1 /* $NetBSD: kern_synch.c,v 1.356 2023/06/23 22:49:38 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and 11 * Daniel Sieger. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /*- 36 * Copyright (c) 1982, 1986, 1990, 1991, 1993 37 * The Regents of the University of California. All rights reserved. 38 * (c) UNIX System Laboratories, Inc. 39 * All or some portions of this file are derived from material licensed 40 * to the University of California by American Telephone and Telegraph 41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 42 * the permission of UNIX System Laboratories, Inc. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. Neither the name of the University nor the names of its contributors 53 * may be used to endorse or promote products derived from this software 54 * without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 66 * SUCH DAMAGE. 67 * 68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 69 */ 70 71 #include <sys/cdefs.h> 72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.356 2023/06/23 22:49:38 riastradh Exp $"); 73 74 #include "opt_kstack.h" 75 #include "opt_dtrace.h" 76 77 #define __MUTEX_PRIVATE 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/kernel.h> 83 #include <sys/cpu.h> 84 #include <sys/pserialize.h> 85 #include <sys/resource.h> 86 #include <sys/resourcevar.h> 87 #include <sys/rwlock.h> 88 #include <sys/sched.h> 89 #include <sys/syscall_stats.h> 90 #include <sys/sleepq.h> 91 #include <sys/lockdebug.h> 92 #include <sys/evcnt.h> 93 #include <sys/intr.h> 94 #include <sys/lwpctl.h> 95 #include <sys/atomic.h> 96 #include <sys/syslog.h> 97 98 #include <uvm/uvm_extern.h> 99 100 #include <dev/lockstat.h> 101 102 #include <sys/dtrace_bsd.h> 103 int dtrace_vtime_active=0; 104 dtrace_vtime_switch_func_t dtrace_vtime_switch_func; 105 106 static void sched_unsleep(struct lwp *, bool); 107 static void sched_changepri(struct lwp *, pri_t); 108 static void sched_lendpri(struct lwp *, pri_t); 109 110 syncobj_t sleep_syncobj = { 111 .sobj_flag = SOBJ_SLEEPQ_SORTED, 112 .sobj_unsleep = sleepq_unsleep, 113 .sobj_changepri = sleepq_changepri, 114 .sobj_lendpri = sleepq_lendpri, 115 .sobj_owner = syncobj_noowner, 116 }; 117 118 syncobj_t sched_syncobj = { 119 .sobj_flag = SOBJ_SLEEPQ_SORTED, 120 .sobj_unsleep = sched_unsleep, 121 .sobj_changepri = sched_changepri, 122 .sobj_lendpri = sched_lendpri, 123 .sobj_owner = syncobj_noowner, 124 }; 125 126 syncobj_t kpause_syncobj = { 127 .sobj_flag = SOBJ_SLEEPQ_NULL, 128 .sobj_unsleep = sleepq_unsleep, 129 .sobj_changepri = sleepq_changepri, 130 .sobj_lendpri = sleepq_lendpri, 131 .sobj_owner = syncobj_noowner, 132 }; 133 134 /* "Lightning bolt": once a second sleep address. */ 135 kcondvar_t lbolt __cacheline_aligned; 136 137 u_int sched_pstats_ticks __cacheline_aligned; 138 139 /* Preemption event counters. */ 140 static struct evcnt kpreempt_ev_crit __cacheline_aligned; 141 static struct evcnt kpreempt_ev_klock __cacheline_aligned; 142 static struct evcnt kpreempt_ev_immed __cacheline_aligned; 143 144 void 145 synch_init(void) 146 { 147 148 cv_init(&lbolt, "lbolt"); 149 150 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL, 151 "kpreempt", "defer: critical section"); 152 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL, 153 "kpreempt", "defer: kernel_lock"); 154 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL, 155 "kpreempt", "immediate"); 156 } 157 158 /* 159 * OBSOLETE INTERFACE 160 * 161 * General sleep call. Suspends the current LWP until a wakeup is 162 * performed on the specified identifier. The LWP will then be made 163 * runnable with the specified priority. Sleeps at most timo/hz seconds (0 164 * means no timeout). If pri includes PCATCH flag, signals are checked 165 * before and after sleeping, else signals are not checked. Returns 0 if 166 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 167 * signal needs to be delivered, ERESTART is returned if the current system 168 * call should be restarted if possible, and EINTR is returned if the system 169 * call should be interrupted by the signal (return EINTR). 