1 /* $NetBSD: kern_synch.c,v 1.344 2020/03/14 20:23:51 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and 11 * Daniel Sieger. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /*- 36 * Copyright (c) 1982, 1986, 1990, 1991, 1993 37 * The Regents of the University of California. All rights reserved. 38 * (c) UNIX System Laboratories, Inc. 39 * All or some portions of this file are derived from material licensed 40 * to the University of California by American Telephone and Telegraph 41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 42 * the permission of UNIX System Laboratories, Inc. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. Neither the name of the University nor the names of its contributors 53 * may be used to endorse or promote products derived from this software 54 * without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 66 * SUCH DAMAGE. 67 * 68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 69 */ 70 71 #include <sys/cdefs.h> 72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.344 2020/03/14 20:23:51 ad Exp $"); 73 74 #include "opt_kstack.h" 75 #include "opt_dtrace.h" 76 77 #define __MUTEX_PRIVATE 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/kernel.h> 83 #include <sys/cpu.h> 84 #include <sys/pserialize.h> 85 #include <sys/resourcevar.h> 86 #include <sys/rwlock.h> 87 #include <sys/sched.h> 88 #include <sys/syscall_stats.h> 89 #include <sys/sleepq.h> 90 #include <sys/lockdebug.h> 91 #include <sys/evcnt.h> 92 #include <sys/intr.h> 93 #include <sys/lwpctl.h> 94 #include <sys/atomic.h> 95 #include <sys/syslog.h> 96 97 #include <uvm/uvm_extern.h> 98 99 #include <dev/lockstat.h> 100 101 #include <sys/dtrace_bsd.h> 102 int dtrace_vtime_active=0; 103 dtrace_vtime_switch_func_t dtrace_vtime_switch_func; 104 105 static void sched_unsleep(struct lwp *, bool); 106 static void sched_changepri(struct lwp *, pri_t); 107 static void sched_lendpri(struct lwp *, pri_t); 108 109 syncobj_t sleep_syncobj = { 110 .sobj_flag = SOBJ_SLEEPQ_SORTED, 111 .sobj_unsleep = sleepq_unsleep, 112 .sobj_changepri = sleepq_changepri, 113 .sobj_lendpri = sleepq_lendpri, 114 .sobj_owner = syncobj_noowner, 115 }; 116 117 syncobj_t sched_syncobj = { 118 .sobj_flag = SOBJ_SLEEPQ_SORTED, 119 .sobj_unsleep = sched_unsleep, 120 .sobj_changepri = sched_changepri, 121 .sobj_lendpri = sched_lendpri, 122 .sobj_owner = syncobj_noowner, 123 }; 124 125 syncobj_t kpause_syncobj = { 126 .sobj_flag = SOBJ_SLEEPQ_NULL, 127 .sobj_unsleep = sleepq_unsleep, 128 .sobj_changepri = sleepq_changepri, 129 .sobj_lendpri = sleepq_lendpri, 130 .sobj_owner = syncobj_noowner, 131 }; 132 133 /* "Lightning bolt": once a second sleep address. */ 134 kcondvar_t lbolt __cacheline_aligned; 135 136 u_int sched_pstats_ticks __cacheline_aligned; 137 138 /* Preemption event counters. */ 139 static struct evcnt kpreempt_ev_crit __cacheline_aligned; 140 static struct evcnt kpreempt_ev_klock __cacheline_aligned; 141 static struct evcnt kpreempt_ev_immed __cacheline_aligned; 142 143 void 144 synch_init(void) 145 { 146 147 cv_init(&lbolt, "lbolt"); 148 149 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL, 150 "kpreempt", "defer: critical section"); 151 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL, 152 "kpreempt", "defer: kernel_lock"); 153 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL, 154 "kpreempt", "immediate"); 155 } 156 157 /* 158 * OBSOLETE INTERFACE 159 * 160 * General sleep call. Suspends the current LWP until a wakeup is 161 * performed on the specified identifier. The LWP will then be made 162 * runnable with the specified priority. Sleeps at most timo/hz seconds (0 163 * means no timeout). If pri includes PCATCH flag, signals are checked 164 * before and after sleeping, else signals are not checked. Returns 0 if 165 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 166 * signal needs to be delivered, ERESTART is returned if the current system 167 * call should be restarted if possible, and EINTR is returned if the system 168 * call should be interrupted by the signal (return EINTR). 