xref: /netbsd-src/sys/kern/kern_synch.c (revision 2e31951ce35b19b425cc71066afbe82e73ab68f4)
1 /*	$NetBSD: kern_synch.c,v 1.255 2008/11/15 10:54:32 skrll Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10  * Daniel Sieger.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*-
35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.255 2008/11/15 10:54:32 skrll Exp $");
72 
73 #include "opt_kstack.h"
74 #include "opt_perfctrs.h"
75 #include "opt_sa.h"
76 
77 #define	__MUTEX_PRIVATE
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #if defined(PERFCTRS)
84 #include <sys/pmc.h>
85 #endif
86 #include <sys/cpu.h>
87 #include <sys/resourcevar.h>
88 #include <sys/sched.h>
89 #include <sys/sa.h>
90 #include <sys/savar.h>
91 #include <sys/syscall_stats.h>
92 #include <sys/sleepq.h>
93 #include <sys/lockdebug.h>
94 #include <sys/evcnt.h>
95 #include <sys/intr.h>
96 #include <sys/lwpctl.h>
97 #include <sys/atomic.h>
98 #include <sys/simplelock.h>
99 
100 #include <uvm/uvm_extern.h>
101 
102 #include <dev/lockstat.h>
103 
104 static u_int	sched_unsleep(struct lwp *, bool);
105 static void	sched_changepri(struct lwp *, pri_t);
106 static void	sched_lendpri(struct lwp *, pri_t);
107 static void	resched_cpu(struct lwp *);
108 
109 syncobj_t sleep_syncobj = {
110 	SOBJ_SLEEPQ_SORTED,
111 	sleepq_unsleep,
112 	sleepq_changepri,
113 	sleepq_lendpri,
114 	syncobj_noowner,
115 };
116 
117 syncobj_t sched_syncobj = {
118 	SOBJ_SLEEPQ_SORTED,
119 	sched_unsleep,
120 	sched_changepri,
121 	sched_lendpri,
122 	syncobj_noowner,
123 };
124 
125 callout_t 	sched_pstats_ch;
126 unsigned	sched_pstats_ticks;
127 kcondvar_t	lbolt;			/* once a second sleep address */
128 
129 /* Preemption event counters */
130 static struct evcnt kpreempt_ev_crit;
131 static struct evcnt kpreempt_ev_klock;
132 static struct evcnt kpreempt_ev_ipl;
133 static struct evcnt kpreempt_ev_immed;
134 
135 /*
136  * During autoconfiguration or after a panic, a sleep will simply lower the
137  * priority briefly to allow interrupts, then return.  The priority to be
138  * used (safepri) is machine-dependent, thus this value is initialized and
139  * maintained in the machine-dependent layers.  This priority will typically
140  * be 0, or the lowest priority that is safe for use on the interrupt stack;
141  * it can be made higher to block network software interrupts after panics.
142  */
143 int	safepri;
144 
145 void
146 sched_init(void)
147 {
148 
149 	cv_init(&lbolt, "lbolt");
150 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
151 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
152 
153 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
154 	   "kpreempt", "defer: critical section");
155 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
156 	   "kpreempt", "defer: kernel_lock");
157 	evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
158 	   "kpreempt", "defer: IPL");
159 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
160 	   "kpreempt", "immediate");
161 
162 	sched_pstats(NULL);
163 }
164 
165 /*
166  * OBSOLETE INTERFACE
167  *
168  * General sleep call.  Suspends the current LWP until a wakeup is
169  * performed on the specified identifier.  The LWP will then be made
170  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
171  * means no timeout).  If pri includes PCATCH flag, signals are checked
172  * before and after sleeping, else signals are not checked.  Returns 0 if
173  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
174  * signal needs to be delivered, ERESTART is returned if the current system
175  * call should be restarted if possible, and EINTR is returned if the system
176  * call should be interrupted by the signal (return EINTR).
177  *
178  * The interlock is held until we are on a sleep queue. The interlock will
179  * be locked before returning back to the caller unless the PNORELOCK flag
180  * is specified, in which case the interlock will always be unlocked upon
181  * return.