170 */ 171 int 172 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo) 173 { 174 struct lwp *l = curlwp; 175 sleepq_t *sq; 176 kmutex_t *mp; 177 bool catch_p; 178 179 KASSERT((l->l_pflag & LP_INTR) == 0); 180 KASSERT(ident != &lbolt); 181 //KASSERT(KERNEL_LOCKED_P()); 182 183 if (sleepq_dontsleep(l)) { 184 (void)sleepq_abort(NULL, 0); 185 return 0; 186 } 187 188 l->l_kpriority = true; 189 catch_p = priority & PCATCH; 190 sq = sleeptab_lookup(&sleeptab, ident, &mp); 191 sleepq_enter(sq, l, mp); 192 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p); 193 return sleepq_block(timo, catch_p, &sleep_syncobj); 194 } 195 196 int 197 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 198 kmutex_t *mtx) 199 { 200 struct lwp *l = curlwp; 201 sleepq_t *sq; 202 kmutex_t *mp; 203 bool catch_p; 204 int error; 205 206 KASSERT((l->l_pflag & LP_INTR) == 0); 207 KASSERT(ident != &lbolt); 208 209 if (sleepq_dontsleep(l)) { 210 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0); 211 return 0; 212 } 213 214 l->l_kpriority = true; 215 catch_p = priority & PCATCH; 216 sq = sleeptab_lookup(&sleeptab, ident, &mp); 217 sleepq_enter(sq, l, mp); 218 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p); 219 mutex_exit(mtx); 220 error = sleepq_block(timo, catch_p, &sleep_syncobj); 221 222 if ((priority & PNORELOCK) == 0) 223 mutex_enter(mtx); 224 225 return error; 226 } 227 228 /* 229 * General sleep call for situations where a wake-up is not expected. 230 */ 231 int 232 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx) 233 { 234 struct lwp *l = curlwp; 235 int error; 236 237 KASSERT(timo != 0 || intr); 238 239 if (sleepq_dontsleep(l)) 240 return sleepq_abort(NULL, 0); 241 242 if (mtx != NULL) 243 mutex_exit(mtx); 244 l->l_kpriority = true; 245 lwp_lock(l); 246 KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks); 247 sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr); 248 error = sleepq_block(timo, intr, &kpause_syncobj); 249 if (mtx != NULL) 250 mutex_enter(mtx); 251 252 return error; 253 } 254 255 /* 256 * OBSOLETE INTERFACE 257 * 258 * Make all LWPs sleeping on the specified identifier runnable. 259 */ 260 void 261 wakeup(wchan_t ident) 262 { 263 sleepq_t *sq; 264 kmutex_t *mp; 265 266 if (__predict_false(cold)) 267 return; 268 269 sq = sleeptab_lookup(&sleeptab, ident, &mp); 270 sleepq_wake(sq, ident, (u_int)-1, mp); 271 } 272 273 /* 274 * General yield call. Puts the current LWP back on its run queue and 275 * performs a context switch. 276 */ 277 void 278 yield(void) 279 { 280 struct lwp *l = curlwp; 281 282 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 283 lwp_lock(l); 284 285 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 286 KASSERT(l->l_stat == LSONPROC); 287 288 /* Voluntary - ditch kpriority boost. */ 289 l->l_kpriority = false; 290 spc_lock(l->l_cpu); 291 mi_switch(l); 292 KERNEL_LOCK(l->l_biglocks, l); 293 } 294 295 /* 296 * General preemption call. Puts the current LWP back on its run queue 297 * and performs an involuntary context switch. Different from yield() 298 * in that: 299 * 300 * - It's counted differently (involuntary vs. voluntary). 301 * - Realtime threads go to the head of their runqueue vs. tail for yield(). 302 * - Priority boost is retained unless LWP has exceeded timeslice. 303 */ 304 void 305 preempt(void) 306 { 307 struct lwp *l = curlwp; 308 309 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 310 lwp_lock(l); 311 312 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 313 KASSERT(l->l_stat == LSONPROC); 314 315 spc_lock(l->l_cpu); 316 /* Involuntary - keep kpriority boost unless a CPU hog. */ 317 if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) { 318 l->l_kpriority = false; 319 } 320 l->l_pflag |= LP_PREEMPTING; 321 mi_switch(l); 322 KERNEL_LOCK(l->l_biglocks, l); 323 } 324 325 /* 326 * Return true if the current LWP should yield the processor. Intended to 327 * be used by long-running code in kernel. 