1 /* $NetBSD: kern_synch.c,v 1.354 2023/04/09 12:16:42 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and 11 * Daniel Sieger. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /*- 36 * Copyright (c) 1982, 1986, 1990, 1991, 1993 37 * The Regents of the University of California. All rights reserved. 38 * (c) UNIX System Laboratories, Inc. 39 * All or some portions of this file are derived from material licensed 40 * to the University of California by American Telephone and Telegraph 41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 42 * the permission of UNIX System Laboratories, Inc. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. Neither the name of the University nor the names of its contributors 53 * may be used to endorse or promote products derived from this software 54 * without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 66 * SUCH DAMAGE. 67 * 68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 69 */ 70 71 #include <sys/cdefs.h> 72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.354 2023/04/09 12:16:42 riastradh Exp $"); 73 74 #include "opt_kstack.h" 75 #include "opt_dtrace.h" 76 77 #define __MUTEX_PRIVATE 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/kernel.h> 83 #include <sys/cpu.h> 84 #include <sys/pserialize.h> 85 #include <sys/resource.h> 86 #include <sys/resourcevar.h> 87 #include <sys/rwlock.h> 88 #include <sys/sched.h> 89 #include <sys/syscall_stats.h> 90 #include <sys/sleepq.h> 91 #include <sys/lockdebug.h> 92 #include <sys/evcnt.h> 93 #include <sys/intr.h> 94 #include <sys/lwpctl.h> 95 #include <sys/atomic.h> 96 #include <sys/syslog.h> 97 98 #include <uvm/uvm_extern.h> 99 100 #include <dev/lockstat.h> 101 102 #include <sys/dtrace_bsd.h> 103 int dtrace_vtime_active=0; 104 dtrace_vtime_switch_func_t dtrace_vtime_switch_func; 105 106 static void sched_unsleep(struct lwp *, bool); 107 static void sched_changepri(struct lwp *, pri_t); 108 static void sched_lendpri(struct lwp *, pri_t); 109 110 syncobj_t sleep_syncobj = { 111 .sobj_flag = SOBJ_SLEEPQ_SORTED, 112 .sobj_unsleep = sleepq_unsleep, 113 .sobj_changepri = sleepq_changepri, 114 .sobj_lendpri = sleepq_lendpri, 115 .sobj_owner = syncobj_noowner, 116 }; 117 118 syncobj_t sched_syncobj = { 119 .sobj_flag = SOBJ_SLEEPQ_SORTED, 120 .sobj_unsleep = sched_unsleep, 121 .sobj_changepri = sched_changepri, 122 .sobj_lendpri = sched_lendpri, 123 .sobj_owner = syncobj_noowner, 124 }; 125 126 syncobj_t kpause_syncobj = { 127 .sobj_flag = SOBJ_SLEEPQ_NULL, 128 .sobj_unsleep = sleepq_unsleep, 129 .sobj_changepri = sleepq_changepri, 130 .sobj_lendpri = sleepq_lendpri, 131 .sobj_owner = syncobj_noowner, 132 }; 133 134 /* "Lightning bolt": once a second sleep address. */ 135 kcondvar_t lbolt __cacheline_aligned; 136 137 u_int sched_pstats_ticks __cacheline_aligned; 138 139 /* Preemption event counters. */ 140 static struct evcnt kpreempt_ev_crit __cacheline_aligned; 141 static struct evcnt kpreempt_ev_klock __cacheline_aligned; 142 static struct evcnt kpreempt_ev_immed __cacheline_aligned; 143 144 void 145 synch_init(void) 146 { 147 148 cv_init(&lbolt, "lbolt"); 149 150 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL, 151 "kpreempt", "defer: critical section"); 152 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL, 153 "kpreempt", "defer: kernel_lock"); 154 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL, 155 "kpreempt", "immediate"); 156 } 157 158 /* 159 * OBSOLETE INTERFACE 160 * 161 * General sleep call. Suspends the current LWP until a wakeup is 162 * performed on the specified identifier. The LWP will then be made 163 * runnable with the specified priority. Sleeps at most timo/hz seconds (0 164 * means no timeout). If pri includes PCATCH flag, signals are checked 165 * before and after sleeping, else signals are not checked. Returns 0 if 166 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 167 * signal needs to be delivered, ERESTART is returned if the current system 168 * call should be restarted if possible, and EINTR is returned if the system 169 * call should be interrupted by the signal (return EINTR). 