xref: /netbsd-src/sys/kern/kern_synch.c (revision 4ac76180e904e771b9d522c7e57296d371f06499)
1 /*	$NetBSD: kern_synch.c,v 1.357 2023/07/13 13:33:55 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020
5  *    The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11  * Daniel Sieger.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*-
36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * (c) UNIX System Laboratories, Inc.
39  * All or some portions of this file are derived from material licensed
40  * to the University of California by American Telephone and Telegraph
41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42  * the permission of UNIX System Laboratories, Inc.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
69  */
70 
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.357 2023/07/13 13:33:55 riastradh Exp $");
73 
74 #include "opt_kstack.h"
75 #include "opt_ddb.h"
76 #include "opt_dtrace.h"
77 
78 #define	__MUTEX_PRIVATE
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/kernel.h>
84 #include <sys/cpu.h>
85 #include <sys/pserialize.h>
86 #include <sys/resource.h>
87 #include <sys/resourcevar.h>
88 #include <sys/rwlock.h>
89 #include <sys/sched.h>
90 #include <sys/syscall_stats.h>
91 #include <sys/sleepq.h>
92 #include <sys/lockdebug.h>
93 #include <sys/evcnt.h>
94 #include <sys/intr.h>
95 #include <sys/lwpctl.h>
96 #include <sys/atomic.h>
97 #include <sys/syslog.h>
98 
99 #include <uvm/uvm_extern.h>
100 
101 #include <dev/lockstat.h>
102 
103 #include <sys/dtrace_bsd.h>
104 int                             dtrace_vtime_active=0;
105 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
106 
107 #ifdef DDB
108 #include <ddb/ddb.h>
109 #endif
110 
111 static void	sched_unsleep(struct lwp *, bool);
112 static void	sched_changepri(struct lwp *, pri_t);
113 static void	sched_lendpri(struct lwp *, pri_t);
114 
115 syncobj_t sleep_syncobj = {
116 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
117 	.sobj_unsleep	= sleepq_unsleep,
118 	.sobj_changepri	= sleepq_changepri,
119 	.sobj_lendpri	= sleepq_lendpri,
120 	.sobj_owner	= syncobj_noowner,
121 };
122 
123 syncobj_t sched_syncobj = {
124 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
125 	.sobj_unsleep	= sched_unsleep,
126 	.sobj_changepri	= sched_changepri,
127 	.sobj_lendpri	= sched_lendpri,
128 	.sobj_owner	= syncobj_noowner,
129 };
130 
131 syncobj_t kpause_syncobj = {
132 	.sobj_flag	= SOBJ_SLEEPQ_NULL,
133 	.sobj_unsleep	= sleepq_unsleep,
134 	.sobj_changepri	= sleepq_changepri,
135 	.sobj_lendpri	= sleepq_lendpri,
136 	.sobj_owner	= syncobj_noowner,
137 };
138 
139 /* "Lightning bolt": once a second sleep address. */
140 kcondvar_t		lbolt			__cacheline_aligned;
141 
142 u_int			sched_pstats_ticks	__cacheline_aligned;
143 
144 /* Preemption event counters. */
145 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
146 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
147 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
148 
149 void
150 synch_init(void)
151 {
152 
153 	cv_init(&lbolt, "lbolt");
154 
155 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
156 	   "kpreempt", "defer: critical section");
157 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
158 	   "kpreempt", "defer: kernel_lock");
159 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
160 	   "kpreempt", "immediate");
161 }
162 
163 /*
164  * OBSOLETE INTERFACE
165  *
166  * General sleep call.  Suspends the current LWP until a wakeup is
167  * performed on the specified identifier.  The LWP will then be made
168  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
169  * means no timeout).  If pri includes PCATCH flag, signals are checked
170  * before and after sleeping, else signals are not checked.  Returns 0 if
171  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
172  * signal needs to be delivered, ERESTART is returned if the current system
173  * call should be restarted if possible, and EINTR is returned if the system
174  * call should be interrupted by the signal (return EINTR).
175  */
176 int
177 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
178 {
179 	struct lwp *l = curlwp;
180 	sleepq_t *sq;
181 	kmutex_t *mp;
182 	bool catch_p;
183 
184 	KASSERT((l->l_pflag & LP_INTR) == 0);
185 	KASSERT(ident != &lbolt);
186 	//KASSERT(KERNEL_LOCKED_P());
187 
188 	if (sleepq_dontsleep(l)) {
189 		(void)sleepq_abort(NULL, 0);
190 		return 0;
191 	}
192 
193 	l->l_kpriority = true;
194 	catch_p = priority & PCATCH;
195 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
196 	sleepq_enter(sq, l, mp);
197 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
198 	return sleepq_block(timo, catch_p, &sleep_syncobj);
199 }
200 
201 int
202 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
203 	kmutex_t *mtx)
204 {
205 	struct lwp *l = curlwp;
206 	sleepq_t *sq;
207 	kmutex_t *mp;
208 	bool catch_p;
209 	int error;
210 
211 	KASSERT((l->l_pflag & LP_INTR) == 0);
212 	KASSERT(ident != &lbolt);
213 
214 	if (sleepq_dontsleep(l)) {
215 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
216 		return 0;
217 	}
218 
219 	l->l_kpriority = true;
220 	catch_p = priority & PCATCH;
221 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
222 	sleepq_enter(sq, l, mp);
223 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
224 	mutex_exit(mtx);
225 	error = sleepq_block(timo, catch_p, &sleep_syncobj);
226 
227 	if ((priority & PNORELOCK) == 0)
228 		mutex_enter(mtx);
229 
230 	return error;
231 }
232 
233 /*
234  * General sleep call for situations where a wake-up is not expected.