328 */ 329 inline bool 330 preempt_needed(void) 331 { 332 lwp_t *l = curlwp; 333 int needed; 334 335 KPREEMPT_DISABLE(l); 336 needed = l->l_cpu->ci_want_resched; 337 KPREEMPT_ENABLE(l); 338 339 return (needed != 0); 340 } 341 342 /* 343 * A breathing point for long running code in kernel. 344 */ 345 void 346 preempt_point(void) 347 { 348 349 if (__predict_false(preempt_needed())) { 350 preempt(); 351 } 352 } 353 354 /* 355 * Handle a request made by another agent to preempt the current LWP 356 * in-kernel. Usually called when l_dopreempt may be non-zero. 357 * 358 * Character addresses for lockstat only. 359 */ 360 static char kpreempt_is_disabled; 361 static char kernel_lock_held; 362 static char is_softint_lwp; 363 static char spl_is_raised; 364 365 bool 366 kpreempt(uintptr_t where) 367 { 368 uintptr_t failed; 369 lwp_t *l; 370 int s, dop, lsflag; 371 372 l = curlwp; 373 failed = 0; 374 while ((dop = l->l_dopreempt) != 0) { 375 if (l->l_stat != LSONPROC) { 376 /* 377 * About to block (or die), let it happen. 378 * Doesn't really count as "preemption has 379 * been blocked", since we're going to 380 * context switch. 381 */ 382 atomic_swap_uint(&l->l_dopreempt, 0); 383 return true; 384 } 385 KASSERT((l->l_flag & LW_IDLE) == 0); 386 if (__predict_false(l->l_nopreempt != 0)) { 387 /* LWP holds preemption disabled, explicitly. */ 388 if ((dop & DOPREEMPT_COUNTED) == 0) { 389 kpreempt_ev_crit.ev_count++; 390 } 391 failed = (uintptr_t)&kpreempt_is_disabled; 392 break; 393 } 394 if (__predict_false((l->l_pflag & LP_INTR) != 0)) { 395 /* Can't preempt soft interrupts yet. */ 396 atomic_swap_uint(&l->l_dopreempt, 0); 397 failed = (uintptr_t)&is_softint_lwp; 398 break; 399 } 400 s = splsched(); 401 if (__predict_false(l->l_blcnt != 0 || 402 curcpu()->ci_biglock_wanted != NULL)) { 403 /* Hold or want kernel_lock, code is not MT safe. */ 404 splx(s); 405 if ((dop & DOPREEMPT_COUNTED) == 0) { 406 kpreempt_ev_klock.ev_count++; 407 } 408 failed = (uintptr_t)&kernel_lock_held; 409 break; 410 } 411 if (__predict_false(!cpu_kpreempt_enter(where, s))) { 412 /* 413 * It may be that the IPL is too high. 414 * kpreempt_enter() can schedule an 415 * interrupt to retry later. 416 */ 417 splx(s); 418 failed = (uintptr_t)&spl_is_raised; 419 break; 420 } 421 /* Do it! */ 422 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) { 423 kpreempt_ev_immed.ev_count++; 424 } 425 lwp_lock(l); 426 /* Involuntary - keep kpriority boost. */ 427 l->l_pflag |= LP_PREEMPTING; 428 spc_lock(l->l_cpu); 429 mi_switch(l); 430 l->l_nopreempt++; 431 splx(s); 432 433 /* Take care of any MD cleanup. */ 434 cpu_kpreempt_exit(where); 435 l->l_nopreempt--; 436 } 437 438 if (__predict_true(!failed)) { 439 return false; 440 } 441 442 /* Record preemption failure for reporting via lockstat. */ 443 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED); 444 lsflag = 0; 445 LOCKSTAT_ENTER(lsflag); 446 if (__predict_false(lsflag)) { 447 if (where == 0) { 448 where = (uintptr_t)__builtin_return_address(0); 449 } 450 /* Preemption is on, might recurse, so make it atomic. */ 451 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL, 452 (void *)where) == NULL) { 453 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime); 454 l->l_pfaillock = failed; 455 } 456 } 457 LOCKSTAT_EXIT(lsflag); 458 return true; 459 } 460 461 /* 462 * Return true if preemption is explicitly disabled. 463 */ 464 bool 465 kpreempt_disabled(void) 466 { 467 const lwp_t *l = curlwp; 468 469 return l->l_nopreempt != 0 || l->l_stat == LSZOMB || 470 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 || 471 cpu_kpreempt_disabled(); 472 } 473 474 /* 475 * Disable kernel preemption. 476 */ 477 void 478 kpreempt_disable(void) 479 { 480 481 KPREEMPT_DISABLE(curlwp); 482 } 483 484 /* 485 * Reenable kernel preemption. 486 */ 487 void 488 kpreempt_enable(void) 489 { 490 491 KPREEMPT_ENABLE(curlwp); 492 } 493 494 /* 495 * Compute the amount of time during which the current lwp was running. 