170 */ 171 int 172 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo) 173 { 174 struct lwp *l = curlwp; 175 sleepq_t *sq; 176 kmutex_t *mp; 177 bool catch_p; 178 179 KASSERT((l->l_pflag & LP_INTR) == 0); 180 KASSERT(ident != &lbolt); 181 182 if (sleepq_dontsleep(l)) { 183 (void)sleepq_abort(NULL, 0); 184 return 0; 185 } 186 187 l->l_kpriority = true; 188 catch_p = priority & PCATCH; 189 sq = sleeptab_lookup(&sleeptab, ident, &mp); 190 sleepq_enter(sq, l, mp); 191 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p); 192 return sleepq_block(timo, catch_p, &sleep_syncobj); 193 } 194 195 int 196 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 197 kmutex_t *mtx) 198 { 199 struct lwp *l = curlwp; 200 sleepq_t *sq; 201 kmutex_t *mp; 202 bool catch_p; 203 int error; 204 205 KASSERT((l->l_pflag & LP_INTR) == 0); 206 KASSERT(ident != &lbolt); 207 208 if (sleepq_dontsleep(l)) { 209 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0); 210 return 0; 211 } 212 213 l->l_kpriority = true; 214 catch_p = priority & PCATCH; 215 sq = sleeptab_lookup(&sleeptab, ident, &mp); 216 sleepq_enter(sq, l, mp); 217 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p); 218 mutex_exit(mtx); 219 error = sleepq_block(timo, catch_p, &sleep_syncobj); 220 221 if ((priority & PNORELOCK) == 0) 222 mutex_enter(mtx); 223 224 return error; 225 } 226 227 /* 228 * General sleep call for situations where a wake-up is not expected. 229 */ 230 int 231 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx) 232 { 233 struct lwp *l = curlwp; 234 int error; 235 236 KASSERT(timo != 0 || intr); 237 238 if (sleepq_dontsleep(l)) 239 return sleepq_abort(NULL, 0); 240 241 if (mtx != NULL) 242 mutex_exit(mtx); 243 l->l_kpriority = true; 244 lwp_lock(l); 245 KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks); 246 sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr); 247 error = sleepq_block(timo, intr, &kpause_syncobj); 248 if (mtx != NULL) 249 mutex_enter(mtx); 250 251 return error; 252 } 253 254 /* 255 * OBSOLETE INTERFACE 256 * 257 * Make all LWPs sleeping on the specified identifier runnable. 258 */ 259 void 260 wakeup(wchan_t ident) 261 { 262 sleepq_t *sq; 263 kmutex_t *mp; 264 265 if (__predict_false(cold)) 266 return; 267 268 sq = sleeptab_lookup(&sleeptab, ident, &mp); 269 sleepq_wake(sq, ident, (u_int)-1, mp); 270 } 271 272 /* 273 * General yield call. Puts the current LWP back on its run queue and 274 * performs a context switch. 275 */ 276 void 277 yield(void) 278 { 279 struct lwp *l = curlwp; 280 281 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 282 lwp_lock(l); 283 284 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 285 KASSERT(l->l_stat == LSONPROC); 286 287 /* Voluntary - ditch kpriority boost. */ 288 l->l_kpriority = false; 289 spc_lock(l->l_cpu); 290 mi_switch(l); 291 KERNEL_LOCK(l->l_biglocks, l); 292 } 293 294 /* 295 * General preemption call. Puts the current LWP back on its run queue 296 * and performs an involuntary context switch. Different from yield() 297 * in that: 298 * 299 * - It's counted differently (involuntary vs. voluntary). 300 * - Realtime threads go to the head of their runqueue vs. tail for yield(). 301 * - Priority boost is retained unless LWP has exceeded timeslice. 302 */ 303 void 304 preempt(void) 305 { 306 struct lwp *l = curlwp; 307 308 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 309 lwp_lock(l); 310 311 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 312 KASSERT(l->l_stat == LSONPROC); 313 314 spc_lock(l->l_cpu); 315 /* Involuntary - keep kpriority boost unless a CPU hog. */ 316 if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) { 317 l->l_kpriority = false; 318 } 319 l->l_pflag |= LP_PREEMPTING; 320 mi_switch(l); 321 KERNEL_LOCK(l->l_biglocks, l); 322 } 323 324 /* 325 * Return true if the current LWP should yield the processor. Intended to 326 * be used by long-running code in kernel. 327 */ 328 inline bool 329 preempt_needed(void) 330 { 331 lwp_t *l = curlwp; 332 int needed; 333 334 KPREEMPT_DISABLE(l); 335 needed = l->l_cpu->ci_want_resched; 336 KPREEMPT_ENABLE(l); 337 338 return (needed != 0); 339 } 340 341 /* 342 * A breathing point for long running code in kernel. 