235  */
236 int
237 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
238 {
239 	struct lwp *l = curlwp;
240 	int error;
241 
242 	KASSERT(timo != 0 || intr);
243 
244 	if (sleepq_dontsleep(l))
245 		return sleepq_abort(NULL, 0);
246 
247 	if (mtx != NULL)
248 		mutex_exit(mtx);
249 	l->l_kpriority = true;
250 	lwp_lock(l);
251 	KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
252 	sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr);
253 	error = sleepq_block(timo, intr, &kpause_syncobj);
254 	if (mtx != NULL)
255 		mutex_enter(mtx);
256 
257 	return error;
258 }
259 
260 /*
261  * OBSOLETE INTERFACE
262  *
263  * Make all LWPs sleeping on the specified identifier runnable.
264  */
265 void
266 wakeup(wchan_t ident)
267 {
268 	sleepq_t *sq;
269 	kmutex_t *mp;
270 
271 	if (__predict_false(cold))
272 		return;
273 
274 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
275 	sleepq_wake(sq, ident, (u_int)-1, mp);
276 }
277 
278 /*
279  * General yield call.  Puts the current LWP back on its run queue and
280  * performs a context switch.
281  */
282 void
283 yield(void)
284 {
285 	struct lwp *l = curlwp;
286 
287 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
288 	lwp_lock(l);
289 
290 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
291 	KASSERT(l->l_stat == LSONPROC);
292 
293 	/* Voluntary - ditch kpriority boost. */
294 	l->l_kpriority = false;
295 	spc_lock(l->l_cpu);
296 	mi_switch(l);
297 	KERNEL_LOCK(l->l_biglocks, l);
298 }
299 
300 /*
301  * General preemption call.  Puts the current LWP back on its run queue
302  * and performs an involuntary context switch.  Different from yield()
303  * in that:
304  *
305  * - It's counted differently (involuntary vs. voluntary).
306  * - Realtime threads go to the head of their runqueue vs. tail for yield().
307  * - Priority boost is retained unless LWP has exceeded timeslice.
308  */
309 void
310 preempt(void)
311 {
312 	struct lwp *l = curlwp;
313 
314 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
315 	lwp_lock(l);
316 
317 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
318 	KASSERT(l->l_stat == LSONPROC);
319 
320 	spc_lock(l->l_cpu);
321 	/* Involuntary - keep kpriority boost unless a CPU hog. */
322 	if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) {
323 		l->l_kpriority = false;
324 	}
325 	l->l_pflag |= LP_PREEMPTING;
326 	mi_switch(l);
327 	KERNEL_LOCK(l->l_biglocks, l);
328 }
329 
330 /*
331  * Return true if the current LWP should yield the processor.  Intended to
332  * be used by long-running code in kernel.
333  */
334 inline bool
335 preempt_needed(void)
336 {
337 	lwp_t *l = curlwp;
338 	int needed;
339 
340 	KPREEMPT_DISABLE(l);
341 	needed = l->l_cpu->ci_want_resched;
342 	KPREEMPT_ENABLE(l);
343 
344 	return (needed != 0);
345 }
346 
347 /*
348  * A breathing point for long running code in kernel.
349  */
350 void
351 preempt_point(void)
352 {
353 
354 	if (__predict_false(preempt_needed())) {
355 		preempt();
356 	}
357 }
358 
359 /*
360  * Handle a request made by another agent to preempt the current LWP
361  * in-kernel.  Usually called when l_dopreempt may be non-zero.
362  *
363  * Character addresses for lockstat only.
364  */
365 static char	kpreempt_is_disabled;
366 static char	kernel_lock_held;
367 static char	is_softint_lwp;
368 static char	spl_is_raised;
369 
370 bool
371 kpreempt(uintptr_t where)
372 {
373 	uintptr_t failed;
374 	lwp_t *l;
375 	int s, dop, lsflag;
376 
377 	l = curlwp;
378 	failed = 0;
379 	while ((dop = l->l_dopreempt) != 0) {
380 		if (l->l_stat != LSONPROC) {
381 			/*
382 			 * About to block (or die), let it happen.
383 			 * Doesn't really count as "preemption has
384 			 * been blocked", since we're going to
385 			 * context switch.