496 * 497 * - update l_rtime unless it's an idle lwp. 498 */ 499 500 void 501 updatertime(lwp_t *l, const struct bintime *now) 502 { 503 504 if (__predict_false(l->l_flag & LW_IDLE)) 505 return; 506 507 /* rtime += now - stime */ 508 bintime_add(&l->l_rtime, now); 509 bintime_sub(&l->l_rtime, &l->l_stime); 510 } 511 512 /* 513 * Select next LWP from the current CPU to run.. 514 */ 515 static inline lwp_t * 516 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc) 517 { 518 lwp_t *newl; 519 520 /* 521 * Let sched_nextlwp() select the LWP to run the CPU next. 522 * If no LWP is runnable, select the idle LWP. 523 * 524 * On arrival here LWPs on a run queue are locked by spc_mutex which 525 * is currently held. Idle LWPs are always locked by spc_lwplock, 526 * which may or may not be held here. On exit from this code block, 527 * in all cases newl is locked by spc_lwplock. 528 */ 529 newl = sched_nextlwp(); 530 if (newl != NULL) { 531 sched_dequeue(newl); 532 KASSERT(lwp_locked(newl, spc->spc_mutex)); 533 KASSERT(newl->l_cpu == ci); 534 newl->l_stat = LSONPROC; 535 newl->l_pflag |= LP_RUNNING; 536 spc->spc_curpriority = lwp_eprio(newl); 537 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE); 538 lwp_setlock(newl, spc->spc_lwplock); 539 } else { 540 /* 541 * The idle LWP does not get set to LSONPROC, because 542 * otherwise it screws up the output from top(1) etc. 543 */ 544 newl = ci->ci_data.cpu_idlelwp; 545 newl->l_pflag |= LP_RUNNING; 546 spc->spc_curpriority = PRI_IDLE; 547 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) | 548 SPCF_IDLE; 549 } 550 551 /* 552 * Only clear want_resched if there are no pending (slow) software 553 * interrupts. We can do this without an atomic, because no new 554 * LWPs can appear in the queue due to our hold on spc_mutex, and 555 * the update to ci_want_resched will become globally visible before 556 * the release of spc_mutex becomes globally visible. 557 */ 558 if (ci->ci_data.cpu_softints == 0) 559 ci->ci_want_resched = 0; 560 561 return newl; 562 } 563 564 /* 565 * The machine independent parts of context switch. 566 * 567 * NOTE: l->l_cpu is not changed in this routine, because an LWP never 568 * changes its own l_cpu (that would screw up curcpu on many ports and could 569 * cause all kinds of other evil stuff). l_cpu is always changed by some 570 * other actor, when it's known the LWP is not running (the LP_RUNNING flag 571 * is checked under lock). 572 */ 573 void 574 mi_switch(lwp_t *l) 575 { 576 struct cpu_info *ci; 577 struct schedstate_percpu *spc; 578 struct lwp *newl; 579 kmutex_t *lock; 580 int oldspl; 581 struct bintime bt; 582 bool returning; 583 584 KASSERT(lwp_locked(l, NULL)); 585 KASSERT(kpreempt_disabled()); 586 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex)); 587 KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked"); 588 589 kstack_check_magic(l); 590 591 binuptime(&bt); 592 593 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp); 594 KASSERT((l->l_pflag & LP_RUNNING) != 0); 595 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN); 596 ci = curcpu(); 597 spc = &ci->ci_schedstate; 598 returning = false; 599 newl = NULL; 600 601 /* 602 * If we have been asked to switch to a specific LWP, then there 603 * is no need to inspect the run queues. If a soft interrupt is 604 * blocking, then return to the interrupted thread without adjusting 605 * VM context or its start time: neither have been changed in order 606 * to take the interrupt. 607 */ 608 if (l->l_switchto != NULL) { 609 if ((l->l_pflag & LP_INTR) != 0) { 610 returning = true; 611 softint_block(l); 612 if ((l->l_pflag & LP_TIMEINTR) != 0) 613 updatertime(l, &bt); 614 } 615 newl = l->l_switchto; 616 l->l_switchto = NULL; 617 } 618 #ifndef __HAVE_FAST_SOFTINTS 619 else if (ci->ci_data.cpu_softints != 0) { 620 /* There are pending soft interrupts, so pick one. */ 621 newl = softint_picklwp(); 622 newl->l_stat = LSONPROC; 623 newl->l_pflag |= LP_RUNNING; 624 } 625 #endif /* !__HAVE_FAST_SOFTINTS */ 626 627 /* 628 * If on the CPU and we have gotten this far, then we must yield. 