343 */ 344 void 345 preempt_point(void) 346 { 347 348 if (__predict_false(preempt_needed())) { 349 preempt(); 350 } 351 } 352 353 /* 354 * Handle a request made by another agent to preempt the current LWP 355 * in-kernel. Usually called when l_dopreempt may be non-zero. 356 * 357 * Character addresses for lockstat only. 358 */ 359 static char kpreempt_is_disabled; 360 static char kernel_lock_held; 361 static char is_softint_lwp; 362 static char spl_is_raised; 363 364 bool 365 kpreempt(uintptr_t where) 366 { 367 uintptr_t failed; 368 lwp_t *l; 369 int s, dop, lsflag; 370 371 l = curlwp; 372 failed = 0; 373 while ((dop = l->l_dopreempt) != 0) { 374 if (l->l_stat != LSONPROC) { 375 /* 376 * About to block (or die), let it happen. 377 * Doesn't really count as "preemption has 378 * been blocked", since we're going to 379 * context switch. 380 */ 381 atomic_swap_uint(&l->l_dopreempt, 0); 382 return true; 383 } 384 KASSERT((l->l_flag & LW_IDLE) == 0); 385 if (__predict_false(l->l_nopreempt != 0)) { 386 /* LWP holds preemption disabled, explicitly. */ 387 if ((dop & DOPREEMPT_COUNTED) == 0) { 388 kpreempt_ev_crit.ev_count++; 389 } 390 failed = (uintptr_t)&kpreempt_is_disabled; 391 break; 392 } 393 if (__predict_false((l->l_pflag & LP_INTR) != 0)) { 394 /* Can't preempt soft interrupts yet. */ 395 atomic_swap_uint(&l->l_dopreempt, 0); 396 failed = (uintptr_t)&is_softint_lwp; 397 break; 398 } 399 s = splsched(); 400 if (__predict_false(l->l_blcnt != 0 || 401 curcpu()->ci_biglock_wanted != NULL)) { 402 /* Hold or want kernel_lock, code is not MT safe. */ 403 splx(s); 404 if ((dop & DOPREEMPT_COUNTED) == 0) { 405 kpreempt_ev_klock.ev_count++; 406 } 407 failed = (uintptr_t)&kernel_lock_held; 408 break; 409 } 410 if (__predict_false(!cpu_kpreempt_enter(where, s))) { 411 /* 412 * It may be that the IPL is too high. 413 * kpreempt_enter() can schedule an 414 * interrupt to retry later. 415 */ 416 splx(s); 417 failed = (uintptr_t)&spl_is_raised; 418 break; 419 } 420 /* Do it! */ 421 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) { 422 kpreempt_ev_immed.ev_count++; 423 } 424 lwp_lock(l); 425 /* Involuntary - keep kpriority boost. */ 426 l->l_pflag |= LP_PREEMPTING; 427 spc_lock(l->l_cpu); 428 mi_switch(l); 429 l->l_nopreempt++; 430 splx(s); 431 432 /* Take care of any MD cleanup. */ 433 cpu_kpreempt_exit(where); 434 l->l_nopreempt--; 435 } 436 437 if (__predict_true(!failed)) { 438 return false; 439 } 440 441 /* Record preemption failure for reporting via lockstat. */ 442 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED); 443 lsflag = 0; 444 LOCKSTAT_ENTER(lsflag); 445 if (__predict_false(lsflag)) { 446 if (where == 0) { 447 where = (uintptr_t)__builtin_return_address(0); 448 } 449 /* Preemption is on, might recurse, so make it atomic. */ 450 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL, 451 (void *)where) == NULL) { 452 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime); 453 l->l_pfaillock = failed; 454 } 455 } 456 LOCKSTAT_EXIT(lsflag); 457 return true; 458 } 459 460 /* 461 * Return true if preemption is explicitly disabled. 462 */ 463 bool 464 kpreempt_disabled(void) 465 { 466 const lwp_t *l = curlwp; 467 468 return l->l_nopreempt != 0 || l->l_stat == LSZOMB || 469 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 || 470 cpu_kpreempt_disabled(); 471 } 472 473 /* 474 * Disable kernel preemption. 475 */ 476 void 477 kpreempt_disable(void) 478 { 479 480 KPREEMPT_DISABLE(curlwp); 481 } 482 483 /* 484 * Reenable kernel preemption. 485 */ 486 void 487 kpreempt_enable(void) 488 { 489 490 KPREEMPT_ENABLE(curlwp); 491 } 492 493 /* 494 * Compute the amount of time during which the current lwp was running. 