386 			 */
387 			atomic_swap_uint(&l->l_dopreempt, 0);
388 			return true;
389 		}
390 		KASSERT((l->l_flag & LW_IDLE) == 0);
391 		if (__predict_false(l->l_nopreempt != 0)) {
392 			/* LWP holds preemption disabled, explicitly. */
393 			if ((dop & DOPREEMPT_COUNTED) == 0) {
394 				kpreempt_ev_crit.ev_count++;
395 			}
396 			failed = (uintptr_t)&kpreempt_is_disabled;
397 			break;
398 		}
399 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
400 			/* Can't preempt soft interrupts yet. */
401 			atomic_swap_uint(&l->l_dopreempt, 0);
402 			failed = (uintptr_t)&is_softint_lwp;
403 			break;
404 		}
405 		s = splsched();
406 		if (__predict_false(l->l_blcnt != 0 ||
407 		    curcpu()->ci_biglock_wanted != NULL)) {
408 			/* Hold or want kernel_lock, code is not MT safe. */
409 			splx(s);
410 			if ((dop & DOPREEMPT_COUNTED) == 0) {
411 				kpreempt_ev_klock.ev_count++;
412 			}
413 			failed = (uintptr_t)&kernel_lock_held;
414 			break;
415 		}
416 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
417 			/*
418 			 * It may be that the IPL is too high.
419 			 * kpreempt_enter() can schedule an
420 			 * interrupt to retry later.
421 			 */
422 			splx(s);
423 			failed = (uintptr_t)&spl_is_raised;
424 			break;
425 		}
426 		/* Do it! */
427 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
428 			kpreempt_ev_immed.ev_count++;
429 		}
430 		lwp_lock(l);
431 		/* Involuntary - keep kpriority boost. */
432 		l->l_pflag |= LP_PREEMPTING;
433 		spc_lock(l->l_cpu);
434 		mi_switch(l);
435 		l->l_nopreempt++;
436 		splx(s);
437 
438 		/* Take care of any MD cleanup. */
439 		cpu_kpreempt_exit(where);
440 		l->l_nopreempt--;
441 	}
442 
443 	if (__predict_true(!failed)) {
444 		return false;
445 	}
446 
447 	/* Record preemption failure for reporting via lockstat. */
448 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
449 	lsflag = 0;
450 	LOCKSTAT_ENTER(lsflag);
451 	if (__predict_false(lsflag)) {
452 		if (where == 0) {
453 			where = (uintptr_t)__builtin_return_address(0);
454 		}
455 		/* Preemption is on, might recurse, so make it atomic. */
456 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
457 		    (void *)where) == NULL) {
458 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
459 			l->l_pfaillock = failed;
460 		}
461 	}
462 	LOCKSTAT_EXIT(lsflag);
463 	return true;
464 }
465 
466 /*
467  * Return true if preemption is explicitly disabled.
468  */
469 bool
470 kpreempt_disabled(void)
471 {
472 	const lwp_t *l = curlwp;
473 
474 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
475 	    (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
476 	    cpu_kpreempt_disabled();
477 }
478 
479 /*
480  * Disable kernel preemption.
481  */
482 void
483 kpreempt_disable(void)
484 {
485 
486 	KPREEMPT_DISABLE(curlwp);
487 }
488 
489 /*
490  * Reenable kernel preemption.
491  */
492 void
493 kpreempt_enable(void)
494 {
495 
496 	KPREEMPT_ENABLE(curlwp);
497 }
498 
499 /*
500  * Compute the amount of time during which the current lwp was running.
501  *
502  * - update l_rtime unless it's an idle lwp.
503  */
504 
505 void
506 updatertime(lwp_t *l, const struct bintime *now)
507 {
508 	static bool backwards = false;
509 
510 	if (__predict_false(l->l_flag & LW_IDLE))
511 		return;
512 
513 	if (__predict_false(bintimecmp(now, &l->l_stime, <)) && !backwards) {
514 		char caller[128];
515 
516 #ifdef DDB
517 		db_symstr(caller, sizeof(caller),
518 		    (db_expr_t)(intptr_t)__builtin_return_address(0),
519 		    DB_STGY_PROC);
520 #else
521 		snprintf(caller, sizeof(caller), "%p",
522 		    __builtin_return_address(0));
523 #endif
524 		backwards = true;
525 		printf("WARNING: lwp %ld (%s%s%s) flags 0x%x:"
526 		    " timecounter went backwards"
527 		    " from (%jd + 0x%016"PRIx64"/2^64) sec"
528 		    " to (%jd + 0x%016"PRIx64"/2^64) sec"
529 		    " in %s\n",
530 		    (long)l->l_lid,
531 		    l->l_proc->p_comm,
532 		    l->l_name ? " " : "",
533 		    l->l_name ? l->l_name : "",
534 		    l->l_pflag,
535 		    (intmax_t)l->l_stime.sec, l->l_stime.frac,
536 		    (intmax_t)now->sec, now->frac,
537 		    caller);
538 	}
539 
540 	/* rtime += now - stime */
541 	bintime_add(&l->l_rtime, now);
542 	bintime_sub(&l->l_rtime, &l->l_stime);
543 }
544 
545 /*
546  * Select next LWP from the current CPU to run..