629 */ 630 if (l->l_stat == LSONPROC && l != newl) { 631 KASSERT(lwp_locked(l, spc->spc_lwplock)); 632 KASSERT((l->l_flag & LW_IDLE) == 0); 633 l->l_stat = LSRUN; 634 lwp_setlock(l, spc->spc_mutex); 635 sched_enqueue(l); 636 sched_preempted(l); 637 638 /* 639 * Handle migration. Note that "migrating LWP" may 640 * be reset here, if interrupt/preemption happens 641 * early in idle LWP. 642 */ 643 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) { 644 KASSERT((l->l_pflag & LP_INTR) == 0); 645 spc->spc_migrating = l; 646 } 647 } 648 649 /* Pick new LWP to run. */ 650 if (newl == NULL) { 651 newl = nextlwp(ci, spc); 652 } 653 654 /* Items that must be updated with the CPU locked. */ 655 if (!returning) { 656 /* Count time spent in current system call */ 657 SYSCALL_TIME_SLEEP(l); 658 659 updatertime(l, &bt); 660 661 /* Update the new LWP's start time. */ 662 newl->l_stime = bt; 663 664 /* 665 * ci_curlwp changes when a fast soft interrupt occurs. 666 * We use ci_onproc to keep track of which kernel or 667 * user thread is running 'underneath' the software 668 * interrupt. This is important for time accounting, 669 * itimers and forcing user threads to preempt (aston). 670 */ 671 ci->ci_onproc = newl; 672 } 673 674 /* 675 * Preemption related tasks. Must be done holding spc_mutex. Clear 676 * l_dopreempt without an atomic - it's only ever set non-zero by 677 * sched_resched_cpu() which also holds spc_mutex, and only ever 678 * cleared by the LWP itself (us) with atomics when not under lock. 679 */ 680 l->l_dopreempt = 0; 681 if (__predict_false(l->l_pfailaddr != 0)) { 682 LOCKSTAT_FLAG(lsflag); 683 LOCKSTAT_ENTER(lsflag); 684 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime); 685 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN, 686 1, l->l_pfailtime, l->l_pfailaddr); 687 LOCKSTAT_EXIT(lsflag); 688 l->l_pfailtime = 0; 689 l->l_pfaillock = 0; 690 l->l_pfailaddr = 0; 691 } 692 693 if (l != newl) { 694 struct lwp *prevlwp; 695 696 /* Release all locks, but leave the current LWP locked */ 697 if (l->l_mutex == spc->spc_mutex) { 698 /* 699 * Drop spc_lwplock, if the current LWP has been moved 700 * to the run queue (it is now locked by spc_mutex). 701 */ 702 mutex_spin_exit(spc->spc_lwplock); 703 } else { 704 /* 705 * Otherwise, drop the spc_mutex, we are done with the 706 * run queues. 707 */ 708 mutex_spin_exit(spc->spc_mutex); 709 } 710 711 /* We're down to only one lock, so do debug checks. */ 712 LOCKDEBUG_BARRIER(l->l_mutex, 1); 713 714 /* Count the context switch. */ 715 CPU_COUNT(CPU_COUNT_NSWTCH, 1); 716 l->l_ncsw++; 717 if ((l->l_pflag & LP_PREEMPTING) != 0) { 718 l->l_nivcsw++; 719 l->l_pflag &= ~LP_PREEMPTING; 720 } 721 722 /* 723 * Increase the count of spin-mutexes before the release 724 * of the last lock - we must remain at IPL_SCHED after 725 * releasing the lock. 726 */ 727 KASSERTMSG(ci->ci_mtx_count == -1, 728 "%s: cpu%u: ci_mtx_count (%d) != -1 " 729 "(block with spin-mutex held)", 730 __func__, cpu_index(ci), ci->ci_mtx_count); 731 oldspl = MUTEX_SPIN_OLDSPL(ci); 732 ci->ci_mtx_count = -2; 733 734 /* Update status for lwpctl, if present. */ 735 if (l->l_lwpctl != NULL) { 736 l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ? 737 LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE); 738 } 739 740 /* 741 * If curlwp is a soft interrupt LWP, there's nobody on the 742 * other side to unlock - we're returning into an assembly 743 * trampoline. Unlock now. This is safe because this is a 744 * kernel LWP and is bound to current CPU: the worst anyone 745 * else will do to it, is to put it back onto this CPU's run 746 * queue (and the CPU is busy here right now!). 747 */ 748 if (returning) { 749 /* Keep IPL_SCHED after this; MD code will fix up. */ 750 l->l_pflag &= ~LP_RUNNING; 751 lwp_unlock(l); 752 } else { 753 /* A normal LWP: save old VM context. */ 754 pmap_deactivate(l); 755 } 756 757 /* 758 * If DTrace has set the active vtime enum to anything 759 * other than INACTIVE (0), then it should have set the 760 * function to call. 761 */ 762 if (__predict_false(dtrace_vtime_active)) { 763 (*dtrace_vtime_switch_func)(newl); 764 } 765 766 /* 767 * We must ensure not to come here from inside a read section. 