1 /* $NetBSD: kern_synch.c,v 1.217 2008/02/14 14:26:57 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and 10 * Daniel Sieger. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the NetBSD 23 * Foundation, Inc. and its contributors. 24 * 4. Neither the name of The NetBSD Foundation nor the names of its 25 * contributors may be used to endorse or promote products derived 26 * from this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGE. 39 */ 40 41 /*- 42 * Copyright (c) 1982, 1986, 1990, 1991, 1993 43 * The Regents of the University of California. All rights reserved. 44 * (c) UNIX System Laboratories, Inc. 45 * All or some portions of this file are derived from material licensed 46 * to the University of California by American Telephone and Telegraph 47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 48 * the permission of UNIX System Laboratories, Inc. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 75 */ 76 77 #include <sys/cdefs.h> 78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.217 2008/02/14 14:26:57 ad Exp $"); 79 80 #include "opt_kstack.h" 81 #include "opt_lockdebug.h" 82 #include "opt_multiprocessor.h" 83 #include "opt_perfctrs.h" 84 85 #define __MUTEX_PRIVATE 86 87 #include <sys/param.h> 88 #include <sys/systm.h> 89 #include <sys/proc.h> 90 #include <sys/kernel.h> 91 #if defined(PERFCTRS) 92 #include <sys/pmc.h> 93 #endif 94 #include <sys/cpu.h> 95 #include <sys/resourcevar.h> 96 #include <sys/sched.h> 97 #include <sys/syscall_stats.h> 98 #include <sys/sleepq.h> 99 #include <sys/lockdebug.h> 100 #include <sys/evcnt.h> 101 #include <sys/intr.h> 102 #include <sys/lwpctl.h> 103 #include <sys/atomic.h> 104 #include <sys/simplelock.h> 105 106 #include <uvm/uvm_extern.h> 107 108 callout_t sched_pstats_ch; 109 unsigned int sched_pstats_ticks; 110 111 kcondvar_t lbolt; /* once a second sleep address */ 112 113 static void sched_unsleep(struct lwp *); 114 static void sched_changepri(struct lwp *, pri_t); 115 static void sched_lendpri(struct lwp *, pri_t); 116 117 syncobj_t sleep_syncobj = { 118 SOBJ_SLEEPQ_SORTED, 119 sleepq_unsleep, 120 sleepq_changepri, 121 sleepq_lendpri, 122 syncobj_noowner, 123 }; 124 125 syncobj_t sched_syncobj = { 126 SOBJ_SLEEPQ_SORTED, 127 sched_unsleep, 128 sched_changepri, 129 sched_lendpri, 130 syncobj_noowner, 131 }; 132 133 /* 134 * During autoconfiguration or after a panic, a sleep will simply lower the 135 * priority briefly to allow interrupts, then return. The priority to be 136 * used (safepri) is machine-dependent, thus this value is initialized and 137 * maintained in the machine-dependent layers. This priority will typically 138 * be 0, or the lowest priority that is safe for use on the interrupt stack; 139 * it can be made higher to block network software interrupts after panics. 140 */ 141 int safepri; 142 143 /* 144 * OBSOLETE INTERFACE 145 * 146 * General sleep call. Suspends the current process until a wakeup is 147 * performed on the specified identifier. The process will then be made 148 * runnable with the specified priority. Sleeps at most timo/hz seconds (0 149 * means no timeout). If pri includes PCATCH flag, signals are checked 150 * before and after sleeping, else signals are not checked. Returns 0 if 151 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 152 * signal needs to be delivered, ERESTART is returned if the current system 153 * call should be restarted if possible, and EINTR is returned if the system 154 * call should be interrupted by the signal (return EINTR). 