547  */
548 static inline lwp_t *
549 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
550 {
551 	lwp_t *newl;
552 
553 	/*
554 	 * Let sched_nextlwp() select the LWP to run the CPU next.
555 	 * If no LWP is runnable, select the idle LWP.
556 	 *
557 	 * On arrival here LWPs on a run queue are locked by spc_mutex which
558 	 * is currently held.  Idle LWPs are always locked by spc_lwplock,
559 	 * which may or may not be held here.  On exit from this code block,
560 	 * in all cases newl is locked by spc_lwplock.
561 	 */
562 	newl = sched_nextlwp();
563 	if (newl != NULL) {
564 		sched_dequeue(newl);
565 		KASSERT(lwp_locked(newl, spc->spc_mutex));
566 		KASSERT(newl->l_cpu == ci);
567 		newl->l_stat = LSONPROC;
568 		newl->l_pflag |= LP_RUNNING;
569 		spc->spc_curpriority = lwp_eprio(newl);
570 		spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
571 		lwp_setlock(newl, spc->spc_lwplock);
572 	} else {
573 		/*
574 		 * The idle LWP does not get set to LSONPROC, because
575 		 * otherwise it screws up the output from top(1) etc.
576 		 */
577 		newl = ci->ci_data.cpu_idlelwp;
578 		newl->l_pflag |= LP_RUNNING;
579 		spc->spc_curpriority = PRI_IDLE;
580 		spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
581 		    SPCF_IDLE;
582 	}
583 
584 	/*
585 	 * Only clear want_resched if there are no pending (slow) software
586 	 * interrupts.  We can do this without an atomic, because no new
587 	 * LWPs can appear in the queue due to our hold on spc_mutex, and
588 	 * the update to ci_want_resched will become globally visible before
589 	 * the release of spc_mutex becomes globally visible.
590 	 */
591 	if (ci->ci_data.cpu_softints == 0)
592 		ci->ci_want_resched = 0;
593 
594 	return newl;
595 }
596 
597 /*
598  * The machine independent parts of context switch.
599  *
600  * NOTE: l->l_cpu is not changed in this routine, because an LWP never
601  * changes its own l_cpu (that would screw up curcpu on many ports and could
602  * cause all kinds of other evil stuff).  l_cpu is always changed by some
603  * other actor, when it's known the LWP is not running (the LP_RUNNING flag
604  * is checked under lock).
605  */
606 void
607 mi_switch(lwp_t *l)
608 {
609 	struct cpu_info *ci;
610 	struct schedstate_percpu *spc;
611 	struct lwp *newl;
612 	kmutex_t *lock;
613 	int oldspl;
614 	struct bintime bt;
615 	bool returning;
616 
617 	KASSERT(lwp_locked(l, NULL));
618 	KASSERT(kpreempt_disabled());
619 	KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
620 	KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
621 
622 	kstack_check_magic(l);
623 
624 	binuptime(&bt);
625 
626 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
627 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
628 	KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
629 	ci = curcpu();
630 	spc = &ci->ci_schedstate;
631 	returning = false;
632 	newl = NULL;
633 
634 	/*
635 	 * If we have been asked to switch to a specific LWP, then there
636 	 * is no need to inspect the run queues.  If a soft interrupt is
637 	 * blocking, then return to the interrupted thread without adjusting
638 	 * VM context or its start time: neither have been changed in order
639 	 * to take the interrupt.
640 	 */
641 	if (l->l_switchto != NULL) {
642 		if ((l->l_pflag & LP_INTR) != 0) {
643 			returning = true;
644 			softint_block(l);
645 			if ((l->l_pflag & LP_TIMEINTR) != 0)
646 				updatertime(l, &bt);
647 		}
648 		newl = l->l_switchto;
649 		l->l_switchto = NULL;
650 	}
651 #ifndef __HAVE_FAST_SOFTINTS
652 	else if (ci->ci_data.cpu_softints != 0) {
653 		/* There are pending soft interrupts, so pick one. */
654 		newl = softint_picklwp();
655 		newl->l_stat = LSONPROC;
656 		newl->l_pflag |= LP_RUNNING;
657 	}
658 #endif	/* !__HAVE_FAST_SOFTINTS */
659 
660 	/*
661 	 * If on the CPU and we have gotten this far, then we must yield.
662 	 */
663 	if (l->l_stat == LSONPROC && l != newl) {
664 		KASSERT(lwp_locked(l, spc->spc_lwplock));
665 		KASSERT((l->l_flag & LW_IDLE) == 0);
666 		l->l_stat = LSRUN;
667 		lwp_setlock(l, spc->spc_mutex);
668 		sched_enqueue(l);
669 		sched_preempted(l);
670 
671 		/*
672 		 * Handle migration.  Note that "migrating LWP" may
673 		 * be reset here, if interrupt/preemption happens
674 		 * early in idle LWP.
