1 /* $NetBSD: kern_synch.c,v 1.227 2008/04/13 22:54:19 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and 10 * Daniel Sieger. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the NetBSD 23 * Foundation, Inc. and its contributors. 24 * 4. Neither the name of The NetBSD Foundation nor the names of its 25 * contributors may be used to endorse or promote products derived 26 * from this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGE. 39 */ 40 41 /* 42 * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org> 43 * All rights reserved. 44 * 45 * Redistribution and use in source and binary forms, with or without 46 * modification, are permitted provided that the following conditions 47 * are met: 48 * 1. Redistributions of source code must retain the above copyright 49 * notice, this list of conditions and the following disclaimer. 50 * 2. Redistributions in binary form must reproduce the above copyright 51 * notice, this list of conditions and the following disclaimer in the 52 * documentation and/or other materials provided with the distribution. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 */ 66 67 /*- 68 * Copyright (c) 1982, 1986, 1990, 1991, 1993 69 * The Regents of the University of California. All rights reserved. 70 * (c) UNIX System Laboratories, Inc. 71 * All or some portions of this file are derived from material licensed 72 * to the University of California by American Telephone and Telegraph 73 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 74 * the permission of UNIX System Laboratories, Inc. 75 * 76 * Redistribution and use in source and binary forms, with or without 77 * modification, are permitted provided that the following conditions 78 * are met: 79 * 1. Redistributions of source code must retain the above copyright 80 * notice, this list of conditions and the following disclaimer. 81 * 2. Redistributions in binary form must reproduce the above copyright 82 * notice, this list of conditions and the following disclaimer in the 83 * documentation and/or other materials provided with the distribution. 84 * 3. Neither the name of the University nor the names of its contributors 85 * may be used to endorse or promote products derived from this software 86 * without specific prior written permission. 87 * 88 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 89 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 90 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 91 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 92 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 93 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 94 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 95 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 96 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 97 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 98 * SUCH DAMAGE. 99 * 100 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 101 */ 102 103 #include <sys/cdefs.h> 104 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.227 2008/04/13 22:54:19 yamt Exp $"); 105 106 #include "opt_kstack.h" 107 #include "opt_lockdebug.h" 108 #include "opt_multiprocessor.h" 109 #include "opt_perfctrs.h" 110 111 #define __MUTEX_PRIVATE 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/proc.h> 116 #include <sys/kernel.h> 117 #if defined(PERFCTRS) 118 #include <sys/pmc.h> 119 #endif 120 #include <sys/cpu.h> 121 #include <sys/resourcevar.h> 122 #include <sys/sched.h> 123 #include <sys/syscall_stats.h> 124 #include <sys/sleepq.h> 125 #include <sys/lockdebug.h> 126 #include <sys/evcnt.h> 127 #include <sys/intr.h> 128 #include <sys/lwpctl.h> 129 #include <sys/atomic.h> 130 #include <sys/simplelock.h> 131 #include <sys/bitops.h> 132 #include <sys/kmem.h> 133 #include <sys/sysctl.h> 134 #include <sys/idle.h> 135 136 #include <uvm/uvm_extern.h> 137 138 /* 139 * Priority related defintions. 140 */ 141 #define PRI_TS_COUNT (NPRI_USER) 142 #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT) 143 #define PRI_HTS_RANGE (PRI_TS_COUNT / 10) 144 145 #define PRI_HIGHEST_TS (MAXPRI_USER) 146 147 /* 148 * Bits per map. 149 */ 150 #define BITMAP_BITS (32) 151 #define BITMAP_SHIFT (5) 152 #define BITMAP_MSB (0x80000000U) 153 #define BITMAP_MASK (BITMAP_BITS - 1) 154 155 /* 156 * Structures, runqueue. 157 */ 158 159 typedef struct { 160 TAILQ_HEAD(, lwp) q_head; 161 } queue_t; 162 163 typedef struct { 164 /* Lock and bitmap */ 165 uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT]; 166 /* Counters */ 167 u_int r_count; /* Count of the threads */ 168 u_int r_avgcount; /* Average count of threads */ 169 u_int r_mcount; /* Count of migratable threads */ 170 /* Runqueues */ 171 queue_t r_rt_queue[PRI_RT_COUNT]; 172 queue_t r_ts_queue[PRI_TS_COUNT]; 173 } runqueue_t; 174 175 static u_int sched_unsleep(struct lwp *, bool); 176 static void sched_changepri(struct lwp *, pri_t); 177 static void sched_lendpri(struct lwp *, pri_t); 178 static void *sched_getrq(runqueue_t *, const pri_t); 179 #ifdef MULTIPROCESSOR 180 static lwp_t *sched_catchlwp(void); 181 static void sched_balance(void *); 182 #endif 183 184 syncobj_t sleep_syncobj = { 185 SOBJ_SLEEPQ_SORTED, 186 sleepq_unsleep, 187 sleepq_changepri, 188 sleepq_lendpri, 189 syncobj_noowner, 190 }; 191 192 syncobj_t sched_syncobj = { 193 SOBJ_SLEEPQ_SORTED, 194 sched_unsleep, 195 sched_changepri, 196 sched_lendpri, 197 syncobj_noowner, 198 }; 199 200 const int schedppq = 1; 201 callout_t sched_pstats_ch; 202 unsigned sched_pstats_ticks; 203 kcondvar_t lbolt; /* once a second sleep address */ 204 205 /* 206 * Migration and balancing. 