1 /* $NetBSD: kern_synch.c,v 1.43 1996/11/06 20:20:00 cgd Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1990, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94 41 */ 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/proc.h> 46 #include <sys/kernel.h> 47 #include <sys/buf.h> 48 #include <sys/signalvar.h> 49 #include <sys/resourcevar.h> 50 #include <vm/vm.h> 51 #ifdef KTRACE 52 #include <sys/ktrace.h> 53 #endif 54 55 #include <machine/cpu.h> 56 57 u_char curpriority; /* usrpri of curproc */ 58 int lbolt; /* once a second sleep address */ 59 60 void roundrobin __P((void *)); 61 void schedcpu __P((void *)); 62 void updatepri __P((struct proc *)); 63 void endtsleep __P((void *)); 64 65 /* 66 * Force switch among equal priority processes every 100ms. 67 */ 68 /* ARGSUSED */ 69 void 70 roundrobin(arg) 71 void *arg; 72 { 73 74 need_resched(); 75 timeout(roundrobin, NULL, hz / 10); 76 } 77 78 /* 79 * Constants for digital decay and forget: 80 * 90% of (p_estcpu) usage in 5 * loadav time 81 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 82 * Note that, as ps(1) mentions, this can let percentages 83 * total over 100% (I've seen 137.9% for 3 processes). 84 * 85 * Note that hardclock updates p_estcpu and p_cpticks independently. 86 * 87 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. 88 * That is, the system wants to compute a value of decay such 89 * that the following for loop: 90 * for (i = 0; i < (5 * loadavg); i++) 91 * p_estcpu *= decay; 92 * will compute 93 * p_estcpu *= 0.1; 94 * for all values of loadavg: 95 * 96 * Mathematically this loop can be expressed by saying: 97 * decay ** (5 * loadavg) ~= .1 98 * 99 * The system computes decay as: 100 * decay = (2 * loadavg) / (2 * loadavg + 1) 101 * 102 * We wish to prove that the system's computation of decay 103 * will always fulfill the equation: 104 * decay ** (5 * loadavg) ~= .1 105 * 106 * If we compute b as: 107 * b = 2 * loadavg 108 * then 109 * decay = b / (b + 1) 110 * 111 * We now need to prove two things: 112 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 113 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 114 * 115 * Facts: 116 * For x close to zero, exp(x) =~ 1 + x, since 117 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 118 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 119 * For x close to zero, ln(1+x) =~ x, since 120 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 121 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 122 * ln(.1) =~ -2.30 123 * 124 * Proof of (1): 125 * Solve (factor)**(power) =~ .1 given power (5*loadav): 126 * solving for factor, 127 * ln(factor) =~ (-2.30/5*loadav), or 128 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 129 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 130 * 131 * Proof of (2): 132 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 133 * solving for power, 134 * power*ln(b/(b+1)) =~ -2.30, or 135 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 136 * 137 * Actual power values for the implemented algorithm are as follows: 138 * loadav: 1 2 3 4 139 * power: 5.68 10.32 14.94 19.55 140 */ 141 142 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 143 #define loadfactor(loadav) (2 * (loadav)) 144 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 145 146 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 147 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 148 149 /* 150 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 151 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 152 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 153 * 154 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 155 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 156 * 157 * If you dont want to bother with the faster/more-accurate formula, you 158 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 159 * (more general) method of calculating the %age of CPU used by a process. 