768 */ 769 KASSERT(pserialize_not_in_read_section()); 770 771 /* Switch to the new LWP.. */ 772 #ifdef MULTIPROCESSOR 773 KASSERT(curlwp == ci->ci_curlwp); 774 #endif 775 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp); 776 prevlwp = cpu_switchto(l, newl, returning); 777 ci = curcpu(); 778 #ifdef MULTIPROCESSOR 779 KASSERT(curlwp == ci->ci_curlwp); 780 #endif 781 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p", 782 l, curlwp, prevlwp); 783 KASSERT(prevlwp != NULL); 784 KASSERT(l->l_cpu == ci); 785 KASSERT(ci->ci_mtx_count == -2); 786 787 /* 788 * Immediately mark the previous LWP as no longer running 789 * and unlock (to keep lock wait times short as possible). 790 * We'll still be at IPL_SCHED afterwards. If a zombie, 791 * don't touch after clearing LP_RUNNING as it could be 792 * reaped by another CPU. Issue a memory barrier to ensure 793 * this. 794 * 795 * atomic_store_release matches atomic_load_acquire in 796 * lwp_free. 797 */ 798 KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0); 799 lock = prevlwp->l_mutex; 800 if (__predict_false(prevlwp->l_stat == LSZOMB)) { 801 atomic_store_release(&prevlwp->l_pflag, 802 prevlwp->l_pflag & ~LP_RUNNING); 803 } else { 804 prevlwp->l_pflag &= ~LP_RUNNING; 805 } 806 mutex_spin_exit(lock); 807 808 /* 809 * Switched away - we have new curlwp. 810 * Restore VM context and IPL. 811 */ 812 pmap_activate(l); 813 pcu_switchpoint(l); 814 815 /* Update status for lwpctl, if present. */ 816 if (l->l_lwpctl != NULL) { 817 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci); 818 l->l_lwpctl->lc_pctr++; 819 } 820 821 /* 822 * Normalize the spin mutex count and restore the previous 823 * SPL. Note that, unless the caller disabled preemption, 824 * we can be preempted at any time after this splx(). 825 */ 826 KASSERT(l->l_cpu == ci); 827 KASSERT(ci->ci_mtx_count == -1); 828 ci->ci_mtx_count = 0; 829 splx(oldspl); 830 } else { 831 /* Nothing to do - just unlock and return. */ 832 mutex_spin_exit(spc->spc_mutex); 833 l->l_pflag &= ~LP_PREEMPTING; 834 lwp_unlock(l); 835 } 836 837 KASSERT(l == curlwp); 838 KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0); 839 840 SYSCALL_TIME_WAKEUP(l); 841 LOCKDEBUG_BARRIER(NULL, 1); 842 } 843 844 /* 845 * setrunnable: change LWP state to be runnable, placing it on the run queue. 846 * 847 * Call with the process and LWP locked. Will return with the LWP unlocked. 848 */ 849 void 850 setrunnable(struct lwp *l) 851 { 852 struct proc *p = l->l_proc; 853 struct cpu_info *ci; 854 kmutex_t *oldlock; 855 856 KASSERT((l->l_flag & LW_IDLE) == 0); 857 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0); 858 KASSERT(mutex_owned(p->p_lock)); 859 KASSERT(lwp_locked(l, NULL)); 860 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex); 861 862 switch (l->l_stat) { 863 case LSSTOP: 864 /* 865 * If we're being traced (possibly because someone attached us 866 * while we were stopped), check for a signal from the debugger. 867 */ 868 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0) 869 signotify(l); 870 p->p_nrlwps++; 871 break; 872 case LSSUSPENDED: 873 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 874 l->l_flag &= ~LW_WSUSPEND; 875 p->p_nrlwps++; 876 cv_broadcast(&p->p_lwpcv); 877 break; 878 case LSSLEEP: 879 KASSERT(l->l_wchan != NULL); 880 break; 881 case LSIDL: 882 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 883 break; 884 default: 885 panic("setrunnable: lwp %p state was %d", l, l->l_stat); 886 } 887 888 /* 889 * If the LWP was sleeping, start it again. 890 */ 891 if (l->l_wchan != NULL) { 892 l->l_stat = LSSLEEP; 893 /* lwp_unsleep() will release the lock. */ 894 lwp_unsleep(l, true); 895 return; 896 } 897 898 /* 899 * If the LWP is still on the CPU, mark it as LSONPROC. It may be 900 * about to call mi_switch(), in which case it will yield. 901 */ 902 if ((l->l_pflag & LP_RUNNING) != 0) { 903 l->l_stat = LSONPROC; 904 l->l_slptime = 0; 905 lwp_unlock(l); 906 return; 907 } 908 909 /* 910 * Look for a CPU to run. 911 * Set the LWP runnable. 