207 */ 208 static u_int cacheht_time; /* Cache hotness time */ 209 static u_int min_catch; /* Minimal LWP count for catching */ 210 static u_int balance_period; /* Balance period */ 211 static struct cpu_info *worker_ci; /* Victim CPU */ 212 #ifdef MULTIPROCESSOR 213 static struct callout balance_ch; /* Callout of balancer */ 214 #endif 215 216 /* 217 * During autoconfiguration or after a panic, a sleep will simply lower the 218 * priority briefly to allow interrupts, then return. The priority to be 219 * used (safepri) is machine-dependent, thus this value is initialized and 220 * maintained in the machine-dependent layers. This priority will typically 221 * be 0, or the lowest priority that is safe for use on the interrupt stack; 222 * it can be made higher to block network software interrupts after panics. 223 */ 224 int safepri; 225 226 /* 227 * OBSOLETE INTERFACE 228 * 229 * General sleep call. Suspends the current process until a wakeup is 230 * performed on the specified identifier. The process will then be made 231 * runnable with the specified priority. Sleeps at most timo/hz seconds (0 232 * means no timeout). If pri includes PCATCH flag, signals are checked 233 * before and after sleeping, else signals are not checked. Returns 0 if 234 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 235 * signal needs to be delivered, ERESTART is returned if the current system 236 * call should be restarted if possible, and EINTR is returned if the system 237 * call should be interrupted by the signal (return EINTR). 238 * 239 * The interlock is held until we are on a sleep queue. The interlock will 240 * be locked before returning back to the caller unless the PNORELOCK flag 241 * is specified, in which case the interlock will always be unlocked upon 242 * return. 243 */ 244 int 245 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 246 volatile struct simplelock *interlock) 247 { 248 struct lwp *l = curlwp; 249 sleepq_t *sq; 250 int error; 251 252 KASSERT((l->l_pflag & LP_INTR) == 0); 253 254 if (sleepq_dontsleep(l)) { 255 (void)sleepq_abort(NULL, 0); 256 if ((priority & PNORELOCK) != 0) 257 simple_unlock(interlock); 258 return 0; 259 } 260 261 l->l_kpriority = true; 262 sq = sleeptab_lookup(&sleeptab, ident); 263 sleepq_enter(sq, l); 264 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj); 265 266 if (interlock != NULL) { 267 KASSERT(simple_lock_held(interlock)); 268 simple_unlock(interlock); 269 } 270 271 error = sleepq_block(timo, priority & PCATCH); 272 273 if (interlock != NULL && (priority & PNORELOCK) == 0) 274 simple_lock(interlock); 275 276 return error; 277 } 278 279 int 280 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 281 kmutex_t *mtx) 282 { 283 struct lwp *l = curlwp; 284 sleepq_t *sq; 285 int error; 286 287 KASSERT((l->l_pflag & LP_INTR) == 0); 288 289 if (sleepq_dontsleep(l)) { 290 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0); 291 return 0; 292 } 293 294 l->l_kpriority = true; 295 sq = sleeptab_lookup(&sleeptab, ident); 296 sleepq_enter(sq, l); 297 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj); 298 mutex_exit(mtx); 299 error = sleepq_block(timo, priority & PCATCH); 300 301 if ((priority & PNORELOCK) == 0) 302 mutex_enter(mtx); 303 304 return error; 305 } 306 307 /* 308 * General sleep call for situations where a wake-up is not expected. 309 */ 310 int 311 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx) 312 { 313 struct lwp *l = curlwp; 314 sleepq_t *sq; 315 int error; 316 317 if (sleepq_dontsleep(l)) 318 return sleepq_abort(NULL, 0); 319 320 if (mtx != NULL) 321 mutex_exit(mtx); 322 l->l_kpriority = true; 323 sq = sleeptab_lookup(&sleeptab, l); 324 sleepq_enter(sq, l); 325 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj); 326 error = sleepq_block(timo, intr); 327 if (mtx != NULL) 328 mutex_enter(mtx); 329 330 return error; 331 } 332 333 /* 334 * OBSOLETE INTERFACE 335 * 336 * Make all processes sleeping on the specified identifier runnable. 337 */ 338 void 339 wakeup(wchan_t ident) 340 { 341 sleepq_t *sq; 342 343 if (cold) 344 return; 345 346 sq = sleeptab_lookup(&sleeptab, ident); 347 sleepq_wake(sq, ident, (u_int)-1); 348 } 349 350 /* 351 * OBSOLETE INTERFACE 352 * 353 * Make the highest priority process first in line on the specified 354 * identifier runnable. 355 */ 356 void 357 wakeup_one(wchan_t ident) 358 { 359 sleepq_t *sq; 360 361 if (cold) 362 return; 363 364 sq = sleeptab_lookup(&sleeptab, ident); 365 sleepq_wake(sq, ident, 1); 366 } 367 368 369 /* 370 * General yield call. Puts the current process back on its run queue and 371 * performs a voluntary context switch. Should only be called when the 372 * current process explicitly requests it (eg sched_yield(2)). 373 */ 374 void 375 yield(void) 376 { 377 struct lwp *l = curlwp; 378 379 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 380 lwp_lock(l); 381 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 382 KASSERT(l->l_stat == LSONPROC); 383 l->l_kpriority = false; 384 (void)mi_switch(l); 385 KERNEL_LOCK(l->l_biglocks, l); 386 } 387 388 /* 389 * General preemption call. Puts the current process back on its run queue 390 * and performs an involuntary context switch. 