xref: /netbsd-src/sys/kern/kern_synch.c (revision 7c7c171d130af9949261bc7dce2150a03c3d239c)
1 /*	$NetBSD: kern_synch.c,v 1.50 1998/03/01 02:22:30 fvdl Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
41  */
42 
43 #include "opt_uvm.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/buf.h>
50 #include <sys/signalvar.h>
51 #include <sys/resourcevar.h>
52 #include <vm/vm.h>
53 
54 #if defined(UVM)
55 #include <uvm/uvm_extern.h>
56 #endif
57 
58 #ifdef KTRACE
59 #include <sys/ktrace.h>
60 #endif
61 
62 #include <machine/cpu.h>
63 
64 u_char	curpriority;		/* usrpri of curproc */
65 int	lbolt;			/* once a second sleep address */
66 
67 void roundrobin __P((void *));
68 void schedcpu __P((void *));
69 void updatepri __P((struct proc *));
70 void endtsleep __P((void *));
71 
72 /*
73  * Force switch among equal priority processes every 100ms.
74  */
75 /* ARGSUSED */
76 void
77 roundrobin(arg)
78 	void *arg;
79 {
80 
81 	need_resched();
82 	timeout(roundrobin, NULL, hz / 10);
83 }
84 
85 /*
86  * Constants for digital decay and forget:
87  *	90% of (p_estcpu) usage in 5 * loadav time
88  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
89  *          Note that, as ps(1) mentions, this can let percentages
90  *          total over 100% (I've seen 137.9% for 3 processes).
91  *
92  * Note that hardclock updates p_estcpu and p_cpticks independently.
93  *
94  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
95  * That is, the system wants to compute a value of decay such
96  * that the following for loop:
97  * 	for (i = 0; i < (5 * loadavg); i++)
98  * 		p_estcpu *= decay;
99  * will compute
100  * 	p_estcpu *= 0.1;
101  * for all values of loadavg:
102  *
103  * Mathematically this loop can be expressed by saying:
104  * 	decay ** (5 * loadavg) ~= .1
105  *
106  * The system computes decay as:
107  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
108  *
109  * We wish to prove that the system's computation of decay
110  * will always fulfill the equation:
111  * 	decay ** (5 * loadavg) ~= .1
112  *
113  * If we compute b as:
114  * 	b = 2 * loadavg
115  * then
116  * 	decay = b / (b + 1)
117  *
118  * We now need to prove two things:
119  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
120  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
121  *
122  * Facts:
123  *         For x close to zero, exp(x) =~ 1 + x, since
124  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
125  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
126  *         For x close to zero, ln(1+x) =~ x, since
127  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
128  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
129  *         ln(.1) =~ -2.30
130  *
131  * Proof of (1):
132  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
133  *	solving for factor,
134  *      ln(factor) =~ (-2.30/5*loadav), or
135  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
136  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
137  *
138  * Proof of (2):
139  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
140  *	solving for power,
141  *      power*ln(b/(b+1)) =~ -2.30, or
142  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
143  *
144  * Actual power values for the implemented algorithm are as follows:
145  *      loadav: 1       2       3       4
146  *      power:  5.68    10.32   14.94   19.55
147  */
148 
149 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
150 #define	loadfactor(loadav)	(2 * (loadav))
151 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
152 
153 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
154 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
155 
156 /*
157  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
158  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
159  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
160  *
161  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
162  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
163  *
164  * If you dont want to bother with the faster/more-accurate formula, you
165  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
166  * (more general) method of calculating the %age of CPU used by a process.
167  */
168 #define	CCPU_SHIFT	11
169 
170 /*
171  * Recompute process priorities, every hz ticks.
172  */
173 /* ARGSUSED */
174 void
175 schedcpu(arg)
176 	void *arg;
177 {
178 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
179 	register struct proc *p;
180 	register int s;
181 	register unsigned int newcpu;
182 
183 	wakeup((caddr_t)&lbolt);
184 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
185 		/*
186 		 * Increment time in/out of memory and sleep time
187 		 * (if sleeping).  We ignore overflow; with 16-bit int's
188 		 * (remember them?) overflow takes 45 days.