495 * 496 * - update l_rtime unless it's an idle lwp. 497 */ 498 499 void 500 updatertime(lwp_t *l, const struct bintime *now) 501 { 502 503 if (__predict_false(l->l_flag & LW_IDLE)) 504 return; 505 506 /* rtime += now - stime */ 507 bintime_add(&l->l_rtime, now); 508 bintime_sub(&l->l_rtime, &l->l_stime); 509 } 510 511 /* 512 * Select next LWP from the current CPU to run.. 513 */ 514 static inline lwp_t * 515 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc) 516 { 517 lwp_t *newl; 518 519 /* 520 * Let sched_nextlwp() select the LWP to run the CPU next. 521 * If no LWP is runnable, select the idle LWP. 522 * 523 * On arrival here LWPs on a run queue are locked by spc_mutex which 524 * is currently held. Idle LWPs are always locked by spc_lwplock, 525 * which may or may not be held here. On exit from this code block, 526 * in all cases newl is locked by spc_lwplock. 527 */ 528 newl = sched_nextlwp(); 529 if (newl != NULL) { 530 sched_dequeue(newl); 531 KASSERT(lwp_locked(newl, spc->spc_mutex)); 532 KASSERT(newl->l_cpu == ci); 533 newl->l_stat = LSONPROC; 534 newl->l_pflag |= LP_RUNNING; 535 spc->spc_curpriority = lwp_eprio(newl); 536 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE); 537 lwp_setlock(newl, spc->spc_lwplock); 538 } else { 539 /* 540 * The idle LWP does not get set to LSONPROC, because 541 * otherwise it screws up the output from top(1) etc. 542 */ 543 newl = ci->ci_data.cpu_idlelwp; 544 newl->l_pflag |= LP_RUNNING; 545 spc->spc_curpriority = PRI_IDLE; 546 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) | 547 SPCF_IDLE; 548 } 549 550 /* 551 * Only clear want_resched if there are no pending (slow) software 552 * interrupts. We can do this without an atomic, because no new 553 * LWPs can appear in the queue due to our hold on spc_mutex, and 554 * the update to ci_want_resched will become globally visible before 555 * the release of spc_mutex becomes globally visible. 556 */ 557 if (ci->ci_data.cpu_softints == 0) 558 ci->ci_want_resched = 0; 559 560 return newl; 561 } 562 563 /* 564 * The machine independent parts of context switch. 565 * 566 * NOTE: l->l_cpu is not changed in this routine, because an LWP never 567 * changes its own l_cpu (that would screw up curcpu on many ports and could 568 * cause all kinds of other evil stuff). l_cpu is always changed by some 569 * other actor, when it's known the LWP is not running (the LP_RUNNING flag 570 * is checked under lock). 571 */ 572 void 573 mi_switch(lwp_t *l) 574 { 575 struct cpu_info *ci; 576 struct schedstate_percpu *spc; 577 struct lwp *newl; 578 kmutex_t *lock; 579 int oldspl; 580 struct bintime bt; 581 bool returning; 582 583 KASSERT(lwp_locked(l, NULL)); 584 KASSERT(kpreempt_disabled()); 585 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex)); 586 KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked"); 587 588 kstack_check_magic(l); 589 590 binuptime(&bt); 591 592 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp); 593 KASSERT((l->l_pflag & LP_RUNNING) != 0); 594 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN); 595 ci = curcpu(); 596 spc = &ci->ci_schedstate; 597 returning = false; 598 newl = NULL; 599 600 /* 601 * If we have been asked to switch to a specific LWP, then there 602 * is no need to inspect the run queues. If a soft interrupt is 603 * blocking, then return to the interrupted thread without adjusting 604 * VM context or its start time: neither have been changed in order 605 * to take the interrupt. 606 */ 607 if (l->l_switchto != NULL) { 608 if ((l->l_pflag & LP_INTR) != 0) { 609 returning = true; 610 softint_block(l); 611 if ((l->l_pflag & LP_TIMEINTR) != 0) 612 updatertime(l, &bt); 613 } 614 newl = l->l_switchto; 615 l->l_switchto = NULL; 616 } 617 #ifndef __HAVE_FAST_SOFTINTS 618 else if (ci->ci_data.cpu_softints != 0) { 619 /* There are pending soft interrupts, so pick one. */ 620 newl = softint_picklwp(); 621 newl->l_stat = LSONPROC; 622 newl->l_pflag |= LP_RUNNING; 623 } 624 #endif /* !__HAVE_FAST_SOFTINTS */ 625 626 /* 627 * If on the CPU and we have gotten this far, then we must yield. 