182  */
183 int
184 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
185 	volatile struct simplelock *interlock)
186 {
187 	struct lwp *l = curlwp;
188 	sleepq_t *sq;
189 	kmutex_t *mp;
190 	int error;
191 
192 	KASSERT((l->l_pflag & LP_INTR) == 0);
193 
194 	if (sleepq_dontsleep(l)) {
195 		(void)sleepq_abort(NULL, 0);
196 		if ((priority & PNORELOCK) != 0)
197 			simple_unlock(interlock);
198 		return 0;
199 	}
200 
201 	l->l_kpriority = true;
202 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
203 	sleepq_enter(sq, l, mp);
204 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
205 
206 	if (interlock != NULL) {
207 		KASSERT(simple_lock_held(interlock));
208 		simple_unlock(interlock);
209 	}
210 
211 	error = sleepq_block(timo, priority & PCATCH);
212 
213 	if (interlock != NULL && (priority & PNORELOCK) == 0)
214 		simple_lock(interlock);
215 
216 	return error;
217 }
218 
219 int
220 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
221 	kmutex_t *mtx)
222 {
223 	struct lwp *l = curlwp;
224 	sleepq_t *sq;
225 	kmutex_t *mp;
226 	int error;
227 
228 	KASSERT((l->l_pflag & LP_INTR) == 0);
229 
230 	if (sleepq_dontsleep(l)) {
231 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
232 		return 0;
233 	}
234 
235 	l->l_kpriority = true;
236 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
237 	sleepq_enter(sq, l, mp);
238 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
239 	mutex_exit(mtx);
240 	error = sleepq_block(timo, priority & PCATCH);
241 
242 	if ((priority & PNORELOCK) == 0)
243 		mutex_enter(mtx);
244 
245 	return error;
246 }
247 
248 /*
249  * General sleep call for situations where a wake-up is not expected.
250  */
251 int
252 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
253 {
254 	struct lwp *l = curlwp;
255 	kmutex_t *mp;
256 	sleepq_t *sq;
257 	int error;
258 
259 	if (sleepq_dontsleep(l))
260 		return sleepq_abort(NULL, 0);
261 
262 	if (mtx != NULL)
263 		mutex_exit(mtx);
264 	l->l_kpriority = true;
265 	sq = sleeptab_lookup(&sleeptab, l, &mp);
266 	sleepq_enter(sq, l, mp);
267 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
268 	error = sleepq_block(timo, intr);
269 	if (mtx != NULL)
270 		mutex_enter(mtx);
271 
272 	return error;
273 }
274 
275 #ifdef KERN_SA
276 /*
277  * sa_awaken:
278  *
279  *	We believe this lwp is an SA lwp. If it's yielding,
280  * let it know it needs to wake up.
281  *
282  *	We are called and exit with the lwp locked. We are
283  * called in the middle of wakeup operations, so we need
284  * to not touch the locks at all.
285  */
286 void
287 sa_awaken(struct lwp *l)
288 {
289 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
290 
291 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
292 		l->l_flag &= ~LW_SA_IDLE;
293 }
294 #endif /* KERN_SA */
295 
296 /*
297  * OBSOLETE INTERFACE
298  *
299  * Make all LWPs sleeping on the specified identifier runnable.
300  */
301 void
302 wakeup(wchan_t ident)
303 {
304 	sleepq_t *sq;
305 	kmutex_t *mp;
306 
307 	if (cold)
308 		return;
309 
310 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
311 	sleepq_wake(sq, ident, (u_int)-1, mp);
312 }
313 
314 /*
315  * OBSOLETE INTERFACE
316  *
317  * Make the highest priority LWP first in line on the specified
318  * identifier runnable.
319  */
320 void
321 wakeup_one(wchan_t ident)
322 {
323 	sleepq_t *sq;
324 	kmutex_t *mp;
325 
326 	if (cold)
327 		return;
328 
329 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
330 	sleepq_wake(sq, ident, 1, mp);
331 }
332 
333 
334 /*
335  * General yield call.  Puts the current LWP back on its run queue and
336  * performs a voluntary context switch.  Should only be called when the
337  * current LWP explicitly requests it (eg sched_yield(2)).
338  */
339 void
340 yield(void)
341 {
342 	struct lwp *l = curlwp;
343 
344 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
345 	lwp_lock(l);
346 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
347 	KASSERT(l->l_stat == LSONPROC);
348 	l->l_kpriority = false;
349 	(void)mi_switch(l);
350 	KERNEL_LOCK(l->l_biglocks, l);
351 }
352 
353 /*
354  * General preemption call.  Puts the current LWP back on its run queue
355  * and performs an involuntary context switch.
356  */
357 void
358 preempt(void)
359 {
360 	struct lwp *l = curlwp;
361 
362 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
363 	lwp_lock(l);
364 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
365 	KASSERT(l->l_stat == LSONPROC);
366 	l->l_kpriority = false;
367 	l->l_nivcsw++;
368 	(void)mi_switch(l);
369 	KERNEL_LOCK(l->l_biglocks, l);
370 }
371 
372 /*
373  * Handle a request made by another agent to preempt the current LWP
374  * in-kernel.  Usually called when l_dopreempt may be non-zero.