189 		 */
190 		p->p_swtime++;
191 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
192 			p->p_slptime++;
193 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
194 		/*
195 		 * If the process has slept the entire second,
196 		 * stop recalculating its priority until it wakes up.
197 		 */
198 		if (p->p_slptime > 1)
199 			continue;
200 		s = splstatclock();	/* prevent state changes */
201 		/*
202 		 * p_pctcpu is only for ps.
203 		 */
204 #if	(FSHIFT >= CCPU_SHIFT)
205 		p->p_pctcpu += (hz == 100)?
206 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
207                 	100 * (((fixpt_t) p->p_cpticks)
208 				<< (FSHIFT - CCPU_SHIFT)) / hz;
209 #else
210 		p->p_pctcpu += ((FSCALE - ccpu) *
211 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
212 #endif
213 		p->p_cpticks = 0;
214 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu)
215 		    + p->p_nice - NZERO;
216 		p->p_estcpu = min(newcpu, UCHAR_MAX);
217 		resetpriority(p);
218 		if (p->p_priority >= PUSER) {
219 #define	PPQ	(128 / NQS)		/* priorities per queue */
220 			if ((p != curproc) &&
221 			    p->p_stat == SRUN &&
222 			    (p->p_flag & P_INMEM) &&
223 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
224 				remrunqueue(p);
225 				p->p_priority = p->p_usrpri;
226 				setrunqueue(p);
227 			} else
228 				p->p_priority = p->p_usrpri;
229 		}
230 		splx(s);
231 	}
232 #if defined(UVM)
233 	uvm_meter();
234 #else
235 	vmmeter();
236 #endif
237 	timeout(schedcpu, (void *)0, hz);
238 }
239 
240 /*
241  * Recalculate the priority of a process after it has slept for a while.
242  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
243  * least six times the loadfactor will decay p_estcpu to zero.
244  */
245 void
246 updatepri(p)
247 	register struct proc *p;
248 {
249 	register unsigned int newcpu = p->p_estcpu;
250 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
251 
252 	if (p->p_slptime > 5 * loadfac)
253 		p->p_estcpu = 0;
254 	else {
255 		p->p_slptime--;	/* the first time was done in schedcpu */
256 		while (newcpu && --p->p_slptime)
257 			newcpu = (int) decay_cpu(loadfac, newcpu);
258 		p->p_estcpu = min(newcpu, UCHAR_MAX);
259 	}
260 	resetpriority(p);
261 }
262 
263 /*
264  * We're only looking at 7 bits of the address; everything is
265  * aligned to 4, lots of things are aligned to greater powers
266  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
267  */
268 #define TABLESIZE	128
269 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
270 struct slpque {
271 	struct proc *sq_head;
272 	struct proc **sq_tailp;
273 } slpque[TABLESIZE];
274 
275 /*
276  * During autoconfiguration or after a panic, a sleep will simply
277  * lower the priority briefly to allow interrupts, then return.
278  * The priority to be used (safepri) is machine-dependent, thus this
279  * value is initialized and maintained in the machine-dependent layers.
280  * This priority will typically be 0, or the lowest priority
281  * that is safe for use on the interrupt stack; it can be made
282  * higher to block network software interrupts after panics.
283  */
284 int safepri;
285 
286 /*
287  * General sleep call.  Suspends the current process until a wakeup is
288  * performed on the specified identifier.  The process will then be made
289  * runnable with the specified priority.  Sleeps at most timo/hz seconds
290  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
291  * before and after sleeping, else signals are not checked.  Returns 0 if
292  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
293  * signal needs to be delivered, ERESTART is returned if the current system
294  * call should be restarted if possible, and EINTR is returned if the system
295  * call should be interrupted by the signal (return EINTR).
296  */
297 int
298 tsleep(ident, priority, wmesg, timo)
299 	void *ident;
300 	int priority, timo;
301 	const char *wmesg;
302 {
303 	register struct proc *p = curproc;
304 	register struct slpque *qp;
305 	register int s;
306 	int sig, catch = priority & PCATCH;
307 	extern int cold;
308 	void endtsleep __P((void *));
309 
310 	if (cold || panicstr) {
311 		/*
312 		 * After a panic, or during autoconfiguration,
313 		 * just give interrupts a chance, then just return;
314 		 * don't run any other procs or panic below,
315 		 * in case this is the idle process and already asleep.