160 */ 161 #define CCPU_SHIFT 11 162 163 /* 164 * Recompute process priorities, every hz ticks. 165 */ 166 /* ARGSUSED */ 167 void 168 schedcpu(arg) 169 void *arg; 170 { 171 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 172 register struct proc *p; 173 register int s; 174 register unsigned int newcpu; 175 176 wakeup((caddr_t)&lbolt); 177 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { 178 /* 179 * Increment time in/out of memory and sleep time 180 * (if sleeping). We ignore overflow; with 16-bit int's 181 * (remember them?) overflow takes 45 days. 182 */ 183 p->p_swtime++; 184 if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 185 p->p_slptime++; 186 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 187 /* 188 * If the process has slept the entire second, 189 * stop recalculating its priority until it wakes up. 190 */ 191 if (p->p_slptime > 1) 192 continue; 193 s = splstatclock(); /* prevent state changes */ 194 /* 195 * p_pctcpu is only for ps. 196 */ 197 #if (FSHIFT >= CCPU_SHIFT) 198 p->p_pctcpu += (hz == 100)? 199 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 200 100 * (((fixpt_t) p->p_cpticks) 201 << (FSHIFT - CCPU_SHIFT)) / hz; 202 #else 203 p->p_pctcpu += ((FSCALE - ccpu) * 204 (p->p_cpticks * FSCALE / hz)) >> FSHIFT; 205 #endif 206 p->p_cpticks = 0; 207 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu) 208 + p->p_nice - NZERO; 209 p->p_estcpu = min(newcpu, UCHAR_MAX); 210 resetpriority(p); 211 if (p->p_priority >= PUSER) { 212 #define PPQ (128 / NQS) /* priorities per queue */ 213 if ((p != curproc) && 214 p->p_stat == SRUN && 215 (p->p_flag & P_INMEM) && 216 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) { 217 remrunqueue(p); 218 p->p_priority = p->p_usrpri; 219 setrunqueue(p); 220 } else 221 p->p_priority = p->p_usrpri; 222 } 223 splx(s); 224 } 225 vmmeter(); 226 if (bclnlist != NULL) 227 wakeup((caddr_t)pageproc); 228 timeout(schedcpu, (void *)0, hz); 229 } 230 231 /* 232 * Recalculate the priority of a process after it has slept for a while. 233 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at 234 * least six times the loadfactor will decay p_estcpu to zero. 235 */ 236 void 237 updatepri(p) 238 register struct proc *p; 239 { 240 register unsigned int newcpu = p->p_estcpu; 241 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 242 243 if (p->p_slptime > 5 * loadfac) 244 p->p_estcpu = 0; 245 else { 246 p->p_slptime--; /* the first time was done in schedcpu */ 247 while (newcpu && --p->p_slptime) 248 newcpu = (int) decay_cpu(loadfac, newcpu); 249 p->p_estcpu = min(newcpu, UCHAR_MAX); 250 } 251 resetpriority(p); 252 } 253 254 /* 255 * We're only looking at 7 bits of the address; everything is 256 * aligned to 4, lots of things are aligned to greater powers 257 * of 2. Shift right by 8, i.e. drop the bottom 256 worth. 258 */ 259 #define TABLESIZE 128 260 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1)) 261 struct slpque { 262 struct proc *sq_head; 263 struct proc **sq_tailp; 264 } slpque[TABLESIZE]; 265 266 /* 267 * During autoconfiguration or after a panic, a sleep will simply 268 * lower the priority briefly to allow interrupts, then return. 269 * The priority to be used (safepri) is machine-dependent, thus this 270 * value is initialized and maintained in the machine-dependent layers. 271 * This priority will typically be 0, or the lowest priority 272 * that is safe for use on the interrupt stack; it can be made 273 * higher to block network software interrupts after panics. 