155 * 156 * The interlock is held until we are on a sleep queue. The interlock will 157 * be locked before returning back to the caller unless the PNORELOCK flag 158 * is specified, in which case the interlock will always be unlocked upon 159 * return. 160 */ 161 int 162 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 163 volatile struct simplelock *interlock) 164 { 165 struct lwp *l = curlwp; 166 sleepq_t *sq; 167 int error; 168 169 KASSERT((l->l_pflag & LP_INTR) == 0); 170 171 if (sleepq_dontsleep(l)) { 172 (void)sleepq_abort(NULL, 0); 173 if ((priority & PNORELOCK) != 0) 174 simple_unlock(interlock); 175 return 0; 176 } 177 178 l->l_kpriority = true; 179 sq = sleeptab_lookup(&sleeptab, ident); 180 sleepq_enter(sq, l); 181 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj); 182 183 if (interlock != NULL) { 184 KASSERT(simple_lock_held(interlock)); 185 simple_unlock(interlock); 186 } 187 188 error = sleepq_block(timo, priority & PCATCH); 189 190 if (interlock != NULL && (priority & PNORELOCK) == 0) 191 simple_lock(interlock); 192 193 return error; 194 } 195 196 int 197 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 198 kmutex_t *mtx) 199 { 200 struct lwp *l = curlwp; 201 sleepq_t *sq; 202 int error; 203 204 KASSERT((l->l_pflag & LP_INTR) == 0); 205 206 if (sleepq_dontsleep(l)) { 207 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0); 208 return 0; 209 } 210 211 l->l_kpriority = true; 212 sq = sleeptab_lookup(&sleeptab, ident); 213 sleepq_enter(sq, l); 214 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj); 215 mutex_exit(mtx); 216 error = sleepq_block(timo, priority & PCATCH); 217 218 if ((priority & PNORELOCK) == 0) 219 mutex_enter(mtx); 220 221 return error; 222 } 223 224 /* 225 * General sleep call for situations where a wake-up is not expected. 226 */ 227 int 228 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx) 229 { 230 struct lwp *l = curlwp; 231 sleepq_t *sq; 232 int error; 233 234 if (sleepq_dontsleep(l)) 235 return sleepq_abort(NULL, 0); 236 237 if (mtx != NULL) 238 mutex_exit(mtx); 239 l->l_kpriority = true; 240 sq = sleeptab_lookup(&sleeptab, l); 241 sleepq_enter(sq, l); 242 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj); 243 error = sleepq_block(timo, intr); 244 if (mtx != NULL) 245 mutex_enter(mtx); 246 247 return error; 248 } 249 250 /* 251 * OBSOLETE INTERFACE 252 * 253 * Make all processes sleeping on the specified identifier runnable. 254 */ 255 void 256 wakeup(wchan_t ident) 257 { 258 sleepq_t *sq; 259 260 if (cold) 261 return; 262 263 sq = sleeptab_lookup(&sleeptab, ident); 264 sleepq_wake(sq, ident, (u_int)-1); 265 } 266 267 /* 268 * OBSOLETE INTERFACE 269 * 270 * Make the highest priority process first in line on the specified 271 * identifier runnable. 272 */ 273 void 274 wakeup_one(wchan_t ident) 275 { 276 sleepq_t *sq; 277 278 if (cold) 279 return; 280 281 sq = sleeptab_lookup(&sleeptab, ident); 282 sleepq_wake(sq, ident, 1); 283 } 284 285 286 /* 287 * General yield call. Puts the current process back on its run queue and 288 * performs a voluntary context switch. Should only be called when the 289 * current process explicitly requests it (eg sched_yield(2)). 290 */ 291 void 292 yield(void) 293 { 294 struct lwp *l = curlwp; 295 296 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 297 lwp_lock(l); 298 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 299 KASSERT(l->l_stat == LSONPROC); 300 l->l_kpriority = false; 301 if (l->l_class == SCHED_OTHER) { 302 /* 303 * Only for timeshared threads. It will be reset 304 * by the scheduler in due course. 