169 */ 170 int 171 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo) 172 { 173 struct lwp *l = curlwp; 174 sleepq_t *sq; 175 kmutex_t *mp; 176 177 KASSERT((l->l_pflag & LP_INTR) == 0); 178 KASSERT(ident != &lbolt); 179 180 if (sleepq_dontsleep(l)) { 181 (void)sleepq_abort(NULL, 0); 182 return 0; 183 } 184 185 l->l_kpriority = true; 186 sq = sleeptab_lookup(&sleeptab, ident, &mp); 187 sleepq_enter(sq, l, mp); 188 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj); 189 return sleepq_block(timo, priority & PCATCH); 190 } 191 192 int 193 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 194 kmutex_t *mtx) 195 { 196 struct lwp *l = curlwp; 197 sleepq_t *sq; 198 kmutex_t *mp; 199 int error; 200 201 KASSERT((l->l_pflag & LP_INTR) == 0); 202 KASSERT(ident != &lbolt); 203 204 if (sleepq_dontsleep(l)) { 205 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0); 206 return 0; 207 } 208 209 l->l_kpriority = true; 210 sq = sleeptab_lookup(&sleeptab, ident, &mp); 211 sleepq_enter(sq, l, mp); 212 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj); 213 mutex_exit(mtx); 214 error = sleepq_block(timo, priority & PCATCH); 215 216 if ((priority & PNORELOCK) == 0) 217 mutex_enter(mtx); 218 219 return error; 220 } 221 222 /* 223 * General sleep call for situations where a wake-up is not expected. 224 */ 225 int 226 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx) 227 { 228 struct lwp *l = curlwp; 229 int error; 230 231 KASSERT(!(timo == 0 && intr == false)); 232 233 if (sleepq_dontsleep(l)) 234 return sleepq_abort(NULL, 0); 235 236 if (mtx != NULL) 237 mutex_exit(mtx); 238 l->l_kpriority = true; 239 lwp_lock(l); 240 KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks); 241 sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj); 242 error = sleepq_block(timo, intr); 243 if (mtx != NULL) 244 mutex_enter(mtx); 245 246 return error; 247 } 248 249 /* 250 * OBSOLETE INTERFACE 251 * 252 * Make all LWPs sleeping on the specified identifier runnable. 253 */ 254 void 255 wakeup(wchan_t ident) 256 { 257 sleepq_t *sq; 258 kmutex_t *mp; 259 260 if (__predict_false(cold)) 261 return; 262 263 sq = sleeptab_lookup(&sleeptab, ident, &mp); 264 sleepq_wake(sq, ident, (u_int)-1, mp); 265 } 266 267 /* 268 * General yield call. Puts the current LWP back on its run queue and 269 * performs a context switch. 270 */ 271 void 272 yield(void) 273 { 274 struct lwp *l = curlwp; 275 276 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 277 lwp_lock(l); 278 279 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 280 KASSERT(l->l_stat == LSONPROC); 281 282 /* Voluntary - ditch kpriority boost. */ 283 l->l_kpriority = false; 284 spc_lock(l->l_cpu); 285 mi_switch(l); 286 KERNEL_LOCK(l->l_biglocks, l); 287 } 288 289 /* 290 * General preemption call. Puts the current LWP back on its run queue 291 * and performs an involuntary context switch. Different from yield() 292 * in that: 293 * 294 * - It's counted differently (involuntary vs. voluntary). 295 * - Realtime threads go to the head of their runqueue vs. tail for yield(). 296 * - Priority boost is retained unless LWP has exceeded timeslice. 297 */ 298 void 299 preempt(void) 300 { 301 struct lwp *l = curlwp; 302 303 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 304 lwp_lock(l); 305 306 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 307 KASSERT(l->l_stat == LSONPROC); 308 309 spc_lock(l->l_cpu); 310 /* Involuntary - keep kpriority boost unless a CPU hog. */ 311 if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) { 312 l->l_kpriority = false; 313 } 314 l->l_pflag |= LP_PREEMPTING; 315 mi_switch(l); 316 KERNEL_LOCK(l->l_biglocks, l); 317 } 318 319 /* 320 * A breathing point for long running code in kernel. 