391 */ 392 void 393 preempt(void) 394 { 395 struct lwp *l = curlwp; 396 397 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 398 lwp_lock(l); 399 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 400 KASSERT(l->l_stat == LSONPROC); 401 l->l_kpriority = false; 402 l->l_nivcsw++; 403 (void)mi_switch(l); 404 KERNEL_LOCK(l->l_biglocks, l); 405 } 406 407 /* 408 * Compute the amount of time during which the current lwp was running. 409 * 410 * - update l_rtime unless it's an idle lwp. 411 */ 412 413 void 414 updatertime(lwp_t *l, const struct bintime *now) 415 { 416 417 if ((l->l_flag & LW_IDLE) != 0) 418 return; 419 420 /* rtime += now - stime */ 421 bintime_add(&l->l_rtime, now); 422 bintime_sub(&l->l_rtime, &l->l_stime); 423 } 424 425 /* 426 * The machine independent parts of context switch. 427 * 428 * Returns 1 if another LWP was actually run. 429 */ 430 int 431 mi_switch(lwp_t *l) 432 { 433 struct cpu_info *ci, *tci = NULL; 434 struct schedstate_percpu *spc; 435 struct lwp *newl; 436 int retval, oldspl; 437 struct bintime bt; 438 bool returning; 439 440 KASSERT(lwp_locked(l, NULL)); 441 LOCKDEBUG_BARRIER(l->l_mutex, 1); 442 443 #ifdef KSTACK_CHECK_MAGIC 444 kstack_check_magic(l); 445 #endif 446 447 binuptime(&bt); 448 449 KDASSERT(l->l_cpu == curcpu()); 450 ci = l->l_cpu; 451 spc = &ci->ci_schedstate; 452 returning = false; 453 newl = NULL; 454 455 /* 456 * If we have been asked to switch to a specific LWP, then there 457 * is no need to inspect the run queues. If a soft interrupt is 458 * blocking, then return to the interrupted thread without adjusting 459 * VM context or its start time: neither have been changed in order 460 * to take the interrupt. 461 */ 462 if (l->l_switchto != NULL) { 463 if ((l->l_pflag & LP_INTR) != 0) { 464 returning = true; 465 softint_block(l); 466 if ((l->l_flag & LW_TIMEINTR) != 0) 467 updatertime(l, &bt); 468 } 469 newl = l->l_switchto; 470 l->l_switchto = NULL; 471 } 472 #ifndef __HAVE_FAST_SOFTINTS 473 else if (ci->ci_data.cpu_softints != 0) { 474 /* There are pending soft interrupts, so pick one. */ 475 newl = softint_picklwp(); 476 newl->l_stat = LSONPROC; 477 newl->l_flag |= LW_RUNNING; 478 } 479 #endif /* !__HAVE_FAST_SOFTINTS */ 480 481 /* Count time spent in current system call */ 482 if (!returning) { 483 SYSCALL_TIME_SLEEP(l); 484 485 /* 486 * XXXSMP If we are using h/w performance counters, 487 * save context. 488 */ 489 #if PERFCTRS 490 if (PMC_ENABLED(l->l_proc)) { 491 pmc_save_context(l->l_proc); 492 } 493 #endif 494 updatertime(l, &bt); 495 } 496 497 /* 498 * If on the CPU and we have gotten this far, then we must yield. 499 */ 500 KASSERT(l->l_stat != LSRUN); 501 if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) { 502 KASSERT(lwp_locked(l, spc->spc_lwplock)); 503 504 if (l->l_target_cpu == l->l_cpu) { 505 l->l_target_cpu = NULL; 506 } else { 507 tci = l->l_target_cpu; 508 } 509 510 if (__predict_false(tci != NULL)) { 511 /* Double-lock the runqueues */ 512 spc_dlock(ci, tci); 513 } else { 514 /* Lock the runqueue */ 515 spc_lock(ci); 516 } 517 518 if ((l->l_flag & LW_IDLE) == 0) { 519 l->l_stat = LSRUN; 520 if (__predict_false(tci != NULL)) { 521 /* 522 * Set the new CPU, lock and unset the 523 * l_target_cpu - thread will be enqueued 524 * to the runqueue of target CPU. 525 */ 526 l->l_cpu = tci; 527 lwp_setlock(l, tci->ci_schedstate.spc_mutex); 528 l->l_target_cpu = NULL; 529 } else { 530 lwp_setlock(l, spc->spc_mutex); 531 } 532 sched_enqueue(l, true); 533 } else { 534 KASSERT(tci == NULL); 535 l->l_stat = LSIDL; 536 } 537 } else { 538 /* Lock the runqueue */ 539 spc_lock(ci); 540 } 541 542 /* 543 * Let sched_nextlwp() select the LWP to run the CPU next. 544 * If no LWP is runnable, select the idle LWP. 545 * 546 * Note that spc_lwplock might not necessary be held, and 547 * new thread would be unlocked after setting the LWP-lock. 548 */ 549 if (newl == NULL) { 550 newl = sched_nextlwp(); 551 if (newl != NULL) { 552 sched_dequeue(newl); 553 KASSERT(lwp_locked(newl, spc->spc_mutex)); 554 newl->l_stat = LSONPROC; 555 newl->l_cpu = ci; 556 newl->l_flag |= LW_RUNNING; 557 lwp_setlock(newl, spc->spc_lwplock); 558 } else { 559 newl = ci->ci_data.cpu_idlelwp; 560 newl->l_stat = LSONPROC; 561 newl->l_flag |= LW_RUNNING; 562 } 563 /* 564 * Only clear want_resched if there are no 565 * pending (slow) software interrupts. 566 */ 567 ci->ci_want_resched = ci->ci_data.cpu_softints; 568 spc->spc_flags &= ~SPCF_SWITCHCLEAR; 569 spc->spc_curpriority = lwp_eprio(newl); 570 } 571 572 /* Items that must be updated with the CPU locked. */ 573 if (!returning) { 574 /* Update the new LWP's start time. */ 575 newl->l_stime = bt; 576 577 /* 578 * ci_curlwp changes when a fast soft interrupt occurs. 579 * We use cpu_onproc to keep track of which kernel or 580 * user thread is running 'underneath' the software 581 * interrupt. This is important for time accounting, 582 * itimers and forcing user threads to preempt (aston). 583 */ 584 ci->ci_data.cpu_onproc = newl; 585 } 586 587 if (l != newl) { 588 struct lwp *prevlwp; 589 590 /* Release all locks, but leave the current LWP locked */ 591 if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) { 592 /* 593 * In case of migration, drop the local runqueue 594 * lock, thread is on other runqueue now. 595 */ 596 if (__predict_false(tci != NULL)) 597 spc_unlock(ci); 598 /* 599 * Drop spc_lwplock, if the current LWP has been moved 600 * to the run queue (it is now locked by spc_mutex). 