305 */ 306 l->l_priority = 0; 307 } 308 (void)mi_switch(l); 309 KERNEL_LOCK(l->l_biglocks, l); 310 } 311 312 /* 313 * General preemption call. Puts the current process back on its run queue 314 * and performs an involuntary context switch. 315 */ 316 void 317 preempt(void) 318 { 319 struct lwp *l = curlwp; 320 321 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 322 lwp_lock(l); 323 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 324 KASSERT(l->l_stat == LSONPROC); 325 l->l_kpriority = false; 326 l->l_nivcsw++; 327 (void)mi_switch(l); 328 KERNEL_LOCK(l->l_biglocks, l); 329 } 330 331 /* 332 * Compute the amount of time during which the current lwp was running. 333 * 334 * - update l_rtime unless it's an idle lwp. 335 */ 336 337 void 338 updatertime(lwp_t *l, const struct bintime *now) 339 { 340 341 if ((l->l_flag & LW_IDLE) != 0) 342 return; 343 344 /* rtime += now - stime */ 345 bintime_add(&l->l_rtime, now); 346 bintime_sub(&l->l_rtime, &l->l_stime); 347 } 348 349 /* 350 * The machine independent parts of context switch. 351 * 352 * Returns 1 if another LWP was actually run. 353 */ 354 int 355 mi_switch(lwp_t *l) 356 { 357 struct cpu_info *ci, *tci = NULL; 358 struct schedstate_percpu *spc; 359 struct lwp *newl; 360 int retval, oldspl; 361 struct bintime bt; 362 bool returning; 363 364 KASSERT(lwp_locked(l, NULL)); 365 LOCKDEBUG_BARRIER(l->l_mutex, 1); 366 367 #ifdef KSTACK_CHECK_MAGIC 368 kstack_check_magic(l); 369 #endif 370 371 binuptime(&bt); 372 373 KDASSERT(l->l_cpu == curcpu()); 374 ci = l->l_cpu; 375 spc = &ci->ci_schedstate; 376 returning = false; 377 newl = NULL; 378 379 /* 380 * If we have been asked to switch to a specific LWP, then there 381 * is no need to inspect the run queues. If a soft interrupt is 382 * blocking, then return to the interrupted thread without adjusting 383 * VM context or its start time: neither have been changed in order 384 * to take the interrupt. 385 */ 386 if (l->l_switchto != NULL) { 387 if ((l->l_pflag & LP_INTR) != 0) { 388 returning = true; 389 softint_block(l); 390 if ((l->l_flag & LW_TIMEINTR) != 0) 391 updatertime(l, &bt); 392 } 393 newl = l->l_switchto; 394 l->l_switchto = NULL; 395 } 396 #ifndef __HAVE_FAST_SOFTINTS 397 else if (ci->ci_data.cpu_softints != 0) { 398 /* There are pending soft interrupts, so pick one. */ 399 newl = softint_picklwp(); 400 newl->l_stat = LSONPROC; 401 newl->l_flag |= LW_RUNNING; 402 } 403 #endif /* !__HAVE_FAST_SOFTINTS */ 404 405 /* Count time spent in current system call */ 406 if (!returning) { 407 SYSCALL_TIME_SLEEP(l); 408 409 /* 410 * XXXSMP If we are using h/w performance counters, 411 * save context. 412 */ 413 #if PERFCTRS 414 if (PMC_ENABLED(l->l_proc)) { 415 pmc_save_context(l->l_proc); 416 } 417 #endif 418 updatertime(l, &bt); 419 } 420 421 /* 422 * If on the CPU and we have gotten this far, then we must yield. 423 */ 424 KASSERT(l->l_stat != LSRUN); 425 if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) { 426 KASSERT(lwp_locked(l, spc->spc_lwplock)); 427 428 tci = l->l_target_cpu; 429 if (__predict_false(tci != NULL)) { 430 /* Double-lock the runqueues */ 431 spc_dlock(ci, tci); 432 } else { 433 /* Lock the runqueue */ 434 spc_lock(ci); 435 } 436 437 if ((l->l_flag & LW_IDLE) == 0) { 438 l->l_stat = LSRUN; 439 if (__predict_false(tci != NULL)) { 440 /* 441 * Set the new CPU, lock and unset the 442 * l_target_cpu - thread will be enqueued 