274 */ 275 int safepri; 276 277 /* 278 * General sleep call. Suspends the current process until a wakeup is 279 * performed on the specified identifier. The process will then be made 280 * runnable with the specified priority. Sleeps at most timo/hz seconds 281 * (0 means no timeout). If pri includes PCATCH flag, signals are checked 282 * before and after sleeping, else signals are not checked. Returns 0 if 283 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 284 * signal needs to be delivered, ERESTART is returned if the current system 285 * call should be restarted if possible, and EINTR is returned if the system 286 * call should be interrupted by the signal (return EINTR). 287 */ 288 int 289 tsleep(ident, priority, wmesg, timo) 290 void *ident; 291 int priority, timo; 292 char *wmesg; 293 { 294 register struct proc *p = curproc; 295 register struct slpque *qp; 296 register s; 297 int sig, catch = priority & PCATCH; 298 extern int cold; 299 void endtsleep __P((void *)); 300 301 if (cold || panicstr) { 302 /* 303 * After a panic, or during autoconfiguration, 304 * just give interrupts a chance, then just return; 305 * don't run any other procs or panic below, 306 * in case this is the idle process and already asleep. 307 */ 308 s = splhigh(); 309 splx(safepri); 310 splx(s); 311 return (0); 312 } 313 314 #ifdef KTRACE 315 if (KTRPOINT(p, KTR_CSW)) 316 ktrcsw(p->p_tracep, 1, 0); 317 #endif 318 s = splhigh(); 319 320 #ifdef DIAGNOSTIC 321 if (ident == NULL || p->p_stat != SRUN || p->p_back) 322 panic("tsleep"); 323 #endif 324 p->p_wchan = ident; 325 p->p_wmesg = wmesg; 326 p->p_slptime = 0; 327 p->p_priority = priority & PRIMASK; 328 qp = &slpque[LOOKUP(ident)]; 329 if (qp->sq_head == 0) 330 qp->sq_head = p; 331 else 332 *qp->sq_tailp = p; 333 *(qp->sq_tailp = &p->p_forw) = 0; 334 if (timo) 335 timeout(endtsleep, (void *)p, timo); 336 /* 337 * We put ourselves on the sleep queue and start our timeout 338 * before calling CURSIG, as we could stop there, and a wakeup 339 * or a SIGCONT (or both) could occur while we were stopped. 340 * A SIGCONT would cause us to be marked as SSLEEP 341 * without resuming us, thus we must be ready for sleep 342 * when CURSIG is called. If the wakeup happens while we're 343 * stopped, p->p_wchan will be 0 upon return from CURSIG. 344 */ 345 if (catch) { 346 p->p_flag |= P_SINTR; 347 if ((sig = CURSIG(p)) != 0) { 348 if (p->p_wchan) 349 unsleep(p); 350 p->p_stat = SRUN; 351 goto resume; 352 } 353 if (p->p_wchan == 0) { 354 catch = 0; 355 goto resume; 356 } 357 } else 358 sig = 0; 359 p->p_stat = SSLEEP; 360 p->p_stats->p_ru.ru_nvcsw++; 361 mi_switch(); 362 #ifdef DDB 363 /* handy breakpoint location after process "wakes" */ 364 asm(".globl bpendtsleep ; bpendtsleep:"); 365 #endif 366 resume: 367 curpriority = p->p_usrpri; 368 splx(s); 369 p->p_flag &= ~P_SINTR; 370 if (p->p_flag & P_TIMEOUT) { 371 p->p_flag &= ~P_TIMEOUT; 372 if (sig == 0) { 373 #ifdef KTRACE 374 if (KTRPOINT(p, KTR_CSW)) 375 ktrcsw(p->p_tracep, 0, 0); 376 #endif 377 return (EWOULDBLOCK); 378 } 379 } else if (timo) 380 untimeout(endtsleep, (void *)p); 381 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) { 382 #ifdef KTRACE 383 if (KTRPOINT(p, KTR_CSW)) 384 ktrcsw(p->p_tracep, 0, 0); 385 #endif 386 if (p->p_sigacts->ps_sigintr & sigmask(sig)) 387 return (EINTR); 388 return (ERESTART); 389 } 390 #ifdef KTRACE 391 if (KTRPOINT(p, KTR_CSW)) 392 ktrcsw(p->p_tracep, 0, 0); 393 #endif 394 return (0); 395 } 396 397 /* 398 * Implement timeout for tsleep. 399 * If process hasn't been awakened (wchan non-zero), 400 * set timeout flag and undo the sleep. If proc 401 * is stopped, just unsleep so it will remain stopped. 402 */ 403 void 404 endtsleep(arg) 405 void *arg; 406 { 407 register struct proc *p; 408 int s; 409 410 p = (struct proc *)arg; 411 s = splhigh(); 412 if (p->p_wchan) { 413 if (p->p_stat == SSLEEP) 414 setrunnable(p); 415 else 416 unsleep(p); 417 p->p_flag |= P_TIMEOUT; 418 } 419 splx(s); 420 } 421 422 /* 423 * Short-term, non-interruptable sleep. 