675 		 */
676 		if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
677 			KASSERT((l->l_pflag & LP_INTR) == 0);
678 			spc->spc_migrating = l;
679 		}
680 	}
681 
682 	/* Pick new LWP to run. */
683 	if (newl == NULL) {
684 		newl = nextlwp(ci, spc);
685 	}
686 
687 	/* Items that must be updated with the CPU locked. */
688 	if (!returning) {
689 		/* Count time spent in current system call */
690 		SYSCALL_TIME_SLEEP(l);
691 
692 		updatertime(l, &bt);
693 
694 		/* Update the new LWP's start time. */
695 		newl->l_stime = bt;
696 
697 		/*
698 		 * ci_curlwp changes when a fast soft interrupt occurs.
699 		 * We use ci_onproc to keep track of which kernel or
700 		 * user thread is running 'underneath' the software
701 		 * interrupt.  This is important for time accounting,
702 		 * itimers and forcing user threads to preempt (aston).
703 		 */
704 		ci->ci_onproc = newl;
705 	}
706 
707 	/*
708 	 * Preemption related tasks.  Must be done holding spc_mutex.  Clear
709 	 * l_dopreempt without an atomic - it's only ever set non-zero by
710 	 * sched_resched_cpu() which also holds spc_mutex, and only ever
711 	 * cleared by the LWP itself (us) with atomics when not under lock.
712 	 */
713 	l->l_dopreempt = 0;
714 	if (__predict_false(l->l_pfailaddr != 0)) {
715 		LOCKSTAT_FLAG(lsflag);
716 		LOCKSTAT_ENTER(lsflag);
717 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
718 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
719 		    1, l->l_pfailtime, l->l_pfailaddr);
720 		LOCKSTAT_EXIT(lsflag);
721 		l->l_pfailtime = 0;
722 		l->l_pfaillock = 0;
723 		l->l_pfailaddr = 0;
724 	}
725 
726 	if (l != newl) {
727 		struct lwp *prevlwp;
728 
729 		/* Release all locks, but leave the current LWP locked */
730 		if (l->l_mutex == spc->spc_mutex) {
731 			/*
732 			 * Drop spc_lwplock, if the current LWP has been moved
733 			 * to the run queue (it is now locked by spc_mutex).
734 			 */
735 			mutex_spin_exit(spc->spc_lwplock);
736 		} else {
737 			/*
738 			 * Otherwise, drop the spc_mutex, we are done with the
739 			 * run queues.
740 			 */
741 			mutex_spin_exit(spc->spc_mutex);
742 		}
743 
744 		/* We're down to only one lock, so do debug checks. */
745 		LOCKDEBUG_BARRIER(l->l_mutex, 1);
746 
747 		/* Count the context switch. */
748 		CPU_COUNT(CPU_COUNT_NSWTCH, 1);
749 		l->l_ncsw++;
750 		if ((l->l_pflag & LP_PREEMPTING) != 0) {
751 			l->l_nivcsw++;
752 			l->l_pflag &= ~LP_PREEMPTING;
753 		}
754 
755 		/*
756 		 * Increase the count of spin-mutexes before the release
757 		 * of the last lock - we must remain at IPL_SCHED after
758 		 * releasing the lock.
759 		 */
760 		KASSERTMSG(ci->ci_mtx_count == -1,
761 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
762 		    "(block with spin-mutex held)",
763 		     __func__, cpu_index(ci), ci->ci_mtx_count);
764 		oldspl = MUTEX_SPIN_OLDSPL(ci);
765 		ci->ci_mtx_count = -2;
766 
767 		/* Update status for lwpctl, if present. */
768 		if (l->l_lwpctl != NULL) {
769 			l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
770 			    LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
771 		}
772 
773 		/*
774 		 * If curlwp is a soft interrupt LWP, there's nobody on the
775 		 * other side to unlock - we're returning into an assembly
776 		 * trampoline.  Unlock now.  This is safe because this is a
777 		 * kernel LWP and is bound to current CPU: the worst anyone
778 		 * else will do to it, is to put it back onto this CPU's run
779 		 * queue (and the CPU is busy here right now!).
780 		 */
781 		if (returning) {
782 			/* Keep IPL_SCHED after this; MD code will fix up. */
783 			l->l_pflag &= ~LP_RUNNING;
784 			lwp_unlock(l);
785 		} else {
786 			/* A normal LWP: save old VM context. */
787 			pmap_deactivate(l);
788 		}
789 
790 		/*
791 		 * If DTrace has set the active vtime enum to anything
792 		 * other than INACTIVE (0), then it should have set the
793 		 * function to call.
794 		 */
795 		if (__predict_false(dtrace_vtime_active)) {
796 			(*dtrace_vtime_switch_func)(newl);
797 		}
798 
799 		/*
800 		 * We must ensure not to come here from inside a read section.
801 		 */
802 		KASSERT(pserialize_not_in_read_section());
803 
804 		/* Switch to the new LWP.. */
805 #ifdef MULTIPROCESSOR
806 		KASSERT(curlwp == ci->ci_curlwp);
807 #endif
808 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
809 		prevlwp = cpu_switchto(l, newl, returning);
810 		ci = curcpu();
811 #ifdef MULTIPROCESSOR
812 		KASSERT(curlwp == ci->ci_curlwp);
813 #endif
814 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
815 		    l, curlwp, prevlwp);
816 		KASSERT(prevlwp != NULL);
817 		KASSERT(l->l_cpu == ci);
818 		KASSERT(ci->ci_mtx_count == -2);
819 
820 		/*
821 		 * Immediately mark the previous LWP as no longer running
822 		 * and unlock (to keep lock wait times short as possible).