443 * to the runqueue of target CPU. 444 */ 445 l->l_cpu = tci; 446 lwp_setlock(l, tci->ci_schedstate.spc_mutex); 447 l->l_target_cpu = NULL; 448 } else { 449 lwp_setlock(l, spc->spc_mutex); 450 } 451 sched_enqueue(l, true); 452 } else { 453 KASSERT(tci == NULL); 454 l->l_stat = LSIDL; 455 } 456 } else { 457 /* Lock the runqueue */ 458 spc_lock(ci); 459 } 460 461 /* 462 * Let sched_nextlwp() select the LWP to run the CPU next. 463 * If no LWP is runnable, select the idle LWP. 464 * 465 * Note that spc_lwplock might not necessary be held, and 466 * new thread would be unlocked after setting the LWP-lock. 467 */ 468 if (newl == NULL) { 469 newl = sched_nextlwp(); 470 if (newl != NULL) { 471 sched_dequeue(newl); 472 KASSERT(lwp_locked(newl, spc->spc_mutex)); 473 newl->l_stat = LSONPROC; 474 newl->l_cpu = ci; 475 newl->l_flag |= LW_RUNNING; 476 lwp_setlock(newl, spc->spc_lwplock); 477 } else { 478 newl = ci->ci_data.cpu_idlelwp; 479 newl->l_stat = LSONPROC; 480 newl->l_flag |= LW_RUNNING; 481 } 482 /* 483 * Only clear want_resched if there are no 484 * pending (slow) software interrupts. 485 */ 486 ci->ci_want_resched = ci->ci_data.cpu_softints; 487 spc->spc_flags &= ~SPCF_SWITCHCLEAR; 488 spc->spc_curpriority = lwp_eprio(newl); 489 } 490 491 /* Items that must be updated with the CPU locked. */ 492 if (!returning) { 493 /* Update the new LWP's start time. */ 494 newl->l_stime = bt; 495 496 /* 497 * ci_curlwp changes when a fast soft interrupt occurs. 498 * We use cpu_onproc to keep track of which kernel or 499 * user thread is running 'underneath' the software 500 * interrupt. This is important for time accounting, 501 * itimers and forcing user threads to preempt (aston). 502 */ 503 ci->ci_data.cpu_onproc = newl; 504 } 505 506 if (l != newl) { 507 struct lwp *prevlwp; 508 509 /* Release all locks, but leave the current LWP locked */ 510 if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) { 511 /* 512 * In case of migration, drop the local runqueue 513 * lock, thread is on other runqueue now. 514 */ 515 if (__predict_false(tci != NULL)) 516 spc_unlock(ci); 517 /* 518 * Drop spc_lwplock, if the current LWP has been moved 519 * to the run queue (it is now locked by spc_mutex). 520 */ 521 mutex_spin_exit(spc->spc_lwplock); 522 } else { 523 /* 524 * Otherwise, drop the spc_mutex, we are done with the 525 * run queues. 526 */ 527 mutex_spin_exit(spc->spc_mutex); 528 KASSERT(tci == NULL); 529 } 530 531 /* 532 * Mark that context switch is going to be perfomed 533 * for this LWP, to protect it from being switched 534 * to on another CPU. 535 */ 536 KASSERT(l->l_ctxswtch == 0); 537 l->l_ctxswtch = 1; 538 l->l_ncsw++; 539 l->l_flag &= ~LW_RUNNING; 540 541 /* 542 * Increase the count of spin-mutexes before the release 543 * of the last lock - we must remain at IPL_SCHED during 544 * the context switch. 545 */ 546 oldspl = MUTEX_SPIN_OLDSPL(ci); 547 ci->ci_mtx_count--; 548 lwp_unlock(l); 549 550 /* Unlocked, but for statistics only. */ 551 uvmexp.swtch++; 552 553 /* Update status for lwpctl, if present. */ 554 if (l->l_lwpctl != NULL) 555 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE; 556 557 /* 558 * Save old VM context, unless a soft interrupt 559 * handler is blocking. 560 */ 561 if (!returning) 562 pmap_deactivate(l); 563 564 /* 565 * We may need to spin-wait for if 'newl' is still 566 * context switching on another CPU. 567 */ 568 if (newl->l_ctxswtch != 0) { 569 u_int count; 570 count = SPINLOCK_BACKOFF_MIN; 571 while (newl->l_ctxswtch) 572 SPINLOCK_BACKOFF(count); 573 } 574 575 /* Switch to the new LWP.. */ 576 prevlwp = cpu_switchto(l, newl, returning); 577 ci = curcpu(); 578 579 /* 580 * Switched away - we have new curlwp. 