 */ 580 void 581 setrunnable(struct lwp *l) 582 { 583 struct proc *p = l->l_proc; 584 struct cpu_info *ci; 585 sigset_t *ss; 586 587 KASSERT((l->l_flag & LW_IDLE) == 0); 588 KASSERT(mutex_owned(&p->p_smutex)); 589 KASSERT(lwp_locked(l, NULL)); 590 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex); 591 592 switch (l->l_stat) { 593 case LSSTOP: 594 /* 595 * If we're being traced (possibly because someone attached us 596 * while we were stopped), check for a signal from the debugger. 597 */ 598 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) { 599 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0) 600 ss = &l->l_sigpend.sp_set; 601 else 602 ss = &p->p_sigpend.sp_set; 603 sigaddset(ss, p->p_xstat); 604 signotify(l); 605 } 606 p->p_nrlwps++; 607 break; 608 case LSSUSPENDED: 609 l->l_flag &= ~LW_WSUSPEND; 610 p->p_nrlwps++; 611 cv_broadcast(&p->p_lwpcv); 612 break; 613 case LSSLEEP: 614 KASSERT(l->l_wchan != NULL); 615 break; 616 default: 617 panic("setrunnable: lwp %p state was %d", l, l->l_stat); 618 } 619 620 /* 621 * If the LWP was sleeping interruptably, then it's OK to start it 622 * again. If not, mark it as still sleeping. 623 */ 624 if (l->l_wchan != NULL) { 625 l->l_stat = LSSLEEP; 626 /* lwp_unsleep() will release the lock. */ 627 lwp_unsleep(l); 628 return; 629 } 630 631 /* 632 * If the LWP is still on the CPU, mark it as LSONPROC. It may be 633 * about to call mi_switch(), in which case it will yield. 634 */ 635 if ((l->l_flag & LW_RUNNING) != 0) { 636 l->l_stat = LSONPROC; 637 l->l_slptime = 0; 638 lwp_unlock(l); 639 return; 640 } 641 642 /* 643 * Look for a CPU to run. 644 * Set the LWP runnable. 645 */ 646 ci = sched_takecpu(l); 647 l->l_cpu = ci; 648 if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) { 649 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex); 650 lwp_lock(l); 651 } 652 sched_setrunnable(l); 653 l->l_stat = LSRUN; 654 l->l_slptime = 0; 655 656 /* 657 * If thread is swapped out - wake the swapper to bring it back in. 658 * Otherwise, enter it into a run queue. 659 */ 660 if (l->l_flag & LW_INMEM) { 661 sched_enqueue(l, false); 662 resched_cpu(l); 663 lwp_unlock(l); 664 } else { 665 lwp_unlock(l); 666 uvm_kick_scheduler(); 667 } 668 } 669 670 /* 671 * suspendsched: 672 * 673 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED. 674 */ 675 void 676 suspendsched(void) 677 { 678 CPU_INFO_ITERATOR cii; 679 struct cpu_info *ci; 680 struct lwp *l; 681 struct proc *p; 682 683 /* 684 * We do this by process in order not to violate the locking rules. 685 */ 686 mutex_enter(&proclist_lock); 687 PROCLIST_FOREACH(p, &allproc) { 688 mutex_enter(&p->p_smutex); 689 690 if ((p->p_flag & PK_SYSTEM) != 0) { 691 mutex_exit(&p->p_smutex); 692 continue; 693 } 694 695 p->p_stat = SSTOP; 696 697 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 698 if (l == curlwp) 699 continue; 700 701 lwp_lock(l); 702 703 /* 704 * Set L_WREBOOT so that the LWP will suspend itself 705 * when it tries to return to user mode. We want to 706 * try and get to get as many LWPs as possible to 707 * the user / kernel boundary, so that they will 708 * release any locks that they hold. 709 */ 710 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND); 711 712 if (l->l_stat == LSSLEEP && 713 (l->l_flag & LW_SINTR) != 0) { 714 /* setrunnable() will release the lock. */ 715 setrunnable(l); 716 continue; 717 } 718 719 lwp_unlock(l); 720 } 721 722 mutex_exit(&p->p_smutex); 723 } 724 mutex_exit(&proclist_lock); 725 726 /* 727 * Kick all CPUs to make them preempt any LWPs running in user mode. 728 * They'll trap into the kernel and suspend themselves in userret(). 729 */ 730 for (CPU_INFO_FOREACH(cii, ci)) { 731 spc_lock(ci); 732 cpu_need_resched(ci, RESCHED_IMMED); 733 spc_unlock(ci); 734 } 735 } 736 737 /* 738 * sched_kpri: 739 * 740 * Scale a priority level to a kernel priority level, usually 741 * for an LWP that is about to sleep. 742 */ 743 pri_t 744 sched_kpri(struct lwp *l) 745 { 746 pri_t pri; 747 748 #ifndef __HAVE_FAST_SOFTINTS 749 /* 750 * Hack: if a user thread is being used to run a soft 751 * interrupt, we need to boost the priority here. 752 */ 753 if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT) 754 return softint_kpri(l); 755 #endif 756 757 /* 758 * Scale user priorities (0 -> 63) up to kernel priorities 759 * in the range (64 -> 95). This makes assumptions about 760 * the priority space and so should be kept in sync with 761 * param.h. 762 */ 763 if ((pri = l->l_priority) >= PRI_KERNEL) 764 return pri; 765 return (pri >> 1) + PRI_KERNEL; 766 } 767 768 /* 769 * sched_unsleep: 770 * 771 * The is called when the LWP has not been awoken normally but instead 772 * interrupted: for example, if the sleep timed out. Because of this, 773 * it's not a valid action for running or idle LWPs. 774 */ 775 static void 776 sched_unsleep(struct lwp *l) 777 { 778 779 lwp_unlock(l); 780 panic("sched_unsleep"); 781 } 782 783 void 784 resched_cpu(struct lwp *l) 785 { 786 struct cpu_info *ci; 787 788 /* 789 * XXXSMP 790 * Since l->l_cpu persists across a context switch, 791 * this gives us *very weak* processor affinity, in 792 * that we notify the CPU on which the process last 793 * ran that it should try to switch. 