321 */ 322 void 323 preempt_point(void) 324 { 325 lwp_t *l = curlwp; 326 int needed; 327 328 KPREEMPT_DISABLE(l); 329 needed = l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD; 330 #ifndef __HAVE_FAST_SOFTINTS 331 needed |= l->l_cpu->ci_data.cpu_softints; 332 #endif 333 KPREEMPT_ENABLE(l); 334 335 if (__predict_false(needed)) { 336 preempt(); 337 } 338 } 339 340 /* 341 * Check the SPCF_SHOULDYIELD flag. 342 */ 343 bool 344 preempt_needed(void) 345 { 346 lwp_t *l = curlwp; 347 int needed; 348 349 KPREEMPT_DISABLE(l); 350 needed = l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD; 351 #ifndef __HAVE_FAST_SOFTINTS 352 needed |= l->l_cpu->ci_data.cpu_softints; 353 #endif 354 KPREEMPT_ENABLE(l); 355 356 return (bool)needed; 357 } 358 359 /* 360 * Handle a request made by another agent to preempt the current LWP 361 * in-kernel. Usually called when l_dopreempt may be non-zero. 362 * 363 * Character addresses for lockstat only. 364 */ 365 static char kpreempt_is_disabled; 366 static char kernel_lock_held; 367 static char is_softint_lwp; 368 static char spl_is_raised; 369 370 bool 371 kpreempt(uintptr_t where) 372 { 373 uintptr_t failed; 374 lwp_t *l; 375 int s, dop, lsflag; 376 377 l = curlwp; 378 failed = 0; 379 while ((dop = l->l_dopreempt) != 0) { 380 if (l->l_stat != LSONPROC) { 381 /* 382 * About to block (or die), let it happen. 383 * Doesn't really count as "preemption has 384 * been blocked", since we're going to 385 * context switch. 386 */ 387 atomic_swap_uint(&l->l_dopreempt, 0); 388 return true; 389 } 390 if (__predict_false((l->l_flag & LW_IDLE) != 0)) { 391 /* Can't preempt idle loop, don't count as failure. */ 392 atomic_swap_uint(&l->l_dopreempt, 0); 393 return true; 394 } 395 if (__predict_false(l->l_nopreempt != 0)) { 396 /* LWP holds preemption disabled, explicitly. */ 397 if ((dop & DOPREEMPT_COUNTED) == 0) { 398 kpreempt_ev_crit.ev_count++; 399 } 400 failed = (uintptr_t)&kpreempt_is_disabled; 401 break; 402 } 403 if (__predict_false((l->l_pflag & LP_INTR) != 0)) { 404 /* Can't preempt soft interrupts yet. */ 405 atomic_swap_uint(&l->l_dopreempt, 0); 406 failed = (uintptr_t)&is_softint_lwp; 407 break; 408 } 409 s = splsched(); 410 if (__predict_false(l->l_blcnt != 0 || 411 curcpu()->ci_biglock_wanted != NULL)) { 412 /* Hold or want kernel_lock, code is not MT safe. */ 413 splx(s); 414 if ((dop & DOPREEMPT_COUNTED) == 0) { 415 kpreempt_ev_klock.ev_count++; 416 } 417 failed = (uintptr_t)&kernel_lock_held; 418 break; 419 } 420 if (__predict_false(!cpu_kpreempt_enter(where, s))) { 421 /* 422 * It may be that the IPL is too high. 423 * kpreempt_enter() can schedule an 424 * interrupt to retry later. 425 */ 426 splx(s); 427 failed = (uintptr_t)&spl_is_raised; 428 break; 429 } 430 /* Do it! */ 431 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) { 432 kpreempt_ev_immed.ev_count++; 433 } 434 lwp_lock(l); 435 /* Involuntary - keep kpriority boost. */ 436 l->l_pflag |= LP_PREEMPTING; 437 spc_lock(l->l_cpu); 438 mi_switch(l); 439 l->l_nopreempt++; 440 splx(s); 441 442 /* Take care of any MD cleanup. */ 443 cpu_kpreempt_exit(where); 444 l->l_nopreempt--; 445 } 446 447 if (__predict_true(!failed)) { 448 return false; 449 } 450 451 /* Record preemption failure for reporting via lockstat. */ 452 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED); 453 lsflag = 0; 454 LOCKSTAT_ENTER(lsflag); 455 if (__predict_false(lsflag)) { 456 if (where == 0) { 457 where = (uintptr_t)__builtin_return_address(0); 458 } 459 /* Preemption is on, might recurse, so make it atomic. */ 460 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL, 461 (void *)where) == NULL) { 462 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime); 463 l->l_pfaillock = failed; 464 } 465 } 466 LOCKSTAT_EXIT(lsflag); 467 return true; 468 } 469 470 /* 471 * Return true if preemption is explicitly disabled. 472 */ 473 bool 474 kpreempt_disabled(void) 475 { 476 const lwp_t *l = curlwp; 477 478 return l->l_nopreempt != 0 || l->l_stat == LSZOMB || 479 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 || 480 cpu_kpreempt_disabled(); 481 } 482 483 /* 484 * Disable kernel preemption. 485 */ 486 void 487 kpreempt_disable(void) 488 { 489 490 KPREEMPT_DISABLE(curlwp); 491 } 492 493 /* 494 * Reenable kernel preemption. 495 */ 496 void 497 kpreempt_enable(void) 498 { 499 500 KPREEMPT_ENABLE(curlwp); 501 } 502 503 /* 504 * Compute the amount of time during which the current lwp was running. 