581 * Restore VM context and IPL. 582 */ 583 pmap_activate(l); 584 if (prevlwp != NULL) { 585 /* Normalize the count of the spin-mutexes */ 586 ci->ci_mtx_count++; 587 /* Unmark the state of context switch */ 588 membar_exit(); 589 prevlwp->l_ctxswtch = 0; 590 } 591 splx(oldspl); 592 593 /* Update status for lwpctl, if present. */ 594 if (l->l_lwpctl != NULL) 595 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci); 596 597 retval = 1; 598 } else { 599 /* Nothing to do - just unlock and return. */ 600 KASSERT(tci == NULL); 601 spc_unlock(ci); 602 lwp_unlock(l); 603 retval = 0; 604 } 605 606 KASSERT(l == curlwp); 607 KASSERT(l->l_stat == LSONPROC); 608 KASSERT(l->l_cpu == ci); 609 610 /* 611 * XXXSMP If we are using h/w performance counters, restore context. 612 */ 613 #if PERFCTRS 614 if (PMC_ENABLED(l->l_proc)) { 615 pmc_restore_context(l->l_proc); 616 } 617 #endif 618 SYSCALL_TIME_WAKEUP(l); 619 LOCKDEBUG_BARRIER(NULL, 1); 620 621 return retval; 622 } 623 624 /* 625 * Change process state to be runnable, placing it on the run queue if it is 626 * in memory, and awakening the swapper if it isn't in memory. 627 * 628 * Call with the process and LWP locked. Will return with the LWP unlocked. 629 */ 630 void 631 setrunnable(struct lwp *l) 632 { 633 struct proc *p = l->l_proc; 634 struct cpu_info *ci; 635 sigset_t *ss; 636 637 KASSERT((l->l_flag & LW_IDLE) == 0); 638 KASSERT(mutex_owned(&p->p_smutex)); 639 KASSERT(lwp_locked(l, NULL)); 640 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex); 641 642 switch (l->l_stat) { 643 case LSSTOP: 644 /* 645 * If we're being traced (possibly because someone attached us 646 * while we were stopped), check for a signal from the debugger. 647 */ 648 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) { 649 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0) 650 ss = &l->l_sigpend.sp_set; 651 else 652 ss = &p->p_sigpend.sp_set; 653 sigaddset(ss, p->p_xstat); 654 signotify(l); 655 } 656 p->p_nrlwps++; 657 break; 658 case LSSUSPENDED: 659 l->l_flag &= ~LW_WSUSPEND; 660 p->p_nrlwps++; 661 cv_broadcast(&p->p_lwpcv); 662 break; 663 case LSSLEEP: 664 KASSERT(l->l_wchan != NULL); 665 break; 666 default: 667 panic("setrunnable: lwp %p state was %d", l, l->l_stat); 668 } 669 670 /* 671 * If the LWP was sleeping interruptably, then it's OK to start it 672 * again. If not, mark it as still sleeping. 673 */ 674 if (l->l_wchan != NULL) { 675 l->l_stat = LSSLEEP; 676 /* lwp_unsleep() will release the lock. */ 677 lwp_unsleep(l); 678 return; 679 } 680 681 /* 682 * If the LWP is still on the CPU, mark it as LSONPROC. It may be 683 * about to call mi_switch(), in which case it will yield. 684 */ 685 if ((l->l_flag & LW_RUNNING) != 0) { 686 l->l_stat = LSONPROC; 687 l->l_slptime = 0; 688 lwp_unlock(l); 689 return; 690 } 691 692 /* 693 * Look for a CPU to run. 694 * Set the LWP runnable. 695 */ 696 ci = sched_takecpu(l); 697 l->l_cpu = ci; 698 if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) { 699 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex); 700 lwp_lock(l); 701 } 702 sched_setrunnable(l); 703 l->l_stat = LSRUN; 704 l->l_slptime = 0; 705 706 /* 707 * If thread is swapped out - wake the swapper to bring it back in. 708 * Otherwise, enter it into a run queue. 