823 		 * We'll still be at IPL_SCHED afterwards.  If a zombie,
824 		 * don't touch after clearing LP_RUNNING as it could be
825 		 * reaped by another CPU.  Issue a memory barrier to ensure
826 		 * this.
827 		 *
828 		 * atomic_store_release matches atomic_load_acquire in
829 		 * lwp_free.
830 		 */
831 		KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
832 		lock = prevlwp->l_mutex;
833 		if (__predict_false(prevlwp->l_stat == LSZOMB)) {
834 			atomic_store_release(&prevlwp->l_pflag,
835 			    prevlwp->l_pflag & ~LP_RUNNING);
836 		} else {
837 			prevlwp->l_pflag &= ~LP_RUNNING;
838 		}
839 		mutex_spin_exit(lock);
840 
841 		/*
842 		 * Switched away - we have new curlwp.
843 		 * Restore VM context and IPL.
844 		 */
845 		pmap_activate(l);
846 		pcu_switchpoint(l);
847 
848 		/* Update status for lwpctl, if present. */
849 		if (l->l_lwpctl != NULL) {
850 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
851 			l->l_lwpctl->lc_pctr++;
852 		}
853 
854 		/*
855 		 * Normalize the spin mutex count and restore the previous
856 		 * SPL.  Note that, unless the caller disabled preemption,
857 		 * we can be preempted at any time after this splx().
858 		 */
859 		KASSERT(l->l_cpu == ci);
860 		KASSERT(ci->ci_mtx_count == -1);
861 		ci->ci_mtx_count = 0;
862 		splx(oldspl);
863 	} else {
864 		/* Nothing to do - just unlock and return. */
865 		mutex_spin_exit(spc->spc_mutex);
866 		l->l_pflag &= ~LP_PREEMPTING;
867 		lwp_unlock(l);
868 	}
869 
870 	KASSERT(l == curlwp);
871 	KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0);
872 
873 	SYSCALL_TIME_WAKEUP(l);
874 	LOCKDEBUG_BARRIER(NULL, 1);
875 }
876 
877 /*
878  * setrunnable: change LWP state to be runnable, placing it on the run queue.
879  *
880  * Call with the process and LWP locked.  Will return with the LWP unlocked.
881  */
882 void
883 setrunnable(struct lwp *l)
884 {
885 	struct proc *p = l->l_proc;
886 	struct cpu_info *ci;
887 	kmutex_t *oldlock;
888 
889 	KASSERT((l->l_flag & LW_IDLE) == 0);
890 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
891 	KASSERT(mutex_owned(p->p_lock));
892 	KASSERT(lwp_locked(l, NULL));
893 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
894 
895 	switch (l->l_stat) {
896 	case LSSTOP:
897 		/*
898 		 * If we're being traced (possibly because someone attached us
899 		 * while we were stopped), check for a signal from the debugger.
900 		 */
901 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
902 			signotify(l);
903 		p->p_nrlwps++;
904 		break;
905 	case LSSUSPENDED:
906 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
907 		l->l_flag &= ~LW_WSUSPEND;
908 		p->p_nrlwps++;
909 		cv_broadcast(&p->p_lwpcv);
910 		break;
911 	case LSSLEEP:
912 		KASSERT(l->l_wchan != NULL);
913 		break;
914 	case LSIDL:
915 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
916 		break;
917 	default:
918 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
919 	}
920 
921 	/*
922 	 * If the LWP was sleeping, start it again.
923 	 */
924 	if (l->l_wchan != NULL) {
925 		l->l_stat = LSSLEEP;
926 		/* lwp_unsleep() will release the lock. */
927 		lwp_unsleep(l, true);
928 		return;
929 	}
930 
931 	/*
932 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
933 	 * about to call mi_switch(), in which case it will yield.
934 	 */
935 	if ((l->l_pflag & LP_RUNNING) != 0) {
936 		l->l_stat = LSONPROC;
937 		l->l_slptime = 0;
938 		lwp_unlock(l);
939 		return;
940 	}
941 
942 	/*
943 	 * Look for a CPU to run.
944 	 * Set the LWP runnable.
945 	 */
946 	ci = sched_takecpu(l);
947 	l->l_cpu = ci;
948 	spc_lock(ci);
949 	oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
950 	sched_setrunnable(l);
951 	l->l_stat = LSRUN;
952 	l->l_slptime = 0;
953 	sched_enqueue(l);
954 	sched_resched_lwp(l, true);
955 	/* SPC & LWP now unlocked. */
956 	mutex_spin_exit(oldlock);
957 }
958 
959 /*
960  * suspendsched:
961  *
962  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
963  */
964 void
965 suspendsched(void)
966 {
967 	CPU_INFO_ITERATOR cii;
968 	struct cpu_info *ci;
969 	struct lwp *l;
970 	struct proc *p;
971 
972 	/*
973 	 * We do this by process in order not to violate the locking rules.