628 */ 629 if (l->l_stat == LSONPROC && l != newl) { 630 KASSERT(lwp_locked(l, spc->spc_lwplock)); 631 KASSERT((l->l_flag & LW_IDLE) == 0); 632 l->l_stat = LSRUN; 633 lwp_setlock(l, spc->spc_mutex); 634 sched_enqueue(l); 635 sched_preempted(l); 636 637 /* 638 * Handle migration. Note that "migrating LWP" may 639 * be reset here, if interrupt/preemption happens 640 * early in idle LWP. 641 */ 642 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) { 643 KASSERT((l->l_pflag & LP_INTR) == 0); 644 spc->spc_migrating = l; 645 } 646 } 647 648 /* Pick new LWP to run. */ 649 if (newl == NULL) { 650 newl = nextlwp(ci, spc); 651 } 652 653 /* Items that must be updated with the CPU locked. */ 654 if (!returning) { 655 /* Count time spent in current system call */ 656 SYSCALL_TIME_SLEEP(l); 657 658 updatertime(l, &bt); 659 660 /* Update the new LWP's start time. */ 661 newl->l_stime = bt; 662 663 /* 664 * ci_curlwp changes when a fast soft interrupt occurs. 665 * We use ci_onproc to keep track of which kernel or 666 * user thread is running 'underneath' the software 667 * interrupt. This is important for time accounting, 668 * itimers and forcing user threads to preempt (aston). 669 */ 670 ci->ci_onproc = newl; 671 } 672 673 /* 674 * Preemption related tasks. Must be done holding spc_mutex. Clear 675 * l_dopreempt without an atomic - it's only ever set non-zero by 676 * sched_resched_cpu() which also holds spc_mutex, and only ever 677 * cleared by the LWP itself (us) with atomics when not under lock. 678 */ 679 l->l_dopreempt = 0; 680 if (__predict_false(l->l_pfailaddr != 0)) { 681 LOCKSTAT_FLAG(lsflag); 682 LOCKSTAT_ENTER(lsflag); 683 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime); 684 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN, 685 1, l->l_pfailtime, l->l_pfailaddr); 686 LOCKSTAT_EXIT(lsflag); 687 l->l_pfailtime = 0; 688 l->l_pfaillock = 0; 689 l->l_pfailaddr = 0; 690 } 691 692 if (l != newl) { 693 struct lwp *prevlwp; 694 695 /* Release all locks, but leave the current LWP locked */ 696 if (l->l_mutex == spc->spc_mutex) { 697 /* 698 * Drop spc_lwplock, if the current LWP has been moved 699 * to the run queue (it is now locked by spc_mutex). 700 */ 701 mutex_spin_exit(spc->spc_lwplock); 702 } else { 703 /* 704 * Otherwise, drop the spc_mutex, we are done with the 705 * run queues. 706 */ 707 mutex_spin_exit(spc->spc_mutex); 708 } 709 710 /* We're down to only one lock, so do debug checks. */ 711 LOCKDEBUG_BARRIER(l->l_mutex, 1); 712 713 /* Count the context switch. */ 714 CPU_COUNT(CPU_COUNT_NSWTCH, 1); 715 l->l_ncsw++; 716 if ((l->l_pflag & LP_PREEMPTING) != 0) { 717 l->l_nivcsw++; 718 l->l_pflag &= ~LP_PREEMPTING; 719 } 720 721 /* 722 * Increase the count of spin-mutexes before the release 723 * of the last lock - we must remain at IPL_SCHED after 724 * releasing the lock. 725 */ 726 KASSERTMSG(ci->ci_mtx_count == -1, 727 "%s: cpu%u: ci_mtx_count (%d) != -1 " 728 "(block with spin-mutex held)", 729 __func__, cpu_index(ci), ci->ci_mtx_count); 730 oldspl = MUTEX_SPIN_OLDSPL(ci); 731 ci->ci_mtx_count = -2; 732 733 /* Update status for lwpctl, if present. */ 734 if (l->l_lwpctl != NULL) { 735 l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ? 736 LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE); 737 } 738 739 /* 740 * If curlwp is a soft interrupt LWP, there's nobody on the 741 * other side to unlock - we're returning into an assembly 742 * trampoline. Unlock now. This is safe because this is a 743 * kernel LWP and is bound to current CPU: the worst anyone 744 * else will do to it, is to put it back onto this CPU's run 745 * queue (and the CPU is busy here right now!). 746 */ 747 if (returning) { 748 /* Keep IPL_SCHED after this; MD code will fix up. */ 749 l->l_pflag &= ~LP_RUNNING; 750 lwp_unlock(l); 751 } else { 752 /* A normal LWP: save old VM context. */ 753 pmap_deactivate(l); 754 } 755 756 /* 757 * If DTrace has set the active vtime enum to anything 758 * other than INACTIVE (0), then it should have set the 759 * function to call. 760 */ 761 if (__predict_false(dtrace_vtime_active)) { 762 (*dtrace_vtime_switch_func)(newl); 763 } 764 765 /* 766 * We must ensure not to come here from inside a read section. 