375  *
376  * Character addresses for lockstat only.
377  */
378 static char	in_critical_section;
379 static char	kernel_lock_held;
380 static char	spl_raised;
381 static char	is_softint;
382 
383 bool
384 kpreempt(uintptr_t where)
385 {
386 	uintptr_t failed;
387 	lwp_t *l;
388 	int s, dop;
389 
390 	l = curlwp;
391 	failed = 0;
392 	while ((dop = l->l_dopreempt) != 0) {
393 		if (l->l_stat != LSONPROC) {
394 			/*
395 			 * About to block (or die), let it happen.
396 			 * Doesn't really count as "preemption has
397 			 * been blocked", since we're going to
398 			 * context switch.
399 			 */
400 			l->l_dopreempt = 0;
401 			return true;
402 		}
403 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
404 			/* Can't preempt idle loop, don't count as failure. */
405 		    	l->l_dopreempt = 0;
406 		    	return true;
407 		}
408 		if (__predict_false(l->l_nopreempt != 0)) {
409 			/* LWP holds preemption disabled, explicitly. */
410 			if ((dop & DOPREEMPT_COUNTED) == 0) {
411 				kpreempt_ev_crit.ev_count++;
412 			}
413 			failed = (uintptr_t)&in_critical_section;
414 			break;
415 		}
416 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
417 		    	/* Can't preempt soft interrupts yet. */
418 		    	l->l_dopreempt = 0;
419 		    	failed = (uintptr_t)&is_softint;
420 		    	break;
421 		}
422 		s = splsched();
423 		if (__predict_false(l->l_blcnt != 0 ||
424 		    curcpu()->ci_biglock_wanted != NULL)) {
425 			/* Hold or want kernel_lock, code is not MT safe. */
426 			splx(s);
427 			if ((dop & DOPREEMPT_COUNTED) == 0) {
428 				kpreempt_ev_klock.ev_count++;
429 			}
430 			failed = (uintptr_t)&kernel_lock_held;
431 			break;
432 		}
433 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
434 			/*
435 			 * It may be that the IPL is too high.
436 			 * kpreempt_enter() can schedule an
437 			 * interrupt to retry later.
438 			 */
439 			splx(s);
440 			if ((dop & DOPREEMPT_COUNTED) == 0) {
441 				kpreempt_ev_ipl.ev_count++;
442 			}
443 			failed = (uintptr_t)&spl_raised;
444 			break;
445 		}
446 		/* Do it! */
447 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
448 			kpreempt_ev_immed.ev_count++;
449 		}
450 		lwp_lock(l);
451 		mi_switch(l);
452 		l->l_nopreempt++;
453 		splx(s);
454 
455 		/* Take care of any MD cleanup. */
456 		cpu_kpreempt_exit(where);
457 		l->l_nopreempt--;
458 	}
459 
460 	/* Record preemption failure for reporting via lockstat. */
461 	if (__predict_false(failed)) {
462 		int lsflag = 0;
463 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
464 		LOCKSTAT_ENTER(lsflag);
465 		/* Might recurse, make it atomic. */
466 		if (__predict_false(lsflag)) {
467 			if (where == 0) {
468 				where = (uintptr_t)__builtin_return_address(0);
469 			}
470 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
471 			    NULL, (void *)where) == NULL) {
472 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
473 				l->l_pfaillock = failed;
474 			}
475 		}
476 		LOCKSTAT_EXIT(lsflag);
477 	}
478 
479 	return failed;
480 }
481 
482 /*
483  * Return true if preemption is explicitly disabled.
484  */
485 bool
486 kpreempt_disabled(void)
487 {
488 	lwp_t *l;
489 
490 	l = curlwp;
491 
492 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
493 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
494 }
495 
496 /*
497  * Disable kernel preemption.
498  */
499 void
500 kpreempt_disable(void)
501 {
502 
503 	KPREEMPT_DISABLE(curlwp);
504 }
505 
506 /*
507  * Reenable kernel preemption.
508  */
509 void
510 kpreempt_enable(void)
511 {
512 
513 	KPREEMPT_ENABLE(curlwp);
514 }
515 
516 /*
517  * Compute the amount of time during which the current lwp was running.
518  *
519  * - update l_rtime unless it's an idle lwp.
520  */
521 
522 void
523 updatertime(lwp_t *l, const struct bintime *now)
524 {
525 
526 	if ((l->l_flag & LW_IDLE) != 0)
527 		return;
528 
529 	/* rtime += now - stime */
530 	bintime_add(&l->l_rtime, now);
531 	bintime_sub(&l->l_rtime, &l->l_stime);
532 }
533 
534 /*
535  * Select next LWP from the current CPU to run..