974 	 */
975 	mutex_enter(&proc_lock);
976 	PROCLIST_FOREACH(p, &allproc) {
977 		mutex_enter(p->p_lock);
978 		if ((p->p_flag & PK_SYSTEM) != 0) {
979 			mutex_exit(p->p_lock);
980 			continue;
981 		}
982 
983 		if (p->p_stat != SSTOP) {
984 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
985 				p->p_pptr->p_nstopchild++;
986 				p->p_waited = 0;
987 			}
988 			p->p_stat = SSTOP;
989 		}
990 
991 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
992 			if (l == curlwp)
993 				continue;
994 
995 			lwp_lock(l);
996 
997 			/*
998 			 * Set L_WREBOOT so that the LWP will suspend itself
999 			 * when it tries to return to user mode.  We want to
1000 			 * try and get to get as many LWPs as possible to
1001 			 * the user / kernel boundary, so that they will
1002 			 * release any locks that they hold.
1003 			 */
1004 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1005 
1006 			if (l->l_stat == LSSLEEP &&
1007 			    (l->l_flag & LW_SINTR) != 0) {
1008 				/* setrunnable() will release the lock. */
1009 				setrunnable(l);
1010 				continue;
1011 			}
1012 
1013 			lwp_unlock(l);
1014 		}
1015 
1016 		mutex_exit(p->p_lock);
1017 	}
1018 	mutex_exit(&proc_lock);
1019 
1020 	/*
1021 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
1022 	 * They'll trap into the kernel and suspend themselves in userret().
1023 	 *
1024 	 * Unusually, we don't hold any other scheduler object locked, which
1025 	 * would keep preemption off for sched_resched_cpu(), so disable it
1026 	 * explicitly.
1027 	 */
1028 	kpreempt_disable();
1029 	for (CPU_INFO_FOREACH(cii, ci)) {
1030 		spc_lock(ci);
1031 		sched_resched_cpu(ci, PRI_KERNEL, true);
1032 		/* spc now unlocked */
1033 	}
1034 	kpreempt_enable();
1035 }
1036 
1037 /*
1038  * sched_unsleep:
1039  *
1040  *	The is called when the LWP has not been awoken normally but instead
1041  *	interrupted: for example, if the sleep timed out.  Because of this,
1042  *	it's not a valid action for running or idle LWPs.
1043  */
1044 static void
1045 sched_unsleep(struct lwp *l, bool cleanup)
1046 {
1047 
1048 	lwp_unlock(l);
1049 	panic("sched_unsleep");
1050 }
1051 
1052 static void
1053 sched_changepri(struct lwp *l, pri_t pri)
1054 {
1055 	struct schedstate_percpu *spc;
1056 	struct cpu_info *ci;
1057 
1058 	KASSERT(lwp_locked(l, NULL));
1059 
1060 	ci = l->l_cpu;
1061 	spc = &ci->ci_schedstate;
1062 
1063 	if (l->l_stat == LSRUN) {
1064 		KASSERT(lwp_locked(l, spc->spc_mutex));
1065 		sched_dequeue(l);
1066 		l->l_priority = pri;
1067 		sched_enqueue(l);
1068 		sched_resched_lwp(l, false);
1069 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1070 		/* On priority drop, only evict realtime LWPs. */
1071 		KASSERT(lwp_locked(l, spc->spc_lwplock));
1072 		l->l_priority = pri;
1073 		spc_lock(ci);
1074 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
1075 		/* spc now unlocked */
1076 	} else {
1077 		l->l_priority = pri;
1078 	}
1079 }
1080 
1081 static void
1082 sched_lendpri(struct lwp *l, pri_t pri)
1083 {
1084 	struct schedstate_percpu *spc;
1085 	struct cpu_info *ci;
1086 
1087 	KASSERT(lwp_locked(l, NULL));
1088 
1089 	ci = l->l_cpu;
1090 	spc = &ci->ci_schedstate;
1091 
1092 	if (l->l_stat == LSRUN) {
1093 		KASSERT(lwp_locked(l, spc->spc_mutex));
1094 		sched_dequeue(l);
1095 		l->l_inheritedprio = pri;
1096 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1097 		sched_enqueue(l);
1098 		sched_resched_lwp(l, false);
1099 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1100 		/* On priority drop, only evict realtime LWPs. */
1101 		KASSERT(lwp_locked(l, spc->spc_lwplock));
1102 		l->l_inheritedprio = pri;
1103 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1104 		spc_lock(ci);
1105 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
1106 		/* spc now unlocked */
1107 	} else {
1108 		l->l_inheritedprio = pri;
1109 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1110 	}
1111 }
1112 
1113 struct lwp *
1114 syncobj_noowner(wchan_t wchan)
1115 {
1116 
1117 	return NULL;
1118 }
1119 
1120 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1121 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1122 
1123 /*
1124  * Constants for averages over 1, 5 and 15 minutes when sampling at
1125  * 5 second intervals.