794 * 795 * This does not guarantee that the process will run on 796 * that processor next, because another processor might 797 * grab it the next time it performs a context switch. 798 * 799 * This also does not handle the case where its last 800 * CPU is running a higher-priority process, but every 801 * other CPU is running a lower-priority process. There 802 * are ways to handle this situation, but they're not 803 * currently very pretty, and we also need to weigh the 804 * cost of moving a process from one CPU to another. 805 */ 806 ci = l->l_cpu; 807 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority) 808 cpu_need_resched(ci, 0); 809 } 810 811 static void 812 sched_changepri(struct lwp *l, pri_t pri) 813 { 814 815 KASSERT(lwp_locked(l, NULL)); 816 817 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) { 818 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex)); 819 sched_dequeue(l); 820 l->l_priority = pri; 821 sched_enqueue(l, false); 822 } else { 823 l->l_priority = pri; 824 } 825 resched_cpu(l); 826 } 827 828 static void 829 sched_lendpri(struct lwp *l, pri_t pri) 830 { 831 832 KASSERT(lwp_locked(l, NULL)); 833 834 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) { 835 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex)); 836 sched_dequeue(l); 837 l->l_inheritedprio = pri; 838 sched_enqueue(l, false); 839 } else { 840 l->l_inheritedprio = pri; 841 } 842 resched_cpu(l); 843 } 844 845 struct lwp * 846 syncobj_noowner(wchan_t wchan) 847 { 848 849 return NULL; 850 } 851 852 853 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 854 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 855 856 /* 857 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 858 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 859 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 860 * 861 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 862 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 863 * 864 * If you dont want to bother with the faster/more-accurate formula, you 865 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 866 * (more general) method of calculating the %age of CPU used by a process. 867 */ 868 #define CCPU_SHIFT (FSHIFT + 1) 869 870 /* 871 * sched_pstats: 872 * 873 * Update process statistics and check CPU resource allocation. 874 * Call scheduler-specific hook to eventually adjust process/LWP 875 * priorities. 876 */ 877 /* ARGSUSED */ 878 void 879 sched_pstats(void *arg) 880 { 881 struct rlimit *rlim; 882 struct lwp *l; 883 struct proc *p; 884 int sig, clkhz; 885 long runtm; 886 887 sched_pstats_ticks++; 888 889 mutex_enter(&proclist_mutex); 890 PROCLIST_FOREACH(p, &allproc) { 891 /* 892 * Increment time in/out of memory and sleep time (if 893 * sleeping). We ignore overflow; with 16-bit int's 894 * (remember them?) overflow takes 45 days. 895 */ 896 mutex_enter(&p->p_smutex); 897 mutex_spin_enter(&p->p_stmutex); 898 runtm = p->p_rtime.tv_sec; 899 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 900 if ((l->l_flag & LW_IDLE) != 0) 901 continue; 902 lwp_lock(l); 903 runtm += l->l_rtime.tv_sec; 904 l->l_swtime++; 905 sched_pstats_hook(l); 906 lwp_unlock(l); 907 908 /* 909 * p_pctcpu is only for ps. 910 */ 911 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT; 912 if (l->l_slptime < 1) { 913 clkhz = stathz != 0 ? stathz : hz; 914 #if (FSHIFT >= CCPU_SHIFT) 915 l->l_pctcpu += (clkhz == 100) ? 916 ((fixpt_t)l->l_cpticks) << 917 (FSHIFT - CCPU_SHIFT) : 918 100 * (((fixpt_t) p->p_cpticks) 919 << (FSHIFT - CCPU_SHIFT)) / clkhz; 920 #else 921 l->l_pctcpu += ((FSCALE - ccpu) * 922 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT; 923 #endif 924 l->l_cpticks = 0; 925 } 926 } 927 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 928 mutex_spin_exit(&p->p_stmutex); 929 930 /* 931 * Check if the process exceeds its CPU resource allocation. 932 * If over max, kill it. 933 */ 934 rlim = &p->p_rlimit[RLIMIT_CPU]; 935 sig = 0; 936 if (runtm >= rlim->rlim_cur) { 937 if (runtm >= rlim->rlim_max) 938 sig = SIGKILL; 939 else { 940 sig = SIGXCPU; 941 if (rlim->rlim_cur < rlim->rlim_max) 942 rlim->rlim_cur += 5; 943 } 944 } 945 mutex_exit(&p->p_smutex); 946 if (sig) { 947 psignal(p, sig); 948 } 949 } 950 mutex_exit(&proclist_mutex); 951 uvm_meter(); 952 cv_wakeup(&lbolt); 953 callout_schedule(&sched_pstats_ch, hz); 954 } 955 956 void 957 sched_init(void) 958 { 959 960 callout_init(&sched_pstats_ch, 0); 961 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL); 962 sched_setup(); 963 sched_pstats(NULL); 964 } 965