505 * 506 * - update l_rtime unless it's an idle lwp. 507 */ 508 509 void 510 updatertime(lwp_t *l, const struct bintime *now) 511 { 512 513 if (__predict_false(l->l_flag & LW_IDLE)) 514 return; 515 516 /* rtime += now - stime */ 517 bintime_add(&l->l_rtime, now); 518 bintime_sub(&l->l_rtime, &l->l_stime); 519 } 520 521 /* 522 * Select next LWP from the current CPU to run.. 523 */ 524 static inline lwp_t * 525 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc) 526 { 527 lwp_t *newl; 528 529 /* 530 * Let sched_nextlwp() select the LWP to run the CPU next. 531 * If no LWP is runnable, select the idle LWP. 532 * 533 * On arrival here LWPs on a run queue are locked by spc_mutex which 534 * is currently held. Idle LWPs are always locked by spc_lwplock, 535 * which may or may not be held here. On exit from this code block, 536 * in all cases newl is locked by spc_lwplock. 537 */ 538 newl = sched_nextlwp(); 539 if (newl != NULL) { 540 sched_dequeue(newl); 541 KASSERT(lwp_locked(newl, spc->spc_mutex)); 542 KASSERT(newl->l_cpu == ci); 543 newl->l_stat = LSONPROC; 544 newl->l_pflag |= LP_RUNNING; 545 spc->spc_curpriority = lwp_eprio(newl); 546 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE); 547 lwp_setlock(newl, spc->spc_lwplock); 548 } else { 549 /* 550 * Updates to newl here are unlocked, but newl is the idle 551 * LWP and thus sheltered from outside interference, so no 552 * harm is going to come of it. 553 */ 554 newl = ci->ci_data.cpu_idlelwp; 555 newl->l_stat = LSONPROC; 556 newl->l_pflag |= LP_RUNNING; 557 spc->spc_curpriority = PRI_IDLE; 558 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) | 559 SPCF_IDLE; 560 } 561 562 /* 563 * Only clear want_resched if there are no pending (slow) software 564 * interrupts. We can do this without an atomic, because no new 565 * LWPs can appear in the queue due to our hold on spc_mutex, and 566 * the update to ci_want_resched will become globally visible before 567 * the release of spc_mutex becomes globally visible. 568 */ 569 ci->ci_want_resched = ci->ci_data.cpu_softints; 570 571 return newl; 572 } 573 574 /* 575 * The machine independent parts of context switch. 576 * 577 * NOTE: l->l_cpu is not changed in this routine, because an LWP never 578 * changes its own l_cpu (that would screw up curcpu on many ports and could 579 * cause all kinds of other evil stuff). l_cpu is always changed by some 580 * other actor, when it's known the LWP is not running (the LP_RUNNING flag 581 * is checked under lock). 582 */ 583 void 584 mi_switch(lwp_t *l) 585 { 586 struct cpu_info *ci; 587 struct schedstate_percpu *spc; 588 struct lwp *newl; 589 kmutex_t *lock; 590 int oldspl; 591 struct bintime bt; 592 bool returning; 593 594 KASSERT(lwp_locked(l, NULL)); 595 KASSERT(kpreempt_disabled()); 596 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex)); 597 KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked"); 598 599 kstack_check_magic(l); 600 601 binuptime(&bt); 602 603 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp); 604 KASSERT((l->l_pflag & LP_RUNNING) != 0); 605 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN); 606 ci = curcpu(); 607 spc = &ci->ci_schedstate; 608 returning = false; 609 newl = NULL; 610 611 /* 612 * If we have been asked to switch to a specific LWP, then there 613 * is no need to inspect the run queues. If a soft interrupt is 614 * blocking, then return to the interrupted thread without adjusting 615 * VM context or its start time: neither have been changed in order 616 * to take the interrupt. 617 */ 618 if (l->l_switchto != NULL) { 619 if ((l->l_pflag & LP_INTR) != 0) { 620 returning = true; 621 softint_block(l); 622 if ((l->l_pflag & LP_TIMEINTR) != 0) 623 updatertime(l, &bt); 624 } 625 newl = l->l_switchto; 626 l->l_switchto = NULL; 627 } 628 #ifndef __HAVE_FAST_SOFTINTS 629 else if (ci->ci_data.cpu_softints != 0) { 630 /* There are pending soft interrupts, so pick one. */ 631 newl = softint_picklwp(); 632 newl->l_stat = LSONPROC; 633 newl->l_pflag |= LP_RUNNING; 634 } 635 #endif /* !__HAVE_FAST_SOFTINTS */ 636 637 /* 638 * If on the CPU and we have gotten this far, then we must yield. 