601 */ 602 mutex_spin_exit(spc->spc_lwplock); 603 } else { 604 /* 605 * Otherwise, drop the spc_mutex, we are done with the 606 * run queues. 607 */ 608 mutex_spin_exit(spc->spc_mutex); 609 KASSERT(tci == NULL); 610 } 611 612 /* 613 * Mark that context switch is going to be perfomed 614 * for this LWP, to protect it from being switched 615 * to on another CPU. 616 */ 617 KASSERT(l->l_ctxswtch == 0); 618 l->l_ctxswtch = 1; 619 l->l_ncsw++; 620 l->l_flag &= ~LW_RUNNING; 621 622 /* 623 * Increase the count of spin-mutexes before the release 624 * of the last lock - we must remain at IPL_SCHED during 625 * the context switch. 626 */ 627 oldspl = MUTEX_SPIN_OLDSPL(ci); 628 ci->ci_mtx_count--; 629 lwp_unlock(l); 630 631 /* Count the context switch on this CPU. */ 632 ci->ci_data.cpu_nswtch++; 633 634 /* Update status for lwpctl, if present. */ 635 if (l->l_lwpctl != NULL) 636 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE; 637 638 /* 639 * Save old VM context, unless a soft interrupt 640 * handler is blocking. 641 */ 642 if (!returning) 643 pmap_deactivate(l); 644 645 /* 646 * We may need to spin-wait for if 'newl' is still 647 * context switching on another CPU. 648 */ 649 if (newl->l_ctxswtch != 0) { 650 u_int count; 651 count = SPINLOCK_BACKOFF_MIN; 652 while (newl->l_ctxswtch) 653 SPINLOCK_BACKOFF(count); 654 } 655 656 /* Switch to the new LWP.. */ 657 prevlwp = cpu_switchto(l, newl, returning); 658 ci = curcpu(); 659 660 /* 661 * Switched away - we have new curlwp. 662 * Restore VM context and IPL. 663 */ 664 pmap_activate(l); 665 if (prevlwp != NULL) { 666 /* Normalize the count of the spin-mutexes */ 667 ci->ci_mtx_count++; 668 /* Unmark the state of context switch */ 669 membar_exit(); 670 prevlwp->l_ctxswtch = 0; 671 } 672 splx(oldspl); 673 674 /* Update status for lwpctl, if present. */ 675 if (l->l_lwpctl != NULL) { 676 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci); 677 l->l_lwpctl->lc_pctr++; 678 } 679 680 retval = 1; 681 } else { 682 /* Nothing to do - just unlock and return. */ 683 KASSERT(tci == NULL); 684 spc_unlock(ci); 685 lwp_unlock(l); 686 retval = 0; 687 } 688 689 KASSERT(l == curlwp); 690 KASSERT(l->l_stat == LSONPROC); 691 KASSERT(l->l_cpu == ci); 692 693 /* 694 * XXXSMP If we are using h/w performance counters, restore context. 695 */ 696 #if PERFCTRS 697 if (PMC_ENABLED(l->l_proc)) { 698 pmc_restore_context(l->l_proc); 699 } 700 #endif 701 SYSCALL_TIME_WAKEUP(l); 702 LOCKDEBUG_BARRIER(NULL, 1); 703 704 return retval; 705 } 706 707 /* 708 * Change process state to be runnable, placing it on the run queue if it is 709 * in memory, and awakening the swapper if it isn't in memory. 710 * 711 * Call with the process and LWP locked. Will return with the LWP unlocked. 712 */ 713 void 714 setrunnable(struct lwp *l) 715 { 716 struct proc *p = l->l_proc; 717 struct cpu_info *ci; 718 sigset_t *ss; 719 720 KASSERT((l->l_flag & LW_IDLE) == 0); 721 KASSERT(mutex_owned(&p->p_smutex)); 722 KASSERT(lwp_locked(l, NULL)); 723 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex); 724 725 switch (l->l_stat) { 726 case LSSTOP: 727 /* 728 * If we're being traced (possibly because someone attached us 729 * while we were stopped), check for a signal from the debugger. 730 */ 731 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) { 732 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0) 733 ss = &l->l_sigpend.sp_set; 734 else 735 ss = &p->p_sigpend.sp_set; 736 sigaddset(ss, p->p_xstat); 737 signotify(l); 738 } 739 p->p_nrlwps++; 740 break; 741 case LSSUSPENDED: 742 l->l_flag &= ~LW_WSUSPEND; 743 p->p_nrlwps++; 744 cv_broadcast(&p->p_lwpcv); 745 break; 746 case LSSLEEP: 747 KASSERT(l->l_wchan != NULL); 748 break; 749 default: 750 panic("setrunnable: lwp %p state was %d", l, l->l_stat); 751 } 752 753 /* 754 * If the LWP was sleeping interruptably, then it's OK to start it 755 * again. If not, mark it as still sleeping. 756 */ 757 if (l->l_wchan != NULL) { 758 l->l_stat = LSSLEEP; 759 /* lwp_unsleep() will release the lock. */ 760 lwp_unsleep(l, true); 761 return; 762 } 763 764 /* 765 * If the LWP is still on the CPU, mark it as LSONPROC. It may be 766 * about to call mi_switch(), in which case it will yield. 767 */ 768 if ((l->l_flag & LW_RUNNING) != 0) { 769 l->l_stat = LSONPROC; 770 l->l_slptime = 0; 771 lwp_unlock(l); 772 return; 773 } 774 775 /* 776 * Look for a CPU to run. 777 * Set the LWP runnable. 778 */ 779 ci = sched_takecpu(l); 780 l->l_cpu = ci; 781 if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) { 782 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex); 783 lwp_lock(l); 784 } 785 sched_setrunnable(l); 786 l->l_stat = LSRUN; 787 l->l_slptime = 0; 788 789 /* 790 * If thread is swapped out - wake the swapper to bring it back in. 791 * Otherwise, enter it into a run queue. 792 */ 793 if (l->l_flag & LW_INMEM) { 794 sched_enqueue(l, false); 795 resched_cpu(l); 796 lwp_unlock(l); 797 } else { 798 lwp_unlock(l); 799 uvm_kick_scheduler(); 800 } 801 } 802 803 /* 804 * suspendsched: 805 * 806 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED. 807 */ 808 void 809 suspendsched(void) 810 { 811 CPU_INFO_ITERATOR cii; 812 struct cpu_info *ci; 813 struct lwp *l; 814 struct proc *p; 815 816 /* 817 * We do this by process in order not to violate the locking rules. 