767 */ 768 KASSERT(pserialize_not_in_read_section()); 769 770 /* Switch to the new LWP.. */ 771 #ifdef MULTIPROCESSOR 772 KASSERT(curlwp == ci->ci_curlwp); 773 #endif 774 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp); 775 prevlwp = cpu_switchto(l, newl, returning); 776 ci = curcpu(); 777 #ifdef MULTIPROCESSOR 778 KASSERT(curlwp == ci->ci_curlwp); 779 #endif 780 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p", 781 l, curlwp, prevlwp); 782 KASSERT(prevlwp != NULL); 783 KASSERT(l->l_cpu == ci); 784 KASSERT(ci->ci_mtx_count == -2); 785 786 /* 787 * Immediately mark the previous LWP as no longer running 788 * and unlock (to keep lock wait times short as possible). 789 * We'll still be at IPL_SCHED afterwards. If a zombie, 790 * don't touch after clearing LP_RUNNING as it could be 791 * reaped by another CPU. Issue a memory barrier to ensure 792 * this. 793 * 794 * atomic_store_release matches atomic_load_acquire in 795 * lwp_free. 796 */ 797 KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0); 798 lock = prevlwp->l_mutex; 799 if (__predict_false(prevlwp->l_stat == LSZOMB)) { 800 atomic_store_release(&prevlwp->l_pflag, 801 prevlwp->l_pflag & ~LP_RUNNING); 802 } else { 803 prevlwp->l_pflag &= ~LP_RUNNING; 804 } 805 mutex_spin_exit(lock); 806 807 /* 808 * Switched away - we have new curlwp. 809 * Restore VM context and IPL. 810 */ 811 pmap_activate(l); 812 pcu_switchpoint(l); 813 814 /* Update status for lwpctl, if present. */ 815 if (l->l_lwpctl != NULL) { 816 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci); 817 l->l_lwpctl->lc_pctr++; 818 } 819 820 /* 821 * Normalize the spin mutex count and restore the previous 822 * SPL. Note that, unless the caller disabled preemption, 823 * we can be preempted at any time after this splx(). 824 */ 825 KASSERT(l->l_cpu == ci); 826 KASSERT(ci->ci_mtx_count == -1); 827 ci->ci_mtx_count = 0; 828 splx(oldspl); 829 } else { 830 /* Nothing to do - just unlock and return. */ 831 mutex_spin_exit(spc->spc_mutex); 832 l->l_pflag &= ~LP_PREEMPTING; 833 lwp_unlock(l); 834 } 835 836 KASSERT(l == curlwp); 837 KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0); 838 839 SYSCALL_TIME_WAKEUP(l); 840 LOCKDEBUG_BARRIER(NULL, 1); 841 } 842 843 /* 844 * setrunnable: change LWP state to be runnable, placing it on the run queue. 845 * 846 * Call with the process and LWP locked. Will return with the LWP unlocked. 847 */ 848 void 849 setrunnable(struct lwp *l) 850 { 851 struct proc *p = l->l_proc; 852 struct cpu_info *ci; 853 kmutex_t *oldlock; 854 855 KASSERT((l->l_flag & LW_IDLE) == 0); 856 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0); 857 KASSERT(mutex_owned(p->p_lock)); 858 KASSERT(lwp_locked(l, NULL)); 859 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex); 860 861 switch (l->l_stat) { 862 case LSSTOP: 863 /* 864 * If we're being traced (possibly because someone attached us 865 * while we were stopped), check for a signal from the debugger. 866 */ 867 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0) 868 signotify(l); 869 p->p_nrlwps++; 870 break; 871 case LSSUSPENDED: 872 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 873 l->l_flag &= ~LW_WSUSPEND; 874 p->p_nrlwps++; 875 cv_broadcast(&p->p_lwpcv); 876 break; 877 case LSSLEEP: 878 KASSERT(l->l_wchan != NULL); 879 break; 880 case LSIDL: 881 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 882 break; 883 default: 884 panic("setrunnable: lwp %p state was %d", l, l->l_stat); 885 } 886 887 /* 888 * If the LWP was sleeping, start it again. 889 */ 890 if (l->l_wchan != NULL) { 891 l->l_stat = LSSLEEP; 892 /* lwp_unsleep() will release the lock. */ 893 lwp_unsleep(l, true); 894 return; 895 } 896 897 /* 898 * If the LWP is still on the CPU, mark it as LSONPROC. It may be 899 * about to call mi_switch(), in which case it will yield. 900 */ 901 if ((l->l_pflag & LP_RUNNING) != 0) { 902 l->l_stat = LSONPROC; 903 l->l_slptime = 0; 904 lwp_unlock(l); 905 return; 906 } 907 908 /* 909 * Look for a CPU to run. 910 * Set the LWP runnable. 