639 */ 640 if (l->l_stat == LSONPROC && l != newl) { 641 KASSERT(lwp_locked(l, spc->spc_lwplock)); 642 KASSERT((l->l_flag & LW_IDLE) == 0); 643 l->l_stat = LSRUN; 644 lwp_setlock(l, spc->spc_mutex); 645 sched_enqueue(l); 646 sched_preempted(l); 647 648 /* 649 * Handle migration. Note that "migrating LWP" may 650 * be reset here, if interrupt/preemption happens 651 * early in idle LWP. 652 */ 653 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) { 654 KASSERT((l->l_pflag & LP_INTR) == 0); 655 spc->spc_migrating = l; 656 } 657 } 658 659 /* Pick new LWP to run. */ 660 if (newl == NULL) { 661 newl = nextlwp(ci, spc); 662 } 663 664 /* Items that must be updated with the CPU locked. */ 665 if (!returning) { 666 /* Count time spent in current system call */ 667 SYSCALL_TIME_SLEEP(l); 668 669 updatertime(l, &bt); 670 671 /* Update the new LWP's start time. */ 672 newl->l_stime = bt; 673 674 /* 675 * ci_curlwp changes when a fast soft interrupt occurs. 676 * We use ci_onproc to keep track of which kernel or 677 * user thread is running 'underneath' the software 678 * interrupt. This is important for time accounting, 679 * itimers and forcing user threads to preempt (aston). 680 */ 681 ci->ci_onproc = newl; 682 } 683 684 /* 685 * Preemption related tasks. Must be done holding spc_mutex. Clear 686 * l_dopreempt without an atomic - it's only ever set non-zero by 687 * sched_resched_cpu() which also holds spc_mutex, and only ever 688 * cleared by the LWP itself (us) with atomics when not under lock. 689 */ 690 l->l_dopreempt = 0; 691 if (__predict_false(l->l_pfailaddr != 0)) { 692 LOCKSTAT_FLAG(lsflag); 693 LOCKSTAT_ENTER(lsflag); 694 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime); 695 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN, 696 1, l->l_pfailtime, l->l_pfailaddr); 697 LOCKSTAT_EXIT(lsflag); 698 l->l_pfailtime = 0; 699 l->l_pfaillock = 0; 700 l->l_pfailaddr = 0; 701 } 702 703 if (l != newl) { 704 struct lwp *prevlwp; 705 706 /* Release all locks, but leave the current LWP locked */ 707 if (l->l_mutex == spc->spc_mutex) { 708 /* 709 * Drop spc_lwplock, if the current LWP has been moved 710 * to the run queue (it is now locked by spc_mutex). 711 */ 712 mutex_spin_exit(spc->spc_lwplock); 713 } else { 714 /* 715 * Otherwise, drop the spc_mutex, we are done with the 716 * run queues. 717 */ 718 mutex_spin_exit(spc->spc_mutex); 719 } 720 721 /* We're down to only one lock, so do debug checks. */ 722 LOCKDEBUG_BARRIER(l->l_mutex, 1); 723 724 /* Count the context switch. */ 725 CPU_COUNT(CPU_COUNT_NSWTCH, 1); 726 l->l_ncsw++; 727 if ((l->l_pflag & LP_PREEMPTING) != 0) { 728 l->l_nivcsw++; 729 l->l_pflag &= ~LP_PREEMPTING; 730 } 731 732 /* 733 * Increase the count of spin-mutexes before the release 734 * of the last lock - we must remain at IPL_SCHED after 735 * releasing the lock. 736 */ 737 KASSERTMSG(ci->ci_mtx_count == -1, 738 "%s: cpu%u: ci_mtx_count (%d) != -1 " 739 "(block with spin-mutex held)", 740 __func__, cpu_index(ci), ci->ci_mtx_count); 741 oldspl = MUTEX_SPIN_OLDSPL(ci); 742 ci->ci_mtx_count = -2; 743 744 /* Update status for lwpctl, if present. */ 745 if (l->l_lwpctl != NULL) { 746 l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ? 747 LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE); 748 } 749 750 /* 751 * If curlwp is a soft interrupt LWP, there's nobody on the 752 * other side to unlock - we're returning into an assembly 753 * trampoline. Unlock now. This is safe because this is a 754 * kernel LWP and is bound to current CPU: the worst anyone 755 * else will do to it, is to put it back onto this CPU's run 756 * queue (and the CPU is busy here right now!). 757 */ 758 if (returning) { 759 /* Keep IPL_SCHED after this; MD code will fix up. */ 760 l->l_pflag &= ~LP_RUNNING; 761 lwp_unlock(l); 762 } else { 763 /* A normal LWP: save old VM context. */ 764 pmap_deactivate(l); 765 } 766 767 /* 768 * If DTrace has set the active vtime enum to anything 769 * other than INACTIVE (0), then it should have set the 770 * function to call. 771 */ 772 if (__predict_false(dtrace_vtime_active)) { 773 (*dtrace_vtime_switch_func)(newl); 774 } 775 776 /* 777 * We must ensure not to come here from inside a read section. 