316 		 */
317 		s = splhigh();
318 		splx(safepri);
319 		splx(s);
320 		return (0);
321 	}
322 
323 #ifdef KTRACE
324 	if (KTRPOINT(p, KTR_CSW))
325 		ktrcsw(p->p_tracep, 1, 0);
326 #endif
327 	s = splhigh();
328 
329 #ifdef DIAGNOSTIC
330 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
331 		panic("tsleep");
332 #endif
333 	p->p_wchan = ident;
334 	p->p_wmesg = wmesg;
335 	p->p_slptime = 0;
336 	p->p_priority = priority & PRIMASK;
337 	qp = &slpque[LOOKUP(ident)];
338 	if (qp->sq_head == 0)
339 		qp->sq_head = p;
340 	else
341 		*qp->sq_tailp = p;
342 	*(qp->sq_tailp = &p->p_forw) = 0;
343 	if (timo)
344 		timeout(endtsleep, (void *)p, timo);
345 	/*
346 	 * We put ourselves on the sleep queue and start our timeout
347 	 * before calling CURSIG, as we could stop there, and a wakeup
348 	 * or a SIGCONT (or both) could occur while we were stopped.
349 	 * A SIGCONT would cause us to be marked as SSLEEP
350 	 * without resuming us, thus we must be ready for sleep
351 	 * when CURSIG is called.  If the wakeup happens while we're
352 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
353 	 */
354 	if (catch) {
355 		p->p_flag |= P_SINTR;
356 		if ((sig = CURSIG(p)) != 0) {
357 			if (p->p_wchan)
358 				unsleep(p);
359 			p->p_stat = SRUN;
360 			goto resume;
361 		}
362 		if (p->p_wchan == 0) {
363 			catch = 0;
364 			goto resume;
365 		}
366 	} else
367 		sig = 0;
368 	p->p_stat = SSLEEP;
369 	p->p_stats->p_ru.ru_nvcsw++;
370 	mi_switch();
371 #ifdef	DDB
372 	/* handy breakpoint location after process "wakes" */
373 	asm(".globl bpendtsleep ; bpendtsleep:");
374 #endif
375 resume:
376 	curpriority = p->p_usrpri;
377 	splx(s);
378 	p->p_flag &= ~P_SINTR;
379 	if (p->p_flag & P_TIMEOUT) {
380 		p->p_flag &= ~P_TIMEOUT;
381 		if (sig == 0) {
382 #ifdef KTRACE
383 			if (KTRPOINT(p, KTR_CSW))
384 				ktrcsw(p->p_tracep, 0, 0);
385 #endif
386 			return (EWOULDBLOCK);
387 		}
388 	} else if (timo)
389 		untimeout(endtsleep, (void *)p);
390 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
391 #ifdef KTRACE
392 		if (KTRPOINT(p, KTR_CSW))
393 			ktrcsw(p->p_tracep, 0, 0);
394 #endif
395 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
396 			return (EINTR);
397 		return (ERESTART);
398 	}
399 #ifdef KTRACE
400 	if (KTRPOINT(p, KTR_CSW))
401 		ktrcsw(p->p_tracep, 0, 0);
402 #endif
403 	return (0);
404 }
405 
406 /*
407  * Implement timeout for tsleep.
408  * If process hasn't been awakened (wchan non-zero),
409  * set timeout flag and undo the sleep.  If proc
410  * is stopped, just unsleep so it will remain stopped.
411  */
412 void
413 endtsleep(arg)
414 	void *arg;
415 {
416 	register struct proc *p;
417 	int s;
418 
419 	p = (struct proc *)arg;
420 	s = splhigh();
421 	if (p->p_wchan) {
422 		if (p->p_stat == SSLEEP)
423 			setrunnable(p);
424 		else
425 			unsleep(p);
426 		p->p_flag |= P_TIMEOUT;
427 	}
428 	splx(s);
429 }
430 
431 /*
432  * Short-term, non-interruptable sleep.