911 */ 912 ci = sched_takecpu(l); 913 l->l_cpu = ci; 914 spc_lock(ci); 915 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex); 916 sched_setrunnable(l); 917 l->l_stat = LSRUN; 918 l->l_slptime = 0; 919 sched_enqueue(l); 920 sched_resched_lwp(l, true); 921 /* SPC & LWP now unlocked. */ 922 mutex_spin_exit(oldlock); 923 } 924 925 /* 926 * suspendsched: 927 * 928 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED. 929 */ 930 void 931 suspendsched(void) 932 { 933 CPU_INFO_ITERATOR cii; 934 struct cpu_info *ci; 935 struct lwp *l; 936 struct proc *p; 937 938 /* 939 * We do this by process in order not to violate the locking rules. 940 */ 941 mutex_enter(&proc_lock); 942 PROCLIST_FOREACH(p, &allproc) { 943 mutex_enter(p->p_lock); 944 if ((p->p_flag & PK_SYSTEM) != 0) { 945 mutex_exit(p->p_lock); 946 continue; 947 } 948 949 if (p->p_stat != SSTOP) { 950 if (p->p_stat != SZOMB && p->p_stat != SDEAD) { 951 p->p_pptr->p_nstopchild++; 952 p->p_waited = 0; 953 } 954 p->p_stat = SSTOP; 955 } 956 957 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 958 if (l == curlwp) 959 continue; 960 961 lwp_lock(l); 962 963 /* 964 * Set L_WREBOOT so that the LWP will suspend itself 965 * when it tries to return to user mode. We want to 966 * try and get to get as many LWPs as possible to 967 * the user / kernel boundary, so that they will 968 * release any locks that they hold. 969 */ 970 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND); 971 972 if (l->l_stat == LSSLEEP && 973 (l->l_flag & LW_SINTR) != 0) { 974 /* setrunnable() will release the lock. */ 975 setrunnable(l); 976 continue; 977 } 978 979 lwp_unlock(l); 980 } 981 982 mutex_exit(p->p_lock); 983 } 984 mutex_exit(&proc_lock); 985 986 /* 987 * Kick all CPUs to make them preempt any LWPs running in user mode. 988 * They'll trap into the kernel and suspend themselves in userret(). 989 * 990 * Unusually, we don't hold any other scheduler object locked, which 991 * would keep preemption off for sched_resched_cpu(), so disable it 992 * explicitly. 993 */ 994 kpreempt_disable(); 995 for (CPU_INFO_FOREACH(cii, ci)) { 996 spc_lock(ci); 997 sched_resched_cpu(ci, PRI_KERNEL, true); 998 /* spc now unlocked */ 999 } 1000 kpreempt_enable(); 1001 } 1002 1003 /* 1004 * sched_unsleep: 1005 * 1006 * The is called when the LWP has not been awoken normally but instead 1007 * interrupted: for example, if the sleep timed out. Because of this, 1008 * it's not a valid action for running or idle LWPs. 1009 */ 1010 static void 1011 sched_unsleep(struct lwp *l, bool cleanup) 1012 { 1013 1014 lwp_unlock(l); 1015 panic("sched_unsleep"); 1016 } 1017 1018 static void 1019 sched_changepri(struct lwp *l, pri_t pri) 1020 { 1021 struct schedstate_percpu *spc; 1022 struct cpu_info *ci; 1023 1024 KASSERT(lwp_locked(l, NULL)); 1025 1026 ci = l->l_cpu; 1027 spc = &ci->ci_schedstate; 1028 1029 if (l->l_stat == LSRUN) { 1030 KASSERT(lwp_locked(l, spc->spc_mutex)); 1031 sched_dequeue(l); 1032 l->l_priority = pri; 1033 sched_enqueue(l); 1034 sched_resched_lwp(l, false); 1035 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) { 1036 /* On priority drop, only evict realtime LWPs. */ 1037 KASSERT(lwp_locked(l, spc->spc_lwplock)); 1038 l->l_priority = pri; 1039 spc_lock(ci); 1040 sched_resched_cpu(ci, spc->spc_maxpriority, true); 1041 /* spc now unlocked */ 1042 } else { 1043 l->l_priority = pri; 1044 } 1045 } 1046 1047 static void 1048 sched_lendpri(struct lwp *l, pri_t pri) 1049 { 1050 struct schedstate_percpu *spc; 1051 struct cpu_info *ci; 1052 1053 KASSERT(lwp_locked(l, NULL)); 1054 1055 ci = l->l_cpu; 1056 spc = &ci->ci_schedstate; 1057 1058 if (l->l_stat == LSRUN) { 1059 KASSERT(lwp_locked(l, spc->spc_mutex)); 1060 sched_dequeue(l); 1061 l->l_inheritedprio = pri; 1062 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1063 sched_enqueue(l); 1064 sched_resched_lwp(l, false); 1065 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) { 1066 /* On priority drop, only evict realtime LWPs. */ 1067 KASSERT(lwp_locked(l, spc->spc_lwplock)); 1068 l->l_inheritedprio = pri; 1069 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1070 spc_lock(ci); 1071 sched_resched_cpu(ci, spc->spc_maxpriority, true); 1072 /* spc now unlocked */ 1073 } else { 1074 l->l_inheritedprio = pri; 1075 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1076 } 1077 } 1078 1079 struct lwp * 1080 syncobj_noowner(wchan_t wchan) 1081 { 1082 1083 return NULL; 1084 } 1085 1086 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */ 1087 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE; 1088 1089 /* 1090 * Constants for averages over 1, 5 and 15 minutes when sampling at 1091 * 5 second intervals. 