778 */ 779 KASSERT(pserialize_not_in_read_section()); 780 781 /* Switch to the new LWP.. */ 782 #ifdef MULTIPROCESSOR 783 KASSERT(curlwp == ci->ci_curlwp); 784 #endif 785 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp); 786 prevlwp = cpu_switchto(l, newl, returning); 787 ci = curcpu(); 788 #ifdef MULTIPROCESSOR 789 KASSERT(curlwp == ci->ci_curlwp); 790 #endif 791 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p", 792 l, curlwp, prevlwp); 793 KASSERT(prevlwp != NULL); 794 KASSERT(l->l_cpu == ci); 795 KASSERT(ci->ci_mtx_count == -2); 796 797 /* 798 * Immediately mark the previous LWP as no longer running 799 * and unlock (to keep lock wait times short as possible). 800 * We'll still be at IPL_SCHED afterwards. If a zombie, 801 * don't touch after clearing LP_RUNNING as it could be 802 * reaped by another CPU. Issue a memory barrier to ensure 803 * this. 804 */ 805 KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0); 806 lock = prevlwp->l_mutex; 807 if (__predict_false(prevlwp->l_stat == LSZOMB)) { 808 membar_sync(); 809 } 810 prevlwp->l_pflag &= ~LP_RUNNING; 811 mutex_spin_exit(lock); 812 813 /* 814 * Switched away - we have new curlwp. 815 * Restore VM context and IPL. 816 */ 817 pmap_activate(l); 818 pcu_switchpoint(l); 819 820 /* Update status for lwpctl, if present. */ 821 if (l->l_lwpctl != NULL) { 822 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci); 823 l->l_lwpctl->lc_pctr++; 824 } 825 826 /* 827 * Normalize the spin mutex count and restore the previous 828 * SPL. Note that, unless the caller disabled preemption, 829 * we can be preempted at any time after this splx(). 830 */ 831 KASSERT(l->l_cpu == ci); 832 KASSERT(ci->ci_mtx_count == -1); 833 ci->ci_mtx_count = 0; 834 splx(oldspl); 835 } else { 836 /* Nothing to do - just unlock and return. */ 837 mutex_spin_exit(spc->spc_mutex); 838 l->l_pflag &= ~LP_PREEMPTING; 839 lwp_unlock(l); 840 } 841 842 KASSERT(l == curlwp); 843 KASSERT(l->l_stat == LSONPROC); 844 845 SYSCALL_TIME_WAKEUP(l); 846 LOCKDEBUG_BARRIER(NULL, 1); 847 } 848 849 /* 850 * setrunnable: change LWP state to be runnable, placing it on the run queue. 851 * 852 * Call with the process and LWP locked. Will return with the LWP unlocked. 853 */ 854 void 855 setrunnable(struct lwp *l) 856 { 857 struct proc *p = l->l_proc; 858 struct cpu_info *ci; 859 kmutex_t *oldlock; 860 861 KASSERT((l->l_flag & LW_IDLE) == 0); 862 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0); 863 KASSERT(mutex_owned(p->p_lock)); 864 KASSERT(lwp_locked(l, NULL)); 865 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex); 866 867 switch (l->l_stat) { 868 case LSSTOP: 869 /* 870 * If we're being traced (possibly because someone attached us 871 * while we were stopped), check for a signal from the debugger. 872 */ 873 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0) 874 signotify(l); 875 p->p_nrlwps++; 876 break; 877 case LSSUSPENDED: 878 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 879 l->l_flag &= ~LW_WSUSPEND; 880 p->p_nrlwps++; 881 cv_broadcast(&p->p_lwpcv); 882 break; 883 case LSSLEEP: 884 KASSERT(l->l_wchan != NULL); 885 break; 886 case LSIDL: 887 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 888 break; 889 default: 890 panic("setrunnable: lwp %p state was %d", l, l->l_stat); 891 } 892 893 /* 894 * If the LWP was sleeping, start it again. 895 */ 896 if (l->l_wchan != NULL) { 897 l->l_stat = LSSLEEP; 898 /* lwp_unsleep() will release the lock. */ 899 lwp_unsleep(l, true); 900 return; 901 } 902 903 /* 904 * If the LWP is still on the CPU, mark it as LSONPROC. It may be 905 * about to call mi_switch(), in which case it will yield. 906 */ 907 if ((l->l_pflag & LP_RUNNING) != 0) { 908 l->l_stat = LSONPROC; 909 l->l_slptime = 0; 910 lwp_unlock(l); 911 return; 912 } 913 914 /* 915 * Look for a CPU to run. 916 * Set the LWP runnable. 