433  */
434 void
435 sleep(ident, priority)
436 	void *ident;
437 	int priority;
438 {
439 	register struct proc *p = curproc;
440 	register struct slpque *qp;
441 	register int s;
442 	extern int cold;
443 
444 #ifdef DIAGNOSTIC
445 	if (priority > PZERO) {
446 		printf("sleep called with priority %d > PZERO, wchan: %p\n",
447 		    priority, ident);
448 		panic("old sleep");
449 	}
450 #endif
451 	s = splhigh();
452 	if (cold || panicstr) {
453 		/*
454 		 * After a panic, or during autoconfiguration,
455 		 * just give interrupts a chance, then just return;
456 		 * don't run any other procs or panic below,
457 		 * in case this is the idle process and already asleep.
458 		 */
459 		splx(safepri);
460 		splx(s);
461 		return;
462 	}
463 #ifdef DIAGNOSTIC
464 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
465 		panic("sleep");
466 #endif
467 	p->p_wchan = ident;
468 	p->p_wmesg = NULL;
469 	p->p_slptime = 0;
470 	p->p_priority = priority;
471 	qp = &slpque[LOOKUP(ident)];
472 	if (qp->sq_head == 0)
473 		qp->sq_head = p;
474 	else
475 		*qp->sq_tailp = p;
476 	*(qp->sq_tailp = &p->p_forw) = 0;
477 	p->p_stat = SSLEEP;
478 	p->p_stats->p_ru.ru_nvcsw++;
479 #ifdef KTRACE
480 	if (KTRPOINT(p, KTR_CSW))
481 		ktrcsw(p->p_tracep, 1, 0);
482 #endif
483 	mi_switch();
484 #ifdef	DDB
485 	/* handy breakpoint location after process "wakes" */
486 	asm(".globl bpendsleep ; bpendsleep:");
487 #endif
488 #ifdef KTRACE
489 	if (KTRPOINT(p, KTR_CSW))
490 		ktrcsw(p->p_tracep, 0, 0);
491 #endif
492 	curpriority = p->p_usrpri;
493 	splx(s);
494 }
495 
496 /*
497  * Remove a process from its wait queue
498  */
499 void
500 unsleep(p)
501 	register struct proc *p;
502 {
503 	register struct slpque *qp;
504 	register struct proc **hp;
505 	int s;
506 
507 	s = splhigh();
508 	if (p->p_wchan) {
509 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
510 		while (*hp != p)
511 			hp = &(*hp)->p_forw;
512 		*hp = p->p_forw;
513 		if (qp->sq_tailp == &p->p_forw)
514 			qp->sq_tailp = hp;
515 		p->p_wchan = 0;
516 	}
517 	splx(s);
518 }
519 
520 /*
521  * Make all processes sleeping on the specified identifier runnable.
522  */
523 void
524 wakeup(ident)
525 	register void *ident;
526 {
527 	register struct slpque *qp;
528 	register struct proc *p, **q;
529 	int s;
530 
531 	s = splhigh();
532 	qp = &slpque[LOOKUP(ident)];
533 restart:
534 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
535 #ifdef DIAGNOSTIC
536 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
537 			panic("wakeup");
538 #endif
539 		if (p->p_wchan == ident) {
540 			p->p_wchan = 0;
541 			*q = p->p_forw;
542 			if (qp->sq_tailp == &p->p_forw)
543 				qp->sq_tailp = q;
544 			if (p->p_stat == SSLEEP) {
545 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
546 				if (p->p_slptime > 1)
547 					updatepri(p);
548 				p->p_slptime = 0;
549 				p->p_stat = SRUN;
550 				if (p->p_flag & P_INMEM)
551 					setrunqueue(p);
552 				/*
553 				 * Since curpriority is a user priority,
554 				 * p->p_priority is always better than
555 				 * curpriority.
556 				 */
557 				if ((p->p_flag & P_INMEM) == 0)
558 					wakeup((caddr_t)&proc0);
559 				else
560 					need_resched();
561 				/* END INLINE EXPANSION */
562 				goto restart;
563 			}
564 		} else
565 			q = &p->p_forw;
566 	}
567 	splx(s);
568 }
569 
570 /*
571  * The machine independent parts of mi_switch().