1092 */ 1093 static const fixpt_t cexp[ ] = { 1094 0.9200444146293232 * FSCALE, /* exp(-1/12) */ 1095 0.9834714538216174 * FSCALE, /* exp(-1/60) */ 1096 0.9944598480048967 * FSCALE, /* exp(-1/180) */ 1097 }; 1098 1099 /* 1100 * sched_pstats: 1101 * 1102 * => Update process statistics and check CPU resource allocation. 1103 * => Call scheduler-specific hook to eventually adjust LWP priorities. 1104 * => Compute load average of a quantity on 1, 5 and 15 minute intervals. 1105 */ 1106 void 1107 sched_pstats(void) 1108 { 1109 struct loadavg *avg = &averunnable; 1110 const int clkhz = (stathz != 0 ? stathz : hz); 1111 static bool backwards = false; 1112 static u_int lavg_count = 0; 1113 struct proc *p; 1114 int nrun; 1115 1116 sched_pstats_ticks++; 1117 if (++lavg_count >= 5) { 1118 lavg_count = 0; 1119 nrun = 0; 1120 } 1121 mutex_enter(&proc_lock); 1122 PROCLIST_FOREACH(p, &allproc) { 1123 struct lwp *l; 1124 struct rlimit *rlim; 1125 time_t runtm; 1126 int sig; 1127 1128 /* Increment sleep time (if sleeping), ignore overflow. */ 1129 mutex_enter(p->p_lock); 1130 runtm = p->p_rtime.sec; 1131 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1132 fixpt_t lpctcpu; 1133 u_int lcpticks; 1134 1135 if (__predict_false((l->l_flag & LW_IDLE) != 0)) 1136 continue; 1137 lwp_lock(l); 1138 runtm += l->l_rtime.sec; 1139 l->l_swtime++; 1140 sched_lwp_stats(l); 1141 1142 /* For load average calculation. */ 1143 if (__predict_false(lavg_count == 0) && 1144 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) { 1145 switch (l->l_stat) { 1146 case LSSLEEP: 1147 if (l->l_slptime > 1) { 1148 break; 1149 } 1150 /* FALLTHROUGH */ 1151 case LSRUN: 1152 case LSONPROC: 1153 case LSIDL: 1154 nrun++; 1155 } 1156 } 1157 lwp_unlock(l); 1158 1159 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT; 1160 if (l->l_slptime != 0) 1161 continue; 1162 1163 lpctcpu = l->l_pctcpu; 1164 lcpticks = atomic_swap_uint(&l->l_cpticks, 0); 1165 lpctcpu += ((FSCALE - ccpu) * 1166 (lcpticks * FSCALE / clkhz)) >> FSHIFT; 1167 l->l_pctcpu = lpctcpu; 1168 } 1169 /* Calculating p_pctcpu only for ps(1) */ 1170 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 1171 1172 if (__predict_false(runtm < 0)) { 1173 if (!backwards) { 1174 backwards = true; 1175 printf("WARNING: negative runtime; " 1176 "monotonic clock has gone backwards\n"); 1177 } 1178 mutex_exit(p->p_lock); 1179 continue; 1180 } 1181 1182 /* 1183 * Check if the process exceeds its CPU resource allocation. 1184 * If over the hard limit, kill it with SIGKILL. 1185 * If over the soft limit, send SIGXCPU and raise 1186 * the soft limit a little. 1187 */ 1188 rlim = &p->p_rlimit[RLIMIT_CPU]; 1189 sig = 0; 1190 if (__predict_false(runtm >= rlim->rlim_cur)) { 1191 if (runtm >= rlim->rlim_max) { 1192 sig = SIGKILL; 1193 log(LOG_NOTICE, 1194 "pid %d, command %s, is killed: %s\n", 1195 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU"); 1196 uprintf("pid %d, command %s, is killed: %s\n", 1197 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU"); 1198 } else { 1199 sig = SIGXCPU; 1200 if (rlim->rlim_cur < rlim->rlim_max) 1201 rlim->rlim_cur += 5; 1202 } 1203 } 1204 mutex_exit(p->p_lock); 1205 if (__predict_false(sig)) { 1206 KASSERT((p->p_flag & PK_SYSTEM) == 0); 1207 psignal(p, sig); 1208 } 1209 } 1210 1211 /* Load average calculation. */ 1212 if (__predict_false(lavg_count == 0)) { 1213 int i; 1214 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg)); 1215 for (i = 0; i < __arraycount(cexp); i++) { 1216 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] + 1217 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT; 1218 } 1219 } 1220 1221 /* Lightning bolt. */ 1222 cv_broadcast(&lbolt); 1223 1224 mutex_exit(&proc_lock); 1225 } 1226