917 */ 918 ci = sched_takecpu(l); 919 l->l_cpu = ci; 920 spc_lock(ci); 921 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex); 922 sched_setrunnable(l); 923 l->l_stat = LSRUN; 924 l->l_slptime = 0; 925 sched_enqueue(l); 926 sched_resched_lwp(l, true); 927 /* SPC & LWP now unlocked. */ 928 mutex_spin_exit(oldlock); 929 } 930 931 /* 932 * suspendsched: 933 * 934 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED. 935 */ 936 void 937 suspendsched(void) 938 { 939 CPU_INFO_ITERATOR cii; 940 struct cpu_info *ci; 941 struct lwp *l; 942 struct proc *p; 943 944 /* 945 * We do this by process in order not to violate the locking rules. 946 */ 947 mutex_enter(proc_lock); 948 PROCLIST_FOREACH(p, &allproc) { 949 mutex_enter(p->p_lock); 950 if ((p->p_flag & PK_SYSTEM) != 0) { 951 mutex_exit(p->p_lock); 952 continue; 953 } 954 955 if (p->p_stat != SSTOP) { 956 if (p->p_stat != SZOMB && p->p_stat != SDEAD) { 957 p->p_pptr->p_nstopchild++; 958 p->p_waited = 0; 959 } 960 p->p_stat = SSTOP; 961 } 962 963 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 964 if (l == curlwp) 965 continue; 966 967 lwp_lock(l); 968 969 /* 970 * Set L_WREBOOT so that the LWP will suspend itself 971 * when it tries to return to user mode. We want to 972 * try and get to get as many LWPs as possible to 973 * the user / kernel boundary, so that they will 974 * release any locks that they hold. 975 */ 976 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND); 977 978 if (l->l_stat == LSSLEEP && 979 (l->l_flag & LW_SINTR) != 0) { 980 /* setrunnable() will release the lock. */ 981 setrunnable(l); 982 continue; 983 } 984 985 lwp_unlock(l); 986 } 987 988 mutex_exit(p->p_lock); 989 } 990 mutex_exit(proc_lock); 991 992 /* 993 * Kick all CPUs to make them preempt any LWPs running in user mode. 994 * They'll trap into the kernel and suspend themselves in userret(). 995 * 996 * Unusually, we don't hold any other scheduler object locked, which 997 * would keep preemption off for sched_resched_cpu(), so disable it 998 * explicitly. 999 */ 1000 kpreempt_disable(); 1001 for (CPU_INFO_FOREACH(cii, ci)) { 1002 spc_lock(ci); 1003 sched_resched_cpu(ci, PRI_KERNEL, true); 1004 /* spc now unlocked */ 1005 } 1006 kpreempt_enable(); 1007 } 1008 1009 /* 1010 * sched_unsleep: 1011 * 1012 * The is called when the LWP has not been awoken normally but instead 1013 * interrupted: for example, if the sleep timed out. Because of this, 1014 * it's not a valid action for running or idle LWPs. 1015 */ 1016 static void 1017 sched_unsleep(struct lwp *l, bool cleanup) 1018 { 1019 1020 lwp_unlock(l); 1021 panic("sched_unsleep"); 1022 } 1023 1024 static void 1025 sched_changepri(struct lwp *l, pri_t pri) 1026 { 1027 struct schedstate_percpu *spc; 1028 struct cpu_info *ci; 1029 1030 KASSERT(lwp_locked(l, NULL)); 1031 1032 ci = l->l_cpu; 1033 spc = &ci->ci_schedstate; 1034 1035 if (l->l_stat == LSRUN) { 1036 KASSERT(lwp_locked(l, spc->spc_mutex)); 1037 sched_dequeue(l); 1038 l->l_priority = pri; 1039 sched_enqueue(l); 1040 sched_resched_lwp(l, false); 1041 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) { 1042 /* On priority drop, only evict realtime LWPs. */ 1043 KASSERT(lwp_locked(l, spc->spc_lwplock)); 1044 l->l_priority = pri; 1045 spc_lock(ci); 1046 sched_resched_cpu(ci, spc->spc_maxpriority, true); 1047 /* spc now unlocked */ 1048 } else { 1049 l->l_priority = pri; 1050 } 1051 } 1052 1053 static void 1054 sched_lendpri(struct lwp *l, pri_t pri) 1055 { 1056 struct schedstate_percpu *spc; 1057 struct cpu_info *ci; 1058 1059 KASSERT(lwp_locked(l, NULL)); 1060 1061 ci = l->l_cpu; 1062 spc = &ci->ci_schedstate; 1063 1064 if (l->l_stat == LSRUN) { 1065 KASSERT(lwp_locked(l, spc->spc_mutex)); 1066 sched_dequeue(l); 1067 l->l_inheritedprio = pri; 1068 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1069 sched_enqueue(l); 1070 sched_resched_lwp(l, false); 1071 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) { 1072 /* On priority drop, only evict realtime LWPs. */ 1073 KASSERT(lwp_locked(l, spc->spc_lwplock)); 1074 l->l_inheritedprio = pri; 1075 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1076 spc_lock(ci); 1077 sched_resched_cpu(ci, spc->spc_maxpriority, true); 1078 /* spc now unlocked */ 1079 } else { 1080 l->l_inheritedprio = pri; 1081 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1082 } 1083 } 1084 1085 struct lwp * 1086 syncobj_noowner(wchan_t wchan) 1087 { 1088 1089 return NULL; 1090 } 1091 1092 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */ 1093 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE; 1094 1095 /* 1096 * Constants for averages over 1, 5 and 15 minutes when sampling at 1097 * 5 second intervals. 