424 */ 425 void 426 sleep(ident, priority) 427 void *ident; 428 int priority; 429 { 430 register struct proc *p = curproc; 431 register struct slpque *qp; 432 register s; 433 extern int cold; 434 435 #ifdef DIAGNOSTIC 436 if (priority > PZERO) { 437 printf("sleep called with priority %d > PZERO, wchan: %p\n", 438 priority, ident); 439 panic("old sleep"); 440 } 441 #endif 442 s = splhigh(); 443 if (cold || panicstr) { 444 /* 445 * After a panic, or during autoconfiguration, 446 * just give interrupts a chance, then just return; 447 * don't run any other procs or panic below, 448 * in case this is the idle process and already asleep. 449 */ 450 splx(safepri); 451 splx(s); 452 return; 453 } 454 #ifdef DIAGNOSTIC 455 if (ident == NULL || p->p_stat != SRUN || p->p_back) 456 panic("sleep"); 457 #endif 458 p->p_wchan = ident; 459 p->p_wmesg = NULL; 460 p->p_slptime = 0; 461 p->p_priority = priority; 462 qp = &slpque[LOOKUP(ident)]; 463 if (qp->sq_head == 0) 464 qp->sq_head = p; 465 else 466 *qp->sq_tailp = p; 467 *(qp->sq_tailp = &p->p_forw) = 0; 468 p->p_stat = SSLEEP; 469 p->p_stats->p_ru.ru_nvcsw++; 470 #ifdef KTRACE 471 if (KTRPOINT(p, KTR_CSW)) 472 ktrcsw(p->p_tracep, 1, 0); 473 #endif 474 mi_switch(); 475 #ifdef DDB 476 /* handy breakpoint location after process "wakes" */ 477 asm(".globl bpendsleep ; bpendsleep:"); 478 #endif 479 #ifdef KTRACE 480 if (KTRPOINT(p, KTR_CSW)) 481 ktrcsw(p->p_tracep, 0, 0); 482 #endif 483 curpriority = p->p_usrpri; 484 splx(s); 485 } 486 487 /* 488 * Remove a process from its wait queue 489 */ 490 void 491 unsleep(p) 492 register struct proc *p; 493 { 494 register struct slpque *qp; 495 register struct proc **hp; 496 int s; 497 498 s = splhigh(); 499 if (p->p_wchan) { 500 hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head; 501 while (*hp != p) 502 hp = &(*hp)->p_forw; 503 *hp = p->p_forw; 504 if (qp->sq_tailp == &p->p_forw) 505 qp->sq_tailp = hp; 506 p->p_wchan = 0; 507 } 508 splx(s); 509 } 510 511 /* 512 * Make all processes sleeping on the specified identifier runnable. 513 */ 514 void 515 wakeup(ident) 516 register void *ident; 517 { 518 register struct slpque *qp; 519 register struct proc *p, **q; 520 int s; 521 522 s = splhigh(); 523 qp = &slpque[LOOKUP(ident)]; 524 restart: 525 for (q = &qp->sq_head; (p = *q) != NULL; ) { 526 #ifdef DIAGNOSTIC 527 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP)) 528 panic("wakeup"); 529 #endif 530 if (p->p_wchan == ident) { 531 p->p_wchan = 0; 532 *q = p->p_forw; 533 if (qp->sq_tailp == &p->p_forw) 534 qp->sq_tailp = q; 535 if (p->p_stat == SSLEEP) { 536 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 537 if (p->p_slptime > 1) 538 updatepri(p); 539 p->p_slptime = 0; 540 p->p_stat = SRUN; 541 if (p->p_flag & P_INMEM) 542 setrunqueue(p); 543 /* 544 * Since curpriority is a user priority, 545 * p->p_priority is always better than 546 * curpriority. 547 */ 548 if ((p->p_flag & P_INMEM) == 0) 549 wakeup((caddr_t)&proc0); 550 else 551 need_resched(); 552 /* END INLINE EXPANSION */ 553 goto restart; 554 } 555 } else 556 q = &p->p_forw; 557 } 558 splx(s); 559 } 560 561 /* 562 * The machine independent parts of mi_switch(). 563 * Must be called at splstatclock() or higher. 564 */ 565 void 566 mi_switch() 567 { 568 register struct proc *p = curproc; /* XXX */ 569 register struct rlimit *rlim; 570 register long s, u; 571 struct timeval tv; 572 573 /* 574 * Compute the amount of time during which the current 575 * process was running, and add that to its total so far. 576 */ 577 microtime(&tv); 578 u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec); 579 s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec); 580 if (u < 0) { 581 u += 1000000; 582 s--; 583 } else if (u >= 1000000) { 584 u -= 1000000; 585 s++; 586 } 587 p->p_rtime.tv_usec = u; 588 p->p_rtime.tv_sec = s; 589 590 /* 591 * Check if the process exceeds its cpu resource allocation. 