818 */ 819 mutex_enter(&proclist_lock); 820 PROCLIST_FOREACH(p, &allproc) { 821 mutex_enter(&p->p_smutex); 822 823 if ((p->p_flag & PK_SYSTEM) != 0) { 824 mutex_exit(&p->p_smutex); 825 continue; 826 } 827 828 p->p_stat = SSTOP; 829 830 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 831 if (l == curlwp) 832 continue; 833 834 lwp_lock(l); 835 836 /* 837 * Set L_WREBOOT so that the LWP will suspend itself 838 * when it tries to return to user mode. We want to 839 * try and get to get as many LWPs as possible to 840 * the user / kernel boundary, so that they will 841 * release any locks that they hold. 842 */ 843 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND); 844 845 if (l->l_stat == LSSLEEP && 846 (l->l_flag & LW_SINTR) != 0) { 847 /* setrunnable() will release the lock. */ 848 setrunnable(l); 849 continue; 850 } 851 852 lwp_unlock(l); 853 } 854 855 mutex_exit(&p->p_smutex); 856 } 857 mutex_exit(&proclist_lock); 858 859 /* 860 * Kick all CPUs to make them preempt any LWPs running in user mode. 861 * They'll trap into the kernel and suspend themselves in userret(). 862 */ 863 for (CPU_INFO_FOREACH(cii, ci)) { 864 spc_lock(ci); 865 cpu_need_resched(ci, RESCHED_IMMED); 866 spc_unlock(ci); 867 } 868 } 869 870 /* 871 * sched_unsleep: 872 * 873 * The is called when the LWP has not been awoken normally but instead 874 * interrupted: for example, if the sleep timed out. Because of this, 875 * it's not a valid action for running or idle LWPs. 876 */ 877 static u_int 878 sched_unsleep(struct lwp *l, bool cleanup) 879 { 880 881 lwp_unlock(l); 882 panic("sched_unsleep"); 883 } 884 885 void 886 resched_cpu(struct lwp *l) 887 { 888 struct cpu_info *ci; 889 890 /* 891 * XXXSMP 892 * Since l->l_cpu persists across a context switch, 893 * this gives us *very weak* processor affinity, in 894 * that we notify the CPU on which the process last 895 * ran that it should try to switch. 896 * 897 * This does not guarantee that the process will run on 898 * that processor next, because another processor might 899 * grab it the next time it performs a context switch. 900 * 901 * This also does not handle the case where its last 902 * CPU is running a higher-priority process, but every 903 * other CPU is running a lower-priority process. There 904 * are ways to handle this situation, but they're not 905 * currently very pretty, and we also need to weigh the 906 * cost of moving a process from one CPU to another. 907 */ 908 ci = l->l_cpu; 909 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority) 910 cpu_need_resched(ci, 0); 911 } 912 913 static void 914 sched_changepri(struct lwp *l, pri_t pri) 915 { 916 917 KASSERT(lwp_locked(l, NULL)); 918 919 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) { 920 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex)); 921 sched_dequeue(l); 922 l->l_priority = pri; 923 sched_enqueue(l, false); 924 } else { 925 l->l_priority = pri; 926 } 927 resched_cpu(l); 928 } 929 930 static void 931 sched_lendpri(struct lwp *l, pri_t pri) 932 { 933 934 KASSERT(lwp_locked(l, NULL)); 935 936 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) { 937 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex)); 938 sched_dequeue(l); 939 l->l_inheritedprio = pri; 940 sched_enqueue(l, false); 941 } else { 942 l->l_inheritedprio = pri; 943 } 944 resched_cpu(l); 945 } 946 947 struct lwp * 948 syncobj_noowner(wchan_t wchan) 949 { 950 951 return NULL; 952 } 953 954 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 955 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 956 957 /* 958 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 959 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 960 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 961 * 962 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 963 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 964 * 965 * If you dont want to bother with the faster/more-accurate formula, you 966 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 967 * (more general) method of calculating the %age of CPU used by a process. 968 */ 969 #define CCPU_SHIFT (FSHIFT + 1) 970 971 /* 972 * sched_pstats: 973 * 974 * Update process statistics and check CPU resource allocation. 975 * Call scheduler-specific hook to eventually adjust process/LWP 976 * priorities. 977 */ 978 /* ARGSUSED */ 979 void 980 sched_pstats(void *arg) 981 { 982 struct rlimit *rlim; 983 struct lwp *l; 984 struct proc *p; 985 int sig, clkhz; 986 long runtm; 987 988 sched_pstats_ticks++; 989 990 mutex_enter(&proclist_lock); 991 PROCLIST_FOREACH(p, &allproc) { 992 /* 993 * Increment time in/out of memory and sleep time (if 994 * sleeping). We ignore overflow; with 16-bit int's 995 * (remember them?) overflow takes 45 days. 996 */ 997 mutex_enter(&p->p_smutex); 998 mutex_spin_enter(&p->p_stmutex); 999 runtm = p->p_rtime.sec; 1000 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1001 if ((l->l_flag & LW_IDLE) != 0) 1002 continue; 1003 lwp_lock(l); 1004 runtm += l->l_rtime.sec; 1005 l->l_swtime++; 1006 sched_pstats_hook(l); 1007 lwp_unlock(l); 1008 1009 /* 1010 * p_pctcpu is only for ps. 1011 */ 1012 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT; 1013 if (l->l_slptime < 1) { 1014 clkhz = stathz != 0 ? stathz : hz; 1015 #if (FSHIFT >= CCPU_SHIFT) 1016 l->l_pctcpu += (clkhz == 100) ? 1017 ((fixpt_t)l->l_cpticks) << 1018 (FSHIFT - CCPU_SHIFT) : 1019 100 * (((fixpt_t) p->p_cpticks) 1020 << (FSHIFT - CCPU_SHIFT)) / clkhz; 1021 #else 1022 l->l_pctcpu += ((FSCALE - ccpu) * 1023 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT; 1024 #endif 1025 l->l_cpticks = 0; 1026 } 1027 } 1028 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 1029 mutex_spin_exit(&p->p_stmutex); 1030 1031 /* 1032 * Check if the process exceeds its CPU resource allocation. 