709 */ 710 if (l->l_flag & LW_INMEM) { 711 sched_enqueue(l, false); 712 resched_cpu(l); 713 lwp_unlock(l); 714 } else { 715 lwp_unlock(l); 716 uvm_kick_scheduler(); 717 } 718 } 719 720 /* 721 * suspendsched: 722 * 723 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED. 724 */ 725 void 726 suspendsched(void) 727 { 728 CPU_INFO_ITERATOR cii; 729 struct cpu_info *ci; 730 struct lwp *l; 731 struct proc *p; 732 733 /* 734 * We do this by process in order not to violate the locking rules. 735 */ 736 mutex_enter(&proclist_lock); 737 PROCLIST_FOREACH(p, &allproc) { 738 mutex_enter(&p->p_smutex); 739 740 if ((p->p_flag & PK_SYSTEM) != 0) { 741 mutex_exit(&p->p_smutex); 742 continue; 743 } 744 745 p->p_stat = SSTOP; 746 747 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 748 if (l == curlwp) 749 continue; 750 751 lwp_lock(l); 752 753 /* 754 * Set L_WREBOOT so that the LWP will suspend itself 755 * when it tries to return to user mode. We want to 756 * try and get to get as many LWPs as possible to 757 * the user / kernel boundary, so that they will 758 * release any locks that they hold. 759 */ 760 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND); 761 762 if (l->l_stat == LSSLEEP && 763 (l->l_flag & LW_SINTR) != 0) { 764 /* setrunnable() will release the lock. */ 765 setrunnable(l); 766 continue; 767 } 768 769 lwp_unlock(l); 770 } 771 772 mutex_exit(&p->p_smutex); 773 } 774 mutex_exit(&proclist_lock); 775 776 /* 777 * Kick all CPUs to make them preempt any LWPs running in user mode. 778 * They'll trap into the kernel and suspend themselves in userret(). 779 */ 780 for (CPU_INFO_FOREACH(cii, ci)) { 781 spc_lock(ci); 782 cpu_need_resched(ci, RESCHED_IMMED); 783 spc_unlock(ci); 784 } 785 } 786 787 /* 788 * sched_unsleep: 789 * 790 * The is called when the LWP has not been awoken normally but instead 791 * interrupted: for example, if the sleep timed out. Because of this, 792 * it's not a valid action for running or idle LWPs. 793 */ 794 static void 795 sched_unsleep(struct lwp *l) 796 { 797 798 lwp_unlock(l); 799 panic("sched_unsleep"); 800 } 801 802 void 803 resched_cpu(struct lwp *l) 804 { 805 struct cpu_info *ci; 806 807 /* 808 * XXXSMP 809 * Since l->l_cpu persists across a context switch, 810 * this gives us *very weak* processor affinity, in 811 * that we notify the CPU on which the process last 812 * ran that it should try to switch. 813 * 814 * This does not guarantee that the process will run on 815 * that processor next, because another processor might 816 * grab it the next time it performs a context switch. 817 * 818 * This also does not handle the case where its last 819 * CPU is running a higher-priority process, but every 820 * other CPU is running a lower-priority process. There 821 * are ways to handle this situation, but they're not 822 * currently very pretty, and we also need to weigh the 823 * cost of moving a process from one CPU to another. 824 */ 825 ci = l->l_cpu; 826 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority) 827 cpu_need_resched(ci, 0); 828 } 829 830 static void 831 sched_changepri(struct lwp *l, pri_t pri) 832 { 833 834 KASSERT(lwp_locked(l, NULL)); 835 836 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) { 837 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex)); 838 sched_dequeue(l); 839 l->l_priority = pri; 840 sched_enqueue(l, false); 841 } else { 842 l->l_priority = pri; 843 } 844 resched_cpu(l); 845 } 846 847 static void 848 sched_lendpri(struct lwp *l, pri_t pri) 849 { 850 851 KASSERT(lwp_locked(l, NULL)); 852 