536  */
537 static inline lwp_t *
538 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
539 {
540 	lwp_t *newl;
541 
542 	/*
543 	 * Let sched_nextlwp() select the LWP to run the CPU next.
544 	 * If no LWP is runnable, select the idle LWP.
545 	 *
546 	 * Note that spc_lwplock might not necessary be held, and
547 	 * new thread would be unlocked after setting the LWP-lock.
548 	 */
549 	newl = sched_nextlwp();
550 	if (newl != NULL) {
551 		sched_dequeue(newl);
552 		KASSERT(lwp_locked(newl, spc->spc_mutex));
553 		newl->l_stat = LSONPROC;
554 		newl->l_cpu = ci;
555 		newl->l_pflag |= LP_RUNNING;
556 		lwp_setlock(newl, spc->spc_lwplock);
557 	} else {
558 		newl = ci->ci_data.cpu_idlelwp;
559 		newl->l_stat = LSONPROC;
560 		newl->l_pflag |= LP_RUNNING;
561 	}
562 
563 	/*
564 	 * Only clear want_resched if there are no pending (slow)
565 	 * software interrupts.
566 	 */
567 	ci->ci_want_resched = ci->ci_data.cpu_softints;
568 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
569 	spc->spc_curpriority = lwp_eprio(newl);
570 
571 	return newl;
572 }
573 
574 /*
575  * The machine independent parts of context switch.
576  *
577  * Returns 1 if another LWP was actually run.
578  */
579 int
580 mi_switch(lwp_t *l)
581 {
582 	struct cpu_info *ci;
583 	struct schedstate_percpu *spc;
584 	struct lwp *newl;
585 	int retval, oldspl;
586 	struct bintime bt;
587 	bool returning;
588 
589 	KASSERT(lwp_locked(l, NULL));
590 	KASSERT(kpreempt_disabled());
591 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
592 
593 #ifdef KSTACK_CHECK_MAGIC
594 	kstack_check_magic(l);
595 #endif
596 
597 	binuptime(&bt);
598 
599 	KASSERT(l->l_cpu == curcpu());
600 	ci = l->l_cpu;
601 	spc = &ci->ci_schedstate;
602 	returning = false;
603 	newl = NULL;
604 
605 	/*
606 	 * If we have been asked to switch to a specific LWP, then there
607 	 * is no need to inspect the run queues.  If a soft interrupt is
608 	 * blocking, then return to the interrupted thread without adjusting
609 	 * VM context or its start time: neither have been changed in order
610 	 * to take the interrupt.
611 	 */
612 	if (l->l_switchto != NULL) {
613 		if ((l->l_pflag & LP_INTR) != 0) {
614 			returning = true;
615 			softint_block(l);
616 			if ((l->l_pflag & LP_TIMEINTR) != 0)
617 				updatertime(l, &bt);
618 		}
619 		newl = l->l_switchto;
620 		l->l_switchto = NULL;
621 	}
622 #ifndef __HAVE_FAST_SOFTINTS
623 	else if (ci->ci_data.cpu_softints != 0) {
624 		/* There are pending soft interrupts, so pick one. */
625 		newl = softint_picklwp();
626 		newl->l_stat = LSONPROC;
627 		newl->l_pflag |= LP_RUNNING;
628 	}
629 #endif	/* !__HAVE_FAST_SOFTINTS */
630 
631 	/* Count time spent in current system call */
632 	if (!returning) {
633 		SYSCALL_TIME_SLEEP(l);
634 
635 		/*
636 		 * XXXSMP If we are using h/w performance counters,
637 		 * save context.
638 		 */
639 #if PERFCTRS
640 		if (PMC_ENABLED(l->l_proc)) {
641 			pmc_save_context(l->l_proc);
642 		}
643 #endif
644 		updatertime(l, &bt);
645 	}
646 
647 	/* Lock the runqueue */
648 	KASSERT(l->l_stat != LSRUN);
649 	mutex_spin_enter(spc->spc_mutex);
650 
651 	/*
652 	 * If on the CPU and we have gotten this far, then we must yield.
653 	 */
654 	if (l->l_stat == LSONPROC && l != newl) {
655 		KASSERT(lwp_locked(l, spc->spc_lwplock));
656 		if ((l->l_flag & LW_IDLE) == 0) {
657 			l->l_stat = LSRUN;
658 			lwp_setlock(l, spc->spc_mutex);
659 			sched_enqueue(l, true);
660 			/* Handle migration case */
661 			KASSERT(spc->spc_migrating == NULL);
662 			if (l->l_target_cpu !=  NULL) {
663 				spc->spc_migrating = l;
664 			}
665 		} else
666 			l->l_stat = LSIDL;
667 	}
668 
669 	/* Pick new LWP to run. */
670 	if (newl == NULL) {
671 		newl = nextlwp(ci, spc);
672 	}
673 
674 	/* Items that must be updated with the CPU locked. */
675 	if (!returning) {
676 		/* Update the new LWP's start time. */
677 		newl->l_stime = bt;
678 
679 		/*
680 		 * ci_curlwp changes when a fast soft interrupt occurs.