1033 * If over max, kill it. 1034 */ 1035 rlim = &p->p_rlimit[RLIMIT_CPU]; 1036 sig = 0; 1037 if (runtm >= rlim->rlim_cur) { 1038 if (runtm >= rlim->rlim_max) 1039 sig = SIGKILL; 1040 else { 1041 sig = SIGXCPU; 1042 if (rlim->rlim_cur < rlim->rlim_max) 1043 rlim->rlim_cur += 5; 1044 } 1045 } 1046 mutex_exit(&p->p_smutex); 1047 if (sig) { 1048 mutex_enter(&proclist_mutex); 1049 psignal(p, sig); 1050 mutex_exit(&proclist_mutex); 1051 } 1052 } 1053 mutex_exit(&proclist_lock); 1054 uvm_meter(); 1055 cv_wakeup(&lbolt); 1056 callout_schedule(&sched_pstats_ch, hz); 1057 } 1058 1059 void 1060 sched_init(void) 1061 { 1062 1063 cv_init(&lbolt, "lbolt"); 1064 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE); 1065 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL); 1066 1067 /* Balancing */ 1068 worker_ci = curcpu(); 1069 cacheht_time = mstohz(5); /* ~5 ms */ 1070 balance_period = mstohz(300); /* ~300ms */ 1071 1072 /* Minimal count of LWPs for catching: log2(count of CPUs) */ 1073 min_catch = min(ilog2(ncpu), 4); 1074 1075 /* Initialize balancing callout and run it */ 1076 #ifdef MULTIPROCESSOR 1077 callout_init(&balance_ch, CALLOUT_MPSAFE); 1078 callout_setfunc(&balance_ch, sched_balance, NULL); 1079 callout_schedule(&balance_ch, balance_period); 1080 #endif 1081 sched_pstats(NULL); 1082 } 1083 1084 SYSCTL_SETUP(sysctl_sched_setup, "sysctl sched setup") 1085 { 1086 const struct sysctlnode *node = NULL; 1087 1088 sysctl_createv(clog, 0, NULL, NULL, 1089 CTLFLAG_PERMANENT, 1090 CTLTYPE_NODE, "kern", NULL, 1091 NULL, 0, NULL, 0, 1092 CTL_KERN, CTL_EOL); 1093 sysctl_createv(clog, 0, NULL, &node, 1094 CTLFLAG_PERMANENT, 1095 CTLTYPE_NODE, "sched", 1096 SYSCTL_DESCR("Scheduler options"), 1097 NULL, 0, NULL, 0, 1098 CTL_KERN, CTL_CREATE, CTL_EOL); 1099 1100 if (node == NULL) 1101 return; 1102 1103 sysctl_createv(clog, 0, &node, NULL, 1104 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1105 CTLTYPE_INT, "cacheht_time", 1106 SYSCTL_DESCR("Cache hotness time (in ticks)"), 1107 NULL, 0, &cacheht_time, 0, 1108 CTL_CREATE, CTL_EOL); 1109 sysctl_createv(clog, 0, &node, NULL, 1110 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1111 CTLTYPE_INT, "balance_period", 1112 SYSCTL_DESCR("Balance period (in ticks)"), 1113 NULL, 0, &balance_period, 0, 1114 CTL_CREATE, CTL_EOL); 1115 sysctl_createv(clog, 0, &node, NULL, 1116 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1117 CTLTYPE_INT, "min_catch", 1118 SYSCTL_DESCR("Minimal count of threads for catching"), 1119 NULL, 0, &min_catch, 0, 1120 CTL_CREATE, CTL_EOL); 1121 sysctl_createv(clog, 0, &node, NULL, 1122 CTLFLAG_READWRITE, 1123 CTLTYPE_INT, "timesoftints", 1124 SYSCTL_DESCR("Track CPU time for soft interrupts"), 1125 NULL, 0, &softint_timing, 0, 1126 CTL_CREATE, CTL_EOL); 1127 } 1128 1129 void 1130 sched_cpuattach(struct cpu_info *ci) 1131 { 1132 runqueue_t *ci_rq; 1133 void *rq_ptr; 1134 u_int i, size; 1135 1136 if (ci->ci_schedstate.spc_lwplock == NULL) { 1137 ci->ci_schedstate.spc_lwplock = 1138 mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED); 1139 } 1140 if (ci == lwp0.l_cpu) { 1141 /* Initialize the scheduler structure of the primary LWP */ 1142 lwp0.l_mutex = ci->ci_schedstate.spc_lwplock; 1143 } 1144 if (ci->ci_schedstate.spc_mutex != NULL) { 1145 /* Already initialized. */ 1146 return; 1147 } 1148 1149 /* Allocate the run queue */ 1150 size = roundup2(sizeof(runqueue_t), coherency_unit) + coherency_unit; 1151 rq_ptr = kmem_zalloc(size, KM_SLEEP); 1152 if (rq_ptr == NULL) { 1153 panic("sched_cpuattach: could not allocate the runqueue"); 1154 } 1155 ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), coherency_unit)); 1156 1157 /* Initialize run queues */ 1158 ci->ci_schedstate.spc_mutex = 1159 mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED); 1160 for (i = 0; i < PRI_RT_COUNT; i++) 1161 TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head); 1162 for (i = 0; i < PRI_TS_COUNT; i++) 1163 TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head); 1164 1165 ci->ci_schedstate.spc_sched_info = ci_rq; 1166 } 1167 1168 /* 1169 * Control of the runqueue. 1170 */ 1171 1172 static void * 1173 sched_getrq(runqueue_t *ci_rq, const pri_t prio) 1174 { 1175 1176 KASSERT(prio < PRI_COUNT); 1177 return (prio <= PRI_HIGHEST_TS) ? 1178 &ci_rq->r_ts_queue[prio].q_head : 1179 &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head; 1180 } 1181 1182 void 1183 sched_enqueue(struct lwp *l, bool swtch) 1184 { 1185 runqueue_t *ci_rq; 1186 struct schedstate_percpu *spc; 1187 TAILQ_HEAD(, lwp) *q_head; 1188 const pri_t eprio = lwp_eprio(l); 1189 struct cpu_info *ci; 1190 1191 ci = l->l_cpu; 1192 spc = &ci->ci_schedstate; 1193 ci_rq = spc->spc_sched_info; 1194 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex)); 1195 1196 /* Update the last run time on switch */ 1197 if (__predict_true(swtch == true)) { 1198 l->l_rticks = hardclock_ticks; 1199 l->l_rticksum += (hardclock_ticks - l->l_rticks); 1200 } else if (l->l_rticks == 0) 1201 l->l_rticks = hardclock_ticks; 1202 1203 /* Enqueue the thread */ 1204 q_head = sched_getrq(ci_rq, eprio); 1205 if (TAILQ_EMPTY(q_head)) { 1206 u_int i; 1207 uint32_t q; 1208 1209 /* Mark bit */ 1210 i = eprio >> BITMAP_SHIFT; 1211 q = BITMAP_MSB >> (eprio & BITMAP_MASK); 1212 KASSERT((ci_rq->r_bitmap[i] & q) == 0); 1213 ci_rq->r_bitmap[i] |= q; 1214 } 1215 TAILQ_INSERT_TAIL(q_head, l, l_runq); 1216 ci_rq->r_count++; 1217 if ((l->l_pflag & LP_BOUND) == 0) 1218 ci_rq->r_mcount++; 1219 1220 /* 1221 * Update the value of highest priority in the runqueue, 1222 * if priority of this thread is higher. 