572  * Must be called at splstatclock() or higher.
573  */
574 void
575 mi_switch()
576 {
577 	register struct proc *p = curproc;	/* XXX */
578 	register struct rlimit *rlim;
579 	register long s, u;
580 	struct timeval tv;
581 
582 #ifdef DEBUG
583 	if (p->p_simple_locks)
584 		panic("sleep: holding simple lock");
585 #endif
586 	/*
587 	 * Compute the amount of time during which the current
588 	 * process was running, and add that to its total so far.
589 	 */
590 	microtime(&tv);
591 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
592 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
593 	if (u < 0) {
594 		u += 1000000;
595 		s--;
596 	} else if (u >= 1000000) {
597 		u -= 1000000;
598 		s++;
599 	}
600 	p->p_rtime.tv_usec = u;
601 	p->p_rtime.tv_sec = s;
602 
603 	/*
604 	 * Check if the process exceeds its cpu resource allocation.
605 	 * If over max, kill it.  In any case, if it has run for more
606 	 * than 10 minutes, reduce priority to give others a chance.
607 	 */
608 	rlim = &p->p_rlimit[RLIMIT_CPU];
609 	if (s >= rlim->rlim_cur) {
610 		if (s >= rlim->rlim_max)
611 			psignal(p, SIGKILL);
612 		else {
613 			psignal(p, SIGXCPU);
614 			if (rlim->rlim_cur < rlim->rlim_max)
615 				rlim->rlim_cur += 5;
616 		}
617 	}
618 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
619 		p->p_nice = autoniceval + NZERO;
620 		resetpriority(p);
621 	}
622 
623 	/*
624 	 * Pick a new current process and record its start time.
625 	 */
626 #if defined(UVM)
627 	uvmexp.swtch++;
628 #else
629 	cnt.v_swtch++;
630 #endif
631 	cpu_switch(p);
632 	microtime(&runtime);
633 }
634 
635 /*
636  * Initialize the (doubly-linked) run queues
637  * to be empty.
638  */
639 void
640 rqinit()
641 {
642 	register int i;
643 
644 	for (i = 0; i < NQS; i++)
645 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
646 }
647 
648 /*
649  * Change process state to be runnable,
650  * placing it on the run queue if it is in memory,
651  * and awakening the swapper if it isn't in memory.
652  */
653 void
654 setrunnable(p)
655 	register struct proc *p;
656 {
657 	register int s;
658 
659 	s = splhigh();
660 	switch (p->p_stat) {
661 	case 0:
662 	case SRUN:
663 	case SZOMB:
664 	default:
665 		panic("setrunnable");
666 	case SSTOP:
667 		/*
668 		 * If we're being traced (possibly because someone attached us
669 		 * while we were stopped), check for a signal from the debugger.
670 		 */
671 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
672 			p->p_siglist |= sigmask(p->p_xstat);
673 	case SSLEEP:
674 		unsleep(p);		/* e.g. when sending signals */
675 		break;
676 
677 	case SIDL:
678 		break;
679 	}
680 	p->p_stat = SRUN;
681 	if (p->p_flag & P_INMEM)
682 		setrunqueue(p);
683 	splx(s);
684 	if (p->p_slptime > 1)
685 		updatepri(p);
686 	p->p_slptime = 0;
687 	if ((p->p_flag & P_INMEM) == 0)
688 		wakeup((caddr_t)&proc0);
689 	else if (p->p_priority < curpriority)
690 		need_resched();
691 }
692 
693 /*
694  * Compute the priority of a process when running in user mode.
695  * Arrange to reschedule if the resulting priority is better
696  * than that of the current process.
697  */
698 void
699 resetpriority(p)
700 	register struct proc *p;
701 {
702 	register unsigned int newpriority;
703 
704 	newpriority = PUSER + p->p_estcpu / 4 + 2 * (p->p_nice - NZERO);
705 	newpriority = min(newpriority, MAXPRI);
706 	p->p_usrpri = newpriority;
707 	if (newpriority < curpriority)
708 		need_resched();
709 }
710