681 		 * We use cpu_onproc to keep track of which kernel or
682 		 * user thread is running 'underneath' the software
683 		 * interrupt.  This is important for time accounting,
684 		 * itimers and forcing user threads to preempt (aston).
685 		 */
686 		ci->ci_data.cpu_onproc = newl;
687 	}
688 
689 	/*
690 	 * Preemption related tasks.  Must be done with the current
691 	 * CPU locked.
692 	 */
693 	cpu_did_resched(l);
694 	l->l_dopreempt = 0;
695 	if (__predict_false(l->l_pfailaddr != 0)) {
696 		LOCKSTAT_FLAG(lsflag);
697 		LOCKSTAT_ENTER(lsflag);
698 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
699 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
700 		    1, l->l_pfailtime, l->l_pfailaddr);
701 		LOCKSTAT_EXIT(lsflag);
702 		l->l_pfailtime = 0;
703 		l->l_pfaillock = 0;
704 		l->l_pfailaddr = 0;
705 	}
706 
707 	if (l != newl) {
708 		struct lwp *prevlwp;
709 
710 		/* Release all locks, but leave the current LWP locked */
711 		if (l->l_mutex == spc->spc_mutex) {
712 			/*
713 			 * Drop spc_lwplock, if the current LWP has been moved
714 			 * to the run queue (it is now locked by spc_mutex).
715 			 */
716 			mutex_spin_exit(spc->spc_lwplock);
717 		} else {
718 			/*
719 			 * Otherwise, drop the spc_mutex, we are done with the
720 			 * run queues.
721 			 */
722 			mutex_spin_exit(spc->spc_mutex);
723 		}
724 
725 		/*
726 		 * Mark that context switch is going to be performed
727 		 * for this LWP, to protect it from being switched
728 		 * to on another CPU.
729 		 */
730 		KASSERT(l->l_ctxswtch == 0);
731 		l->l_ctxswtch = 1;
732 		l->l_ncsw++;
733 		l->l_pflag &= ~LP_RUNNING;
734 
735 		/*
736 		 * Increase the count of spin-mutexes before the release
737 		 * of the last lock - we must remain at IPL_SCHED during
738 		 * the context switch.
739 		 */
740 		oldspl = MUTEX_SPIN_OLDSPL(ci);
741 		ci->ci_mtx_count--;
742 		lwp_unlock(l);
743 
744 		/* Count the context switch on this CPU. */
745 		ci->ci_data.cpu_nswtch++;
746 
747 		/* Update status for lwpctl, if present. */
748 		if (l->l_lwpctl != NULL)
749 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
750 
751 		/*
752 		 * Save old VM context, unless a soft interrupt
753 		 * handler is blocking.
754 		 */
755 		if (!returning)
756 			pmap_deactivate(l);
757 
758 		/*
759 		 * We may need to spin-wait for if 'newl' is still
760 		 * context switching on another CPU.
761 		 */
762 		if (newl->l_ctxswtch != 0) {
763 			u_int count;
764 			count = SPINLOCK_BACKOFF_MIN;
765 			while (newl->l_ctxswtch)
766 				SPINLOCK_BACKOFF(count);
767 		}
768 
769 		/* Switch to the new LWP.. */
770 		prevlwp = cpu_switchto(l, newl, returning);
771 		ci = curcpu();
772 
773 		/*
774 		 * Switched away - we have new curlwp.
775 		 * Restore VM context and IPL.
776 		 */
777 		pmap_activate(l);
778 		if (prevlwp != NULL) {
779 			/* Normalize the count of the spin-mutexes */
780 			ci->ci_mtx_count++;
781 			/* Unmark the state of context switch */
782 			membar_exit();
783 			prevlwp->l_ctxswtch = 0;
784 		}
785 
786 		/* Update status for lwpctl, if present. */
787 		if (l->l_lwpctl != NULL) {
788 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
789 			l->l_lwpctl->lc_pctr++;
790 		}
791 
792 		KASSERT(l->l_cpu == ci);
793 		splx(oldspl);
794 		retval = 1;
795 	} else {
796 		/* Nothing to do - just unlock and return. */
797 		mutex_spin_exit(spc->spc_mutex);
798 		lwp_unlock(l);
799 		retval = 0;
800 	}
801 
802 	KASSERT(l == curlwp);
803 	KASSERT(l->l_stat == LSONPROC);
804 
805 	/*
806 	 * XXXSMP If we are using h/w performance counters, restore context.