1223 */ 1224 if (eprio > spc->spc_maxpriority) 1225 spc->spc_maxpriority = eprio; 1226 1227 sched_newts(l); 1228 1229 /* 1230 * Wake the chosen CPU or cause a preemption if the newly 1231 * enqueued thread has higher priority. Don't cause a 1232 * preemption if the thread is yielding (swtch). 1233 */ 1234 if (!swtch && eprio > spc->spc_curpriority) { 1235 cpu_need_resched(ci, 1236 (eprio >= PRI_KERNEL ? RESCHED_IMMED : 0)); 1237 } 1238 } 1239 1240 void 1241 sched_dequeue(struct lwp *l) 1242 { 1243 runqueue_t *ci_rq; 1244 TAILQ_HEAD(, lwp) *q_head; 1245 struct schedstate_percpu *spc; 1246 const pri_t eprio = lwp_eprio(l); 1247 1248 spc = & l->l_cpu->ci_schedstate; 1249 ci_rq = spc->spc_sched_info; 1250 KASSERT(lwp_locked(l, spc->spc_mutex)); 1251 1252 KASSERT(eprio <= spc->spc_maxpriority); 1253 KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0); 1254 KASSERT(ci_rq->r_count > 0); 1255 1256 ci_rq->r_count--; 1257 if ((l->l_pflag & LP_BOUND) == 0) 1258 ci_rq->r_mcount--; 1259 1260 q_head = sched_getrq(ci_rq, eprio); 1261 TAILQ_REMOVE(q_head, l, l_runq); 1262 if (TAILQ_EMPTY(q_head)) { 1263 u_int i; 1264 uint32_t q; 1265 1266 /* Unmark bit */ 1267 i = eprio >> BITMAP_SHIFT; 1268 q = BITMAP_MSB >> (eprio & BITMAP_MASK); 1269 KASSERT((ci_rq->r_bitmap[i] & q) != 0); 1270 ci_rq->r_bitmap[i] &= ~q; 1271 1272 /* 1273 * Update the value of highest priority in the runqueue, in a 1274 * case it was a last thread in the queue of highest priority. 1275 */ 1276 if (eprio != spc->spc_maxpriority) 1277 return; 1278 1279 do { 1280 if (ci_rq->r_bitmap[i] != 0) { 1281 q = ffs(ci_rq->r_bitmap[i]); 1282 spc->spc_maxpriority = 1283 (i << BITMAP_SHIFT) + (BITMAP_BITS - q); 1284 return; 1285 } 1286 } while (i--); 1287 1288 /* If not found - set the lowest value */ 1289 spc->spc_maxpriority = 0; 1290 } 1291 } 1292 1293 /* 1294 * Migration and balancing. 1295 */ 1296 1297 #ifdef MULTIPROCESSOR 1298 1299 /* Estimate if LWP is cache-hot */ 1300 static inline bool 1301 lwp_cache_hot(const struct lwp *l) 1302 { 1303 1304 if (l->l_slptime || l->l_rticks == 0) 1305 return false; 1306 1307 return (hardclock_ticks - l->l_rticks <= cacheht_time); 1308 } 1309 1310 /* Check if LWP can migrate to the chosen CPU */ 1311 static inline bool 1312 sched_migratable(const struct lwp *l, struct cpu_info *ci) 1313 { 1314 const struct schedstate_percpu *spc = &ci->ci_schedstate; 1315 1316 /* CPU is offline */ 1317 if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) 1318 return false; 1319 1320 /* Affinity bind */ 1321 if (__predict_false(l->l_flag & LW_AFFINITY)) 1322 return CPU_ISSET(cpu_index(ci), &l->l_affinity); 1323 1324 /* Processor-set */ 1325 return (spc->spc_psid == l->l_psid); 1326 } 1327 1328 /* 1329 * Estimate the migration of LWP to the other CPU. 1330 * Take and return the CPU, if migration is needed. 1331 */ 1332 struct cpu_info * 1333 sched_takecpu(struct lwp *l) 1334 { 1335 struct cpu_info *ci, *tci, *first, *next; 1336 struct schedstate_percpu *spc; 1337 runqueue_t *ci_rq, *ici_rq; 1338 pri_t eprio, lpri, pri; 1339 1340 KASSERT(lwp_locked(l, NULL)); 1341 1342 ci = l->l_cpu; 1343 spc = &ci->ci_schedstate; 1344 ci_rq = spc->spc_sched_info; 1345 1346 /* If thread is strictly bound, do not estimate other CPUs */ 1347 if (l->l_pflag & LP_BOUND) 1348 return ci; 1349 1350 /* CPU of this thread is idling - run there */ 1351 if (ci_rq->r_count == 0) 1352 return ci; 1353 1354 eprio = lwp_eprio(l); 1355 1356 /* Stay if thread is cache-hot */ 1357 if (__predict_true(l->l_stat != LSIDL) && 1358 lwp_cache_hot(l) && eprio >= spc->spc_curpriority) 1359 return ci; 1360 1361 /* Run on current CPU if priority of thread is higher */ 1362 ci = curcpu(); 1363 spc = &ci->ci_schedstate; 1364 if (eprio > spc->spc_curpriority && sched_migratable(l, ci)) 1365 return ci; 1366 1367 /* 1368 * Look for the CPU with the lowest priority thread. In case of 1369 * equal priority, choose the CPU with the fewest of threads. 1370 */ 1371 first = l->l_cpu; 1372 ci = first; 1373 tci = first; 1374 lpri = PRI_COUNT; 1375 do { 1376 next = CIRCLEQ_LOOP_NEXT(&cpu_queue, ci, ci_data.cpu_qchain); 1377 spc = &ci->ci_schedstate; 1378 ici_rq = spc->spc_sched_info; 1379 pri = max(spc->spc_curpriority, spc->spc_maxpriority); 1380 if (pri > lpri) 1381 continue; 1382 1383 if (pri == lpri && ci_rq->r_count < ici_rq->r_count) 1384 continue; 1385 1386 if (!sched_migratable(l, ci)) 1387 continue; 1388 1389 lpri = pri; 1390 tci = ci; 1391 ci_rq = ici_rq; 1392 } while (ci = next, ci != first); 1393 1394 return tci; 1395 } 1396 1397 /* 1398 * Tries to catch an LWP from the runqueue of other CPU. 1399 */ 1400 static struct lwp * 1401 sched_catchlwp(void) 1402 { 1403 struct cpu_info *curci = curcpu(), *ci = worker_ci; 1404 struct schedstate_percpu *spc; 1405 TAILQ_HEAD(, lwp) *q_head; 1406 runqueue_t *ci_rq; 1407 struct lwp *l; 1408 1409 if (curci == ci) 1410 return NULL; 1411 1412 /* Lockless check */ 1413 spc = &ci->ci_schedstate; 1414 ci_rq = spc->spc_sched_info; 1415 if (ci_rq->r_mcount < min_catch) 1416 return NULL; 1417 1418 /* 1419 * Double-lock the runqueues. 