1126  */
1127 static const fixpt_t cexp[ ] = {
1128 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
1129 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
1130 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
1131 };
1132 
1133 /*
1134  * sched_pstats:
1135  *
1136  * => Update process statistics and check CPU resource allocation.
1137  * => Call scheduler-specific hook to eventually adjust LWP priorities.
1138  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1139  */
1140 void
1141 sched_pstats(void)
1142 {
1143 	struct loadavg *avg = &averunnable;
1144 	const int clkhz = (stathz != 0 ? stathz : hz);
1145 	static bool backwardslwp = false;
1146 	static bool backwardsproc = false;
1147 	static u_int lavg_count = 0;
1148 	struct proc *p;
1149 	int nrun;
1150 
1151 	sched_pstats_ticks++;
1152 	if (++lavg_count >= 5) {
1153 		lavg_count = 0;
1154 		nrun = 0;
1155 	}
1156 	mutex_enter(&proc_lock);
1157 	PROCLIST_FOREACH(p, &allproc) {
1158 		struct lwp *l;
1159 		struct rlimit *rlim;
1160 		time_t runtm;
1161 		int sig;
1162 
1163 		/* Increment sleep time (if sleeping), ignore overflow. */
1164 		mutex_enter(p->p_lock);
1165 		runtm = p->p_rtime.sec;
1166 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1167 			fixpt_t lpctcpu;
1168 			u_int lcpticks;
1169 
1170 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
1171 				continue;
1172 			lwp_lock(l);
1173 			if (__predict_false(l->l_rtime.sec < 0) &&
1174 			    !backwardslwp) {
1175 				backwardslwp = true;
1176 				printf("WARNING: lwp %ld (%s%s%s): "
1177 				    "negative runtime: "
1178 				    "(%jd + 0x%016"PRIx64"/2^64) sec\n",
1179 				    (long)l->l_lid,
1180 				    l->l_proc->p_comm,
1181 				    l->l_name ? " " : "",
1182 				    l->l_name ? l->l_name : "",
1183 				    (intmax_t)l->l_rtime.sec,
1184 				    l->l_rtime.frac);
1185 			}
1186 			runtm += l->l_rtime.sec;
1187 			l->l_swtime++;
1188 			sched_lwp_stats(l);
1189 
1190 			/* For load average calculation. */
1191 			if (__predict_false(lavg_count == 0) &&
1192 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1193 				switch (l->l_stat) {
1194 				case LSSLEEP:
1195 					if (l->l_slptime > 1) {
1196 						break;
1197 					}
1198 					/* FALLTHROUGH */
1199 				case LSRUN:
1200 				case LSONPROC:
1201 				case LSIDL:
1202 					nrun++;
1203 				}
1204 			}
1205 			lwp_unlock(l);
1206 
1207 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1208 			if (l->l_slptime != 0)
1209 				continue;
1210 
1211 			lpctcpu = l->l_pctcpu;
1212 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1213 			lpctcpu += ((FSCALE - ccpu) *
1214 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1215 			l->l_pctcpu = lpctcpu;
1216 		}
1217 		/* Calculating p_pctcpu only for ps(1) */
1218 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1219 
1220 		if (__predict_false(runtm < 0)) {
1221 			if (!backwardsproc) {
1222 				backwardsproc = true;
1223 				printf("WARNING: pid %ld (%s): "
1224 				    "negative runtime; "
1225 				    "monotonic clock has gone backwards\n",
1226 				    (long)p->p_pid, p->p_comm);
1227 			}
1228 			mutex_exit(p->p_lock);
1229 			continue;
1230 		}
1231 
1232 		/*
1233 		 * Check if the process exceeds its CPU resource allocation.
1234 		 * If over the hard limit, kill it with SIGKILL.
1235 		 * If over the soft limit, send SIGXCPU and raise
1236 		 * the soft limit a little.
1237 		 */
1238 		rlim = &p->p_rlimit[RLIMIT_CPU];
1239 		sig = 0;
1240 		if (__predict_false(runtm >= rlim->rlim_cur)) {
1241 			if (runtm >= rlim->rlim_max) {
1242 				sig = SIGKILL;
1243 				log(LOG_NOTICE,
1244 				    "pid %d, command %s, is killed: %s\n",
1245 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1246 				uprintf("pid %d, command %s, is killed: %s\n",
1247 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1248 			} else {
1249 				sig = SIGXCPU;
1250 				if (rlim->rlim_cur < rlim->rlim_max)
1251 					rlim->rlim_cur += 5;
1252 			}
1253 		}
1254 		mutex_exit(p->p_lock);
1255 		if (__predict_false(sig)) {
1256 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
1257 			psignal(p, sig);
1258 		}
1259 	}
1260 
1261 	/* Load average calculation. */
1262 	if (__predict_false(lavg_count == 0)) {
1263 		int i;
1264 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1265 		for (i = 0; i < __arraycount(cexp); i++) {
1266 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1267 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1268 		}
1269 	}
1270 
1271 	/* Lightning bolt. */
1272 	cv_broadcast(&lbolt);
1273 
1274 	mutex_exit(&proc_lock);
1275 }
1276