807 	 * XXXSMP preemption problem.
808 	 */
809 #if PERFCTRS
810 	if (PMC_ENABLED(l->l_proc)) {
811 		pmc_restore_context(l->l_proc);
812 	}
813 #endif
814 	SYSCALL_TIME_WAKEUP(l);
815 	LOCKDEBUG_BARRIER(NULL, 1);
816 
817 	return retval;
818 }
819 
820 /*
821  * The machine independent parts of context switch to oblivion.
822  * Does not return.  Call with the LWP unlocked.
823  */
824 void
825 lwp_exit_switchaway(lwp_t *l)
826 {
827 	struct cpu_info *ci;
828 	struct lwp *newl;
829 	struct bintime bt;
830 
831 	ci = l->l_cpu;
832 
833 	KASSERT(kpreempt_disabled());
834 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
835 	KASSERT(ci == curcpu());
836 	LOCKDEBUG_BARRIER(NULL, 0);
837 
838 #ifdef KSTACK_CHECK_MAGIC
839 	kstack_check_magic(l);
840 #endif
841 
842 	/* Count time spent in current system call */
843 	SYSCALL_TIME_SLEEP(l);
844 	binuptime(&bt);
845 	updatertime(l, &bt);
846 
847 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
848 	(void)splsched();
849 
850 	/*
851 	 * Let sched_nextlwp() select the LWP to run the CPU next.
852 	 * If no LWP is runnable, select the idle LWP.
853 	 *
854 	 * Note that spc_lwplock might not necessary be held, and
855 	 * new thread would be unlocked after setting the LWP-lock.
856 	 */
857 	spc_lock(ci);
858 #ifndef __HAVE_FAST_SOFTINTS
859 	if (ci->ci_data.cpu_softints != 0) {
860 		/* There are pending soft interrupts, so pick one. */
861 		newl = softint_picklwp();
862 		newl->l_stat = LSONPROC;
863 		newl->l_pflag |= LP_RUNNING;
864 	} else
865 #endif	/* !__HAVE_FAST_SOFTINTS */
866 	{
867 		newl = nextlwp(ci, &ci->ci_schedstate);
868 	}
869 
870 	/* Update the new LWP's start time. */
871 	newl->l_stime = bt;
872 	l->l_pflag &= ~LP_RUNNING;
873 
874 	/*
875 	 * ci_curlwp changes when a fast soft interrupt occurs.
876 	 * We use cpu_onproc to keep track of which kernel or
877 	 * user thread is running 'underneath' the software
878 	 * interrupt.  This is important for time accounting,
879 	 * itimers and forcing user threads to preempt (aston).
880 	 */
881 	ci->ci_data.cpu_onproc = newl;
882 
883 	/*
884 	 * Preemption related tasks.  Must be done with the current
885 	 * CPU locked.
886 	 */
887 	cpu_did_resched(l);
888 
889 	/* Unlock the run queue. */
890 	spc_unlock(ci);
891 
892 	/* Count the context switch on this CPU. */
893 	ci->ci_data.cpu_nswtch++;
894 
895 	/* Update status for lwpctl, if present. */
896 	if (l->l_lwpctl != NULL)
897 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
898 
899 	/*
900 	 * We may need to spin-wait for if 'newl' is still
901 	 * context switching on another CPU.
902 	 */
903 	if (newl->l_ctxswtch != 0) {
904 		u_int count;
905 		count = SPINLOCK_BACKOFF_MIN;
906 		while (newl->l_ctxswtch)
907 			SPINLOCK_BACKOFF(count);
908 	}
909 
910 	/* Switch to the new LWP.. */
911 	(void)cpu_switchto(NULL, newl, false);
912 
913 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
914 	/* NOTREACHED */
915 }
916 
917 /*
918  * Change LWP state to be runnable, placing it on the run queue if it is
919  * in memory, and awakening the swapper if it isn't in memory.
920  *
921  * Call with the process and LWP locked.  Will return with the LWP unlocked.
922  */
923 void
924 setrunnable(struct lwp *l)
925 {
926 	struct proc *p = l->l_proc;
927 	struct cpu_info *ci;
928 	sigset_t *ss;
929 
930 	KASSERT((l->l_flag & LW_IDLE) == 0);
931 	KASSERT(mutex_owned(p->p_lock));
932 	KASSERT(lwp_locked(l, NULL));
933 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
934 
935 	switch (l->l_stat) {
936 	case LSSTOP:
937 		/*
938 		 * If we're being traced (possibly because someone attached us
939 		 * while we were stopped), check for a signal from the debugger.