1420 */ 1421 if (curci < ci) { 1422 spc_lock(ci); 1423 } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) { 1424 const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info; 1425 1426 spc_unlock(curci); 1427 spc_lock(ci); 1428 spc_lock(curci); 1429 1430 if (cur_rq->r_count) { 1431 spc_unlock(ci); 1432 return NULL; 1433 } 1434 } 1435 1436 if (ci_rq->r_mcount < min_catch) { 1437 spc_unlock(ci); 1438 return NULL; 1439 } 1440 1441 /* Take the highest priority thread */ 1442 q_head = sched_getrq(ci_rq, spc->spc_maxpriority); 1443 l = TAILQ_FIRST(q_head); 1444 1445 for (;;) { 1446 /* Check the first and next result from the queue */ 1447 if (l == NULL) 1448 break; 1449 KASSERT(l->l_stat == LSRUN); 1450 KASSERT(l->l_flag & LW_INMEM); 1451 1452 /* Look for threads, whose are allowed to migrate */ 1453 if ((l->l_pflag & LP_BOUND) || lwp_cache_hot(l) || 1454 !sched_migratable(l, curci)) { 1455 l = TAILQ_NEXT(l, l_runq); 1456 continue; 1457 } 1458 1459 /* Grab the thread, and move to the local run queue */ 1460 sched_dequeue(l); 1461 l->l_cpu = curci; 1462 lwp_unlock_to(l, curci->ci_schedstate.spc_mutex); 1463 sched_enqueue(l, false); 1464 return l; 1465 } 1466 spc_unlock(ci); 1467 1468 return l; 1469 } 1470 1471 /* 1472 * Periodical calculations for balancing. 1473 */ 1474 static void 1475 sched_balance(void *nocallout) 1476 { 1477 struct cpu_info *ci, *hci; 1478 runqueue_t *ci_rq; 1479 CPU_INFO_ITERATOR cii; 1480 u_int highest; 1481 1482 hci = curcpu(); 1483 highest = 0; 1484 1485 /* Make lockless countings */ 1486 for (CPU_INFO_FOREACH(cii, ci)) { 1487 ci_rq = ci->ci_schedstate.spc_sched_info; 1488 1489 /* Average count of the threads */ 1490 ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1; 1491 1492 /* Look for CPU with the highest average */ 1493 if (ci_rq->r_avgcount > highest) { 1494 hci = ci; 1495 highest = ci_rq->r_avgcount; 1496 } 1497 } 1498 1499 /* Update the worker */ 1500 worker_ci = hci; 1501 1502 if (nocallout == NULL) 1503 callout_schedule(&balance_ch, balance_period); 1504 } 1505 1506 #else 1507 1508 struct cpu_info * 1509 sched_takecpu(struct lwp *l) 1510 { 1511 1512 return l->l_cpu; 1513 } 1514 1515 #endif /* MULTIPROCESSOR */ 1516 1517 /* 1518 * Scheduler mill. 1519 */ 1520 struct lwp * 1521 sched_nextlwp(void) 1522 { 1523 struct cpu_info *ci = curcpu(); 1524 struct schedstate_percpu *spc; 1525 TAILQ_HEAD(, lwp) *q_head; 1526 runqueue_t *ci_rq; 1527 struct lwp *l; 1528 1529 spc = &ci->ci_schedstate; 1530 ci_rq = spc->spc_sched_info; 1531 1532 #ifdef MULTIPROCESSOR 1533 /* If runqueue is empty, try to catch some thread from other CPU */ 1534 if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) { 1535 if ((ci_rq->r_count - ci_rq->r_mcount) == 0) 1536 return NULL; 1537 } else if (ci_rq->r_count == 0) { 1538 /* Reset the counter, and call the balancer */ 1539 ci_rq->r_avgcount = 0; 1540 sched_balance(ci); 1541 1542 /* The re-locking will be done inside */ 1543 return sched_catchlwp(); 1544 } 1545 #else 1546 if (ci_rq->r_count == 0) 1547 return NULL; 1548 #endif 1549 1550 /* Take the highest priority thread */ 1551 KASSERT(ci_rq->r_bitmap[spc->spc_maxpriority >> BITMAP_SHIFT]); 1552 q_head = sched_getrq(ci_rq, spc->spc_maxpriority); 1553 l = TAILQ_FIRST(q_head); 1554 KASSERT(l != NULL); 1555 1556 sched_oncpu(l); 1557 l->l_rticks = hardclock_ticks; 1558 1559 return l; 1560 } 1561 1562 bool 1563 sched_curcpu_runnable_p(void) 1564 { 1565 const struct cpu_info *ci = curcpu(); 1566 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info; 1567 1568 #ifndef __HAVE_FAST_SOFTINTS 1569 if (ci->ci_data.cpu_softints) 1570 return true; 1571 #endif 1572 1573 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE) 1574 return (ci_rq->r_count - ci_rq->r_mcount); 1575 1576 return ci_rq->r_count; 1577 } 1578 1579 /* 1580 * Debugging. 1581 */ 1582 1583 #ifdef DDB 1584 1585 void 1586 sched_print_runqueue(void (*pr)(const char *, ...) 1587 __attribute__((__format__(__printf__,1,2)))) 1588 { 1589 runqueue_t *ci_rq; 1590 struct schedstate_percpu *spc; 1591 struct lwp *l; 1592 struct proc *p; 1593 int i; 1594 struct cpu_info *ci; 1595 CPU_INFO_ITERATOR cii; 1596 1597 for (CPU_INFO_FOREACH(cii, ci)) { 1598 spc = &ci->ci_schedstate; 1599 ci_rq = spc->spc_sched_info; 1600 1601 (*pr)("Run-queue (CPU = %u):\n", ci->ci_index); 1602 (*pr)(" pid.lid = %d.%d, threads count = %u, " 1603 "avgcount = %u, highest pri = %d\n", 1604 #ifdef MULTIPROCESSOR 1605 ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid, 1606 #else 1607 curlwp->l_proc->p_pid, curlwp->l_lid, 1608 #endif 1609 ci_rq->r_count, ci_rq->r_avgcount, spc->spc_maxpriority); 1610 i = (PRI_COUNT >> BITMAP_SHIFT) - 1; 1611 do { 1612 uint32_t q; 1613 q = ci_rq->r_bitmap[i]; 1614 (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q); 1615 } while (i--); 1616 } 1617 1618 (*pr)(" %5s %4s %4s %10s %3s %18s %4s %s\n", 1619 "LID", "PRI", "EPRI", "FL", "ST", "LWP", "CPU", "LRTIME"); 1620 1621 PROCLIST_FOREACH(p, &allproc) { 1622 (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm); 1623 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1624 ci = l->l_cpu; 1625 (*pr)(" | %5d %4u %4u 0x%8.8x %3s %18p %4u %u\n", 1626 (int)l->l_lid, l->l_priority, lwp_eprio(l), 1627 l->l_flag, l->l_stat == LSRUN ? "RQ" : 1628 (l->l_stat == LSSLEEP ? "SQ" : "-"), 1629 l, ci->ci_index, 1630 (u_int)(hardclock_ticks - l->l_rticks)); 1631 } 1632 } 1633 } 1634 1635 #endif 1636