1098 */ 1099 static const fixpt_t cexp[ ] = { 1100 0.9200444146293232 * FSCALE, /* exp(-1/12) */ 1101 0.9834714538216174 * FSCALE, /* exp(-1/60) */ 1102 0.9944598480048967 * FSCALE, /* exp(-1/180) */ 1103 }; 1104 1105 /* 1106 * sched_pstats: 1107 * 1108 * => Update process statistics and check CPU resource allocation. 1109 * => Call scheduler-specific hook to eventually adjust LWP priorities. 1110 * => Compute load average of a quantity on 1, 5 and 15 minute intervals. 1111 */ 1112 void 1113 sched_pstats(void) 1114 { 1115 extern struct loadavg averunnable; 1116 struct loadavg *avg = &averunnable; 1117 const int clkhz = (stathz != 0 ? stathz : hz); 1118 static bool backwards = false; 1119 static u_int lavg_count = 0; 1120 struct proc *p; 1121 int nrun; 1122 1123 sched_pstats_ticks++; 1124 if (++lavg_count >= 5) { 1125 lavg_count = 0; 1126 nrun = 0; 1127 } 1128 mutex_enter(proc_lock); 1129 PROCLIST_FOREACH(p, &allproc) { 1130 struct lwp *l; 1131 struct rlimit *rlim; 1132 time_t runtm; 1133 int sig; 1134 1135 /* Increment sleep time (if sleeping), ignore overflow. */ 1136 mutex_enter(p->p_lock); 1137 runtm = p->p_rtime.sec; 1138 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1139 fixpt_t lpctcpu; 1140 u_int lcpticks; 1141 1142 if (__predict_false((l->l_flag & LW_IDLE) != 0)) 1143 continue; 1144 lwp_lock(l); 1145 runtm += l->l_rtime.sec; 1146 l->l_swtime++; 1147 sched_lwp_stats(l); 1148 1149 /* For load average calculation. */ 1150 if (__predict_false(lavg_count == 0) && 1151 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) { 1152 switch (l->l_stat) { 1153 case LSSLEEP: 1154 if (l->l_slptime > 1) { 1155 break; 1156 } 1157 /* FALLTHROUGH */ 1158 case LSRUN: 1159 case LSONPROC: 1160 case LSIDL: 1161 nrun++; 1162 } 1163 } 1164 lwp_unlock(l); 1165 1166 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT; 1167 if (l->l_slptime != 0) 1168 continue; 1169 1170 lpctcpu = l->l_pctcpu; 1171 lcpticks = atomic_swap_uint(&l->l_cpticks, 0); 1172 lpctcpu += ((FSCALE - ccpu) * 1173 (lcpticks * FSCALE / clkhz)) >> FSHIFT; 1174 l->l_pctcpu = lpctcpu; 1175 } 1176 /* Calculating p_pctcpu only for ps(1) */ 1177 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 1178 1179 if (__predict_false(runtm < 0)) { 1180 if (!backwards) { 1181 backwards = true; 1182 printf("WARNING: negative runtime; " 1183 "monotonic clock has gone backwards\n"); 1184 } 1185 mutex_exit(p->p_lock); 1186 continue; 1187 } 1188 1189 /* 1190 * Check if the process exceeds its CPU resource allocation. 1191 * If over the hard limit, kill it with SIGKILL. 1192 * If over the soft limit, send SIGXCPU and raise 1193 * the soft limit a little. 1194 */ 1195 rlim = &p->p_rlimit[RLIMIT_CPU]; 1196 sig = 0; 1197 if (__predict_false(runtm >= rlim->rlim_cur)) { 1198 if (runtm >= rlim->rlim_max) { 1199 sig = SIGKILL; 1200 log(LOG_NOTICE, 1201 "pid %d, command %s, is killed: %s\n", 1202 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU"); 1203 uprintf("pid %d, command %s, is killed: %s\n", 1204 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU"); 1205 } else { 1206 sig = SIGXCPU; 1207 if (rlim->rlim_cur < rlim->rlim_max) 1208 rlim->rlim_cur += 5; 1209 } 1210 } 1211 mutex_exit(p->p_lock); 1212 if (__predict_false(sig)) { 1213 KASSERT((p->p_flag & PK_SYSTEM) == 0); 1214 psignal(p, sig); 1215 } 1216 } 1217 1218 /* Load average calculation. */ 1219 if (__predict_false(lavg_count == 0)) { 1220 int i; 1221 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg)); 1222 for (i = 0; i < __arraycount(cexp); i++) { 1223 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] + 1224 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT; 1225 } 1226 } 1227 1228 /* Lightning bolt. */ 1229 cv_broadcast(&lbolt); 1230 1231 mutex_exit(proc_lock); 1232 } 1233