853 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) { 854 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex)); 855 sched_dequeue(l); 856 l->l_inheritedprio = pri; 857 sched_enqueue(l, false); 858 } else { 859 l->l_inheritedprio = pri; 860 } 861 resched_cpu(l); 862 } 863 864 struct lwp * 865 syncobj_noowner(wchan_t wchan) 866 { 867 868 return NULL; 869 } 870 871 872 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 873 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 874 875 /* 876 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 877 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 878 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 879 * 880 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 881 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 882 * 883 * If you dont want to bother with the faster/more-accurate formula, you 884 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 885 * (more general) method of calculating the %age of CPU used by a process. 886 */ 887 #define CCPU_SHIFT (FSHIFT + 1) 888 889 /* 890 * sched_pstats: 891 * 892 * Update process statistics and check CPU resource allocation. 893 * Call scheduler-specific hook to eventually adjust process/LWP 894 * priorities. 895 */ 896 /* ARGSUSED */ 897 void 898 sched_pstats(void *arg) 899 { 900 struct rlimit *rlim; 901 struct lwp *l; 902 struct proc *p; 903 int sig, clkhz; 904 long runtm; 905 906 sched_pstats_ticks++; 907 908 mutex_enter(&proclist_lock); 909 PROCLIST_FOREACH(p, &allproc) { 910 /* 911 * Increment time in/out of memory and sleep time (if 912 * sleeping). We ignore overflow; with 16-bit int's 913 * (remember them?) overflow takes 45 days. 914 */ 915 mutex_enter(&p->p_smutex); 916 mutex_spin_enter(&p->p_stmutex); 917 runtm = p->p_rtime.sec; 918 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 919 if ((l->l_flag & LW_IDLE) != 0) 920 continue; 921 lwp_lock(l); 922 runtm += l->l_rtime.sec; 923 l->l_swtime++; 924 sched_pstats_hook(l); 925 lwp_unlock(l); 926 927 /* 928 * p_pctcpu is only for ps. 929 */ 930 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT; 931 if (l->l_slptime < 1) { 932 clkhz = stathz != 0 ? stathz : hz; 933 #if (FSHIFT >= CCPU_SHIFT) 934 l->l_pctcpu += (clkhz == 100) ? 935 ((fixpt_t)l->l_cpticks) << 936 (FSHIFT - CCPU_SHIFT) : 937 100 * (((fixpt_t) p->p_cpticks) 938 << (FSHIFT - CCPU_SHIFT)) / clkhz; 939 #else 940 l->l_pctcpu += ((FSCALE - ccpu) * 941 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT; 942 #endif 943 l->l_cpticks = 0; 944 } 945 } 946 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 947 mutex_spin_exit(&p->p_stmutex); 948 949 /* 950 * Check if the process exceeds its CPU resource allocation. 951 * If over max, kill it. 952 */ 953 rlim = &p->p_rlimit[RLIMIT_CPU]; 954 sig = 0; 955 if (runtm >= rlim->rlim_cur) { 956 if (runtm >= rlim->rlim_max) 957 sig = SIGKILL; 958 else { 959 sig = SIGXCPU; 960 if (rlim->rlim_cur < rlim->rlim_max) 961 rlim->rlim_cur += 5; 962 } 963 } 964 mutex_exit(&p->p_smutex); 965 if (sig) { 966 mutex_enter(&proclist_mutex); 967 psignal(p, sig); 968 mutex_exit(&proclist_mutex); 969 } 970 } 971 mutex_exit(&proclist_lock); 972 uvm_meter(); 973 cv_wakeup(&lbolt); 974 callout_schedule(&sched_pstats_ch, hz); 975 } 976 977 void 978 sched_init(void) 979 { 980 981 cv_init(&lbolt, "lbolt"); 982 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE); 983 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL); 984 sched_setup(); 985 sched_pstats(NULL); 986 } 987