940 		 */
941 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
942 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
943 				ss = &l->l_sigpend.sp_set;
944 			else
945 				ss = &p->p_sigpend.sp_set;
946 			sigaddset(ss, p->p_xstat);
947 			signotify(l);
948 		}
949 		p->p_nrlwps++;
950 		break;
951 	case LSSUSPENDED:
952 		l->l_flag &= ~LW_WSUSPEND;
953 		p->p_nrlwps++;
954 		cv_broadcast(&p->p_lwpcv);
955 		break;
956 	case LSSLEEP:
957 		KASSERT(l->l_wchan != NULL);
958 		break;
959 	default:
960 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
961 	}
962 
963 #ifdef KERN_SA
964 	if (l->l_proc->p_sa)
965 		sa_awaken(l);
966 #endif /* KERN_SA */
967 
968 	/*
969 	 * If the LWP was sleeping interruptably, then it's OK to start it
970 	 * again.  If not, mark it as still sleeping.
971 	 */
972 	if (l->l_wchan != NULL) {
973 		l->l_stat = LSSLEEP;
974 		/* lwp_unsleep() will release the lock. */
975 		lwp_unsleep(l, true);
976 		return;
977 	}
978 
979 	/*
980 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
981 	 * about to call mi_switch(), in which case it will yield.
982 	 */
983 	if ((l->l_pflag & LP_RUNNING) != 0) {
984 		l->l_stat = LSONPROC;
985 		l->l_slptime = 0;
986 		lwp_unlock(l);
987 		return;
988 	}
989 
990 	/*
991 	 * Look for a CPU to run.
992 	 * Set the LWP runnable.
993 	 */
994 	ci = sched_takecpu(l);
995 	l->l_cpu = ci;
996 	spc_lock(ci);
997 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
998 	sched_setrunnable(l);
999 	l->l_stat = LSRUN;
1000 	l->l_slptime = 0;
1001 
1002 	/*
1003 	 * If thread is swapped out - wake the swapper to bring it back in.
1004 	 * Otherwise, enter it into a run queue.
1005 	 */
1006 	if (l->l_flag & LW_INMEM) {
1007 		sched_enqueue(l, false);
1008 		resched_cpu(l);
1009 		lwp_unlock(l);
1010 	} else {
1011 		lwp_unlock(l);
1012 		uvm_kick_scheduler();
1013 	}
1014 }
1015 
1016 /*
1017  * suspendsched:
1018  *
1019  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1020  */
1021 void
1022 suspendsched(void)
1023 {
1024 	CPU_INFO_ITERATOR cii;
1025 	struct cpu_info *ci;
1026 	struct lwp *l;
1027 	struct proc *p;
1028 
1029 	/*
1030 	 * We do this by process in order not to violate the locking rules.
1031 	 */
1032 	mutex_enter(proc_lock);
1033 	PROCLIST_FOREACH(p, &allproc) {
1034 		if ((p->p_flag & PK_MARKER) != 0)
1035 			continue;
1036 
1037 		mutex_enter(p->p_lock);
1038 		if ((p->p_flag & PK_SYSTEM) != 0) {
1039 			mutex_exit(p->p_lock);
1040 			continue;
1041 		}
1042 
1043 		p->p_stat = SSTOP;
1044 
1045 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1046 			if (l == curlwp)
1047 				continue;
1048 
1049 			lwp_lock(l);
1050 
1051 			/*
1052 			 * Set L_WREBOOT so that the LWP will suspend itself
1053 			 * when it tries to return to user mode.  We want to
1054 			 * try and get to get as many LWPs as possible to
1055 			 * the user / kernel boundary, so that they will
1056 			 * release any locks that they hold.
1057 			 */
1058 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1059 
1060 			if (l->l_stat == LSSLEEP &&
1061 			    (l->l_flag & LW_SINTR) != 0) {
1062 				/* setrunnable() will release the lock. */
1063 				setrunnable(l);
1064 				continue;
1065 			}
1066 
1067 			lwp_unlock(l);
1068 		}
1069 
1070 		mutex_exit(p->p_lock);
1071 	}
1072 	mutex_exit(proc_lock);
1073 
1074 	/*
1075 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
1076 	 * They'll trap into the kernel and suspend themselves in userret().