912 */ 913 ci = sched_takecpu(l); 914 l->l_cpu = ci; 915 spc_lock(ci); 916 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex); 917 sched_setrunnable(l); 918 l->l_stat = LSRUN; 919 l->l_slptime = 0; 920 sched_enqueue(l); 921 sched_resched_lwp(l, true); 922 /* SPC & LWP now unlocked. */ 923 mutex_spin_exit(oldlock); 924 } 925 926 /* 927 * suspendsched: 928 * 929 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED. 930 */ 931 void 932 suspendsched(void) 933 { 934 CPU_INFO_ITERATOR cii; 935 struct cpu_info *ci; 936 struct lwp *l; 937 struct proc *p; 938 939 /* 940 * We do this by process in order not to violate the locking rules. 941 */ 942 mutex_enter(&proc_lock); 943 PROCLIST_FOREACH(p, &allproc) { 944 mutex_enter(p->p_lock); 945 if ((p->p_flag & PK_SYSTEM) != 0) { 946 mutex_exit(p->p_lock); 947 continue; 948 } 949 950 if (p->p_stat != SSTOP) { 951 if (p->p_stat != SZOMB && p->p_stat != SDEAD) { 952 p->p_pptr->p_nstopchild++; 953 p->p_waited = 0; 954 } 955 p->p_stat = SSTOP; 956 } 957 958 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 959 if (l == curlwp) 960 continue; 961 962 lwp_lock(l); 963 964 /* 965 * Set L_WREBOOT so that the LWP will suspend itself 966 * when it tries to return to user mode. We want to 967 * try and get to get as many LWPs as possible to 968 * the user / kernel boundary, so that they will 969 * release any locks that they hold. 970 */ 971 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND); 972 973 if (l->l_stat == LSSLEEP && 974 (l->l_flag & LW_SINTR) != 0) { 975 /* setrunnable() will release the lock. */ 976 setrunnable(l); 977 continue; 978 } 979 980 lwp_unlock(l); 981 } 982 983 mutex_exit(p->p_lock); 984 } 985 mutex_exit(&proc_lock); 986 987 /* 988 * Kick all CPUs to make them preempt any LWPs running in user mode. 989 * They'll trap into the kernel and suspend themselves in userret(). 990 * 991 * Unusually, we don't hold any other scheduler object locked, which 992 * would keep preemption off for sched_resched_cpu(), so disable it 993 * explicitly. 994 */ 995 kpreempt_disable(); 996 for (CPU_INFO_FOREACH(cii, ci)) { 997 spc_lock(ci); 998 sched_resched_cpu(ci, PRI_KERNEL, true); 999 /* spc now unlocked */ 1000 } 1001 kpreempt_enable(); 1002 } 1003 1004 /* 1005 * sched_unsleep: 1006 * 1007 * The is called when the LWP has not been awoken normally but instead 1008 * interrupted: for example, if the sleep timed out. Because of this, 1009 * it's not a valid action for running or idle LWPs. 1010 */ 1011 static void 1012 sched_unsleep(struct lwp *l, bool cleanup) 1013 { 1014 1015 lwp_unlock(l); 1016 panic("sched_unsleep"); 1017 } 1018 1019 static void 1020 sched_changepri(struct lwp *l, pri_t pri) 1021 { 1022 struct schedstate_percpu *spc; 1023 struct cpu_info *ci; 1024 1025 KASSERT(lwp_locked(l, NULL)); 1026 1027 ci = l->l_cpu; 1028 spc = &ci->ci_schedstate; 1029 1030 if (l->l_stat == LSRUN) { 1031 KASSERT(lwp_locked(l, spc->spc_mutex)); 1032 sched_dequeue(l); 1033 l->l_priority = pri; 1034 sched_enqueue(l); 1035 sched_resched_lwp(l, false); 1036 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) { 1037 /* On priority drop, only evict realtime LWPs. */ 1038 KASSERT(lwp_locked(l, spc->spc_lwplock)); 1039 l->l_priority = pri; 1040 spc_lock(ci); 1041 sched_resched_cpu(ci, spc->spc_maxpriority, true); 1042 /* spc now unlocked */ 1043 } else { 1044 l->l_priority = pri; 1045 } 1046 } 1047 1048 static void 1049 sched_lendpri(struct lwp *l, pri_t pri) 1050 { 1051 struct schedstate_percpu *spc; 1052 struct cpu_info *ci; 1053 1054 KASSERT(lwp_locked(l, NULL)); 1055 1056 ci = l->l_cpu; 1057 spc = &ci->ci_schedstate; 1058 1059 if (l->l_stat == LSRUN) { 1060 KASSERT(lwp_locked(l, spc->spc_mutex)); 1061 sched_dequeue(l); 1062 l->l_inheritedprio = pri; 1063 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1064 sched_enqueue(l); 1065 sched_resched_lwp(l, false); 1066 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) { 1067 /* On priority drop, only evict realtime LWPs. */ 1068 KASSERT(lwp_locked(l, spc->spc_lwplock)); 1069 l->l_inheritedprio = pri; 1070 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1071 spc_lock(ci); 1072 sched_resched_cpu(ci, spc->spc_maxpriority, true); 1073 /* spc now unlocked */ 1074 } else { 1075 l->l_inheritedprio = pri; 1076 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1077 } 1078 } 1079 1080 struct lwp * 1081 syncobj_noowner(wchan_t wchan) 1082 { 1083 1084 return NULL; 1085 } 1086 1087 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */ 1088 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE; 1089 1090 /* 1091 * Constants for averages over 1, 5 and 15 minutes when sampling at 1092 * 5 second intervals. 