592 * If over max, kill it. In any case, if it has run for more 593 * than 10 minutes, reduce priority to give others a chance. 594 */ 595 rlim = &p->p_rlimit[RLIMIT_CPU]; 596 if (s >= rlim->rlim_cur) { 597 if (s >= rlim->rlim_max) 598 psignal(p, SIGKILL); 599 else { 600 psignal(p, SIGXCPU); 601 if (rlim->rlim_cur < rlim->rlim_max) 602 rlim->rlim_cur += 5; 603 } 604 } 605 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) { 606 p->p_nice = autoniceval + NZERO; 607 resetpriority(p); 608 } 609 610 /* 611 * Pick a new current process and record its start time. 612 */ 613 cnt.v_swtch++; 614 cpu_switch(p); 615 microtime(&runtime); 616 } 617 618 /* 619 * Initialize the (doubly-linked) run queues 620 * to be empty. 621 */ 622 void 623 rqinit() 624 { 625 register int i; 626 627 for (i = 0; i < NQS; i++) 628 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i]; 629 } 630 631 /* 632 * Change process state to be runnable, 633 * placing it on the run queue if it is in memory, 634 * and awakening the swapper if it isn't in memory. 635 */ 636 void 637 setrunnable(p) 638 register struct proc *p; 639 { 640 register int s; 641 642 s = splhigh(); 643 switch (p->p_stat) { 644 case 0: 645 case SRUN: 646 case SZOMB: 647 default: 648 panic("setrunnable"); 649 case SSTOP: 650 /* 651 * If we're being traced (possibly because someone attached us 652 * while we were stopped), check for a signal from the debugger. 653 */ 654 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) 655 p->p_siglist |= sigmask(p->p_xstat); 656 case SSLEEP: 657 unsleep(p); /* e.g. when sending signals */ 658 break; 659 660 case SIDL: 661 break; 662 } 663 p->p_stat = SRUN; 664 if (p->p_flag & P_INMEM) 665 setrunqueue(p); 666 splx(s); 667 if (p->p_slptime > 1) 668 updatepri(p); 669 p->p_slptime = 0; 670 if ((p->p_flag & P_INMEM) == 0) 671 wakeup((caddr_t)&proc0); 672 else if (p->p_priority < curpriority) 673 need_resched(); 674 } 675 676 /* 677 * Compute the priority of a process when running in user mode. 678 * Arrange to reschedule if the resulting priority is better 679 * than that of the current process. 680 */ 681 void 682 resetpriority(p) 683 register struct proc *p; 684 { 685 register unsigned int newpriority; 686 687 newpriority = PUSER + p->p_estcpu / 4 + 2 * (p->p_nice - NZERO); 688 newpriority = min(newpriority, MAXPRI); 689 p->p_usrpri = newpriority; 690 if (newpriority < curpriority) 691 need_resched(); 692 } 693 694 #ifdef DDB 695 #include <machine/db_machdep.h> 696 697 #include <ddb/db_interface.h> 698 #include <ddb/db_output.h> 699 700 void 701 db_show_all_procs(addr, haddr, count, modif) 702 db_expr_t addr; 703 int haddr; 704 db_expr_t count; 705 char *modif; 706 { 707 int map = modif[0] == 'm'; 708 int doingzomb = 0; 709 struct proc *p, *pp; 710 711 p = allproc.lh_first; 712 db_printf(" pid proc addr %s comm wchan\n", 713 map ? "map " : "uid ppid pgrp flag stat em "); 714 while (p != 0) { 715 pp = p->p_pptr; 716 if (p->p_stat) { 717 db_printf("%5d %p %p ", 718 p->p_pid, p, p->p_addr); 719 if (map) 720 db_printf("%p %s ", 721 p->p_vmspace, p->p_comm); 722 else 723 db_printf("%3d %5d %5d %06x %d %s %s ", 724 p->p_cred->p_ruid, pp ? pp->p_pid : -1, 725 p->p_pgrp->pg_id, p->p_flag, p->p_stat, 726 p->p_emul->e_name, p->p_comm); 727 if (p->p_wchan) { 728 if (p->p_wmesg) 729 db_printf("%s ", p->p_wmesg); 730 db_printf("%p", p->p_wchan); 731 } 732 db_printf("\n"); 733 } 734 p = p->p_list.le_next; 735 if (p == 0 && doingzomb == 0) { 736 doingzomb = 1; 737 p = zombproc.lh_first; 738 } 739 } 740 } 741 #endif 742