1077 	 */
1078 	for (CPU_INFO_FOREACH(cii, ci)) {
1079 		spc_lock(ci);
1080 		cpu_need_resched(ci, RESCHED_IMMED);
1081 		spc_unlock(ci);
1082 	}
1083 }
1084 
1085 /*
1086  * sched_unsleep:
1087  *
1088  *	The is called when the LWP has not been awoken normally but instead
1089  *	interrupted: for example, if the sleep timed out.  Because of this,
1090  *	it's not a valid action for running or idle LWPs.
1091  */
1092 static u_int
1093 sched_unsleep(struct lwp *l, bool cleanup)
1094 {
1095 
1096 	lwp_unlock(l);
1097 	panic("sched_unsleep");
1098 }
1099 
1100 static void
1101 resched_cpu(struct lwp *l)
1102 {
1103 	struct cpu_info *ci = ci = l->l_cpu;
1104 
1105 	KASSERT(lwp_locked(l, NULL));
1106 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1107 		cpu_need_resched(ci, 0);
1108 }
1109 
1110 static void
1111 sched_changepri(struct lwp *l, pri_t pri)
1112 {
1113 
1114 	KASSERT(lwp_locked(l, NULL));
1115 
1116 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1117 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1118 		sched_dequeue(l);
1119 		l->l_priority = pri;
1120 		sched_enqueue(l, false);
1121 	} else {
1122 		l->l_priority = pri;
1123 	}
1124 	resched_cpu(l);
1125 }
1126 
1127 static void
1128 sched_lendpri(struct lwp *l, pri_t pri)
1129 {
1130 
1131 	KASSERT(lwp_locked(l, NULL));
1132 
1133 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1134 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1135 		sched_dequeue(l);
1136 		l->l_inheritedprio = pri;
1137 		sched_enqueue(l, false);
1138 	} else {
1139 		l->l_inheritedprio = pri;
1140 	}
1141 	resched_cpu(l);
1142 }
1143 
1144 struct lwp *
1145 syncobj_noowner(wchan_t wchan)
1146 {
1147 
1148 	return NULL;
1149 }
1150 
1151 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1152 const fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;
1153 
1154 /*
1155  * sched_pstats:
1156  *
1157  * Update process statistics and check CPU resource allocation.
1158  * Call scheduler-specific hook to eventually adjust process/LWP
1159  * priorities.
1160  */
1161 /* ARGSUSED */
1162 void
1163 sched_pstats(void *arg)
1164 {
1165 	const int clkhz = (stathz != 0 ? stathz : hz);
1166 	struct rlimit *rlim;
1167 	struct lwp *l;
1168 	struct proc *p;
1169 	long runtm;
1170 	fixpt_t lpctcpu;
1171 	u_int lcpticks;
1172 	int sig;
1173 
1174 	sched_pstats_ticks++;
1175 
1176 	mutex_enter(proc_lock);
1177 	PROCLIST_FOREACH(p, &allproc) {
1178 		if (__predict_false((p->p_flag & PK_MARKER) != 0))
1179 			continue;
1180 
1181 		/*
1182 		 * Increment time in/out of memory and sleep
1183 		 * time (if sleeping), ignore overflow.
1184 		 */
1185 		mutex_enter(p->p_lock);
1186 		runtm = p->p_rtime.sec;
1187 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1188 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
1189 				continue;
1190 			lwp_lock(l);
1191 			runtm += l->l_rtime.sec;
1192 			l->l_swtime++;
1193 			sched_lwp_stats(l);
1194 			lwp_unlock(l);
1195 
1196 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1197 			if (l->l_slptime != 0)
1198 				continue;
1199 
1200 			lpctcpu = l->l_pctcpu;
1201 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1202 			lpctcpu += ((FSCALE - ccpu) *
1203 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1204 			l->l_pctcpu = lpctcpu;
1205 		}
1206 		/* Calculating p_pctcpu only for ps(1) */
1207 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1208 
1209 		/*
1210 		 * Check if the process exceeds its CPU resource allocation.
1211 		 * If over max, kill it.
1212 		 */
1213 		rlim = &p->p_rlimit[RLIMIT_CPU];
1214 		sig = 0;
1215 		if (__predict_false(runtm >= rlim->rlim_cur)) {
1216 			if (runtm >= rlim->rlim_max)
1217 				sig = SIGKILL;
1218 			else {
1219 				sig = SIGXCPU;
1220 				if (rlim->rlim_cur < rlim->rlim_max)
1221 					rlim->rlim_cur += 5;
1222 			}
1223 		}
1224 		mutex_exit(p->p_lock);
1225 		if (__predict_false(sig))
1226 			psignal(p, sig);
1227 	}
1228 	mutex_exit(proc_lock);
1229 	uvm_meter();
1230 	cv_wakeup(&lbolt);
1231 	callout_schedule(&sched_pstats_ch, hz);
1232 }
1233