1093 */ 1094 static const fixpt_t cexp[ ] = { 1095 0.9200444146293232 * FSCALE, /* exp(-1/12) */ 1096 0.9834714538216174 * FSCALE, /* exp(-1/60) */ 1097 0.9944598480048967 * FSCALE, /* exp(-1/180) */ 1098 }; 1099 1100 /* 1101 * sched_pstats: 1102 * 1103 * => Update process statistics and check CPU resource allocation. 1104 * => Call scheduler-specific hook to eventually adjust LWP priorities. 1105 * => Compute load average of a quantity on 1, 5 and 15 minute intervals. 1106 */ 1107 void 1108 sched_pstats(void) 1109 { 1110 struct loadavg *avg = &averunnable; 1111 const int clkhz = (stathz != 0 ? stathz : hz); 1112 static bool backwards = false; 1113 static u_int lavg_count = 0; 1114 struct proc *p; 1115 int nrun; 1116 1117 sched_pstats_ticks++; 1118 if (++lavg_count >= 5) { 1119 lavg_count = 0; 1120 nrun = 0; 1121 } 1122 mutex_enter(&proc_lock); 1123 PROCLIST_FOREACH(p, &allproc) { 1124 struct lwp *l; 1125 struct rlimit *rlim; 1126 time_t runtm; 1127 int sig; 1128 1129 /* Increment sleep time (if sleeping), ignore overflow. */ 1130 mutex_enter(p->p_lock); 1131 runtm = p->p_rtime.sec; 1132 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1133 fixpt_t lpctcpu; 1134 u_int lcpticks; 1135 1136 if (__predict_false((l->l_flag & LW_IDLE) != 0)) 1137 continue; 1138 lwp_lock(l); 1139 runtm += l->l_rtime.sec; 1140 l->l_swtime++; 1141 sched_lwp_stats(l); 1142 1143 /* For load average calculation. */ 1144 if (__predict_false(lavg_count == 0) && 1145 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) { 1146 switch (l->l_stat) { 1147 case LSSLEEP: 1148 if (l->l_slptime > 1) { 1149 break; 1150 } 1151 /* FALLTHROUGH */ 1152 case LSRUN: 1153 case LSONPROC: 1154 case LSIDL: 1155 nrun++; 1156 } 1157 } 1158 lwp_unlock(l); 1159 1160 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT; 1161 if (l->l_slptime != 0) 1162 continue; 1163 1164 lpctcpu = l->l_pctcpu; 1165 lcpticks = atomic_swap_uint(&l->l_cpticks, 0); 1166 lpctcpu += ((FSCALE - ccpu) * 1167 (lcpticks * FSCALE / clkhz)) >> FSHIFT; 1168 l->l_pctcpu = lpctcpu; 1169 } 1170 /* Calculating p_pctcpu only for ps(1) */ 1171 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 1172 1173 if (__predict_false(runtm < 0)) { 1174 if (!backwards) { 1175 backwards = true; 1176 printf("WARNING: negative runtime; " 1177 "monotonic clock has gone backwards\n"); 1178 } 1179 mutex_exit(p->p_lock); 1180 continue; 1181 } 1182 1183 /* 1184 * Check if the process exceeds its CPU resource allocation. 1185 * If over the hard limit, kill it with SIGKILL. 1186 * If over the soft limit, send SIGXCPU and raise 1187 * the soft limit a little. 1188 */ 1189 rlim = &p->p_rlimit[RLIMIT_CPU]; 1190 sig = 0; 1191 if (__predict_false(runtm >= rlim->rlim_cur)) { 1192 if (runtm >= rlim->rlim_max) { 1193 sig = SIGKILL; 1194 log(LOG_NOTICE, 1195 "pid %d, command %s, is killed: %s\n", 1196 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU"); 1197 uprintf("pid %d, command %s, is killed: %s\n", 1198 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU"); 1199 } else { 1200 sig = SIGXCPU; 1201 if (rlim->rlim_cur < rlim->rlim_max) 1202 rlim->rlim_cur += 5; 1203 } 1204 } 1205 mutex_exit(p->p_lock); 1206 if (__predict_false(sig)) { 1207 KASSERT((p->p_flag & PK_SYSTEM) == 0); 1208 psignal(p, sig); 1209 } 1210 } 1211 1212 /* Load average calculation. */ 1213 if (__predict_false(lavg_count == 0)) { 1214 int i; 1215 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg)); 1216 for (i = 0; i < __arraycount(cexp); i++) { 1217 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] + 1218 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT; 1219 } 1220 } 1221 1222 /* Lightning bolt. */ 1223 cv_broadcast(&lbolt); 1224 1225 mutex_exit(&proc_lock); 1226 } 1227