xref: /netbsd-src/sys/kern/kern_synch.c (revision 10ad5ffa714ce1a679dcc9dd8159648df2d67b5a)
1 /*	$NetBSD: kern_synch.c,v 1.267 2009/07/19 10:11:55 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5  *    The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11  * Daniel Sieger.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*-
36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * (c) UNIX System Laboratories, Inc.
39  * All or some portions of this file are derived from material licensed
40  * to the University of California by American Telephone and Telegraph
41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42  * the permission of UNIX System Laboratories, Inc.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
69  */
70 
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.267 2009/07/19 10:11:55 yamt Exp $");
73 
74 #include "opt_kstack.h"
75 #include "opt_perfctrs.h"
76 #include "opt_sa.h"
77 
78 #define	__MUTEX_PRIVATE
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/kernel.h>
84 #if defined(PERFCTRS)
85 #include <sys/pmc.h>
86 #endif
87 #include <sys/cpu.h>
88 #include <sys/resourcevar.h>
89 #include <sys/sched.h>
90 #include <sys/sa.h>
91 #include <sys/savar.h>
92 #include <sys/syscall_stats.h>
93 #include <sys/sleepq.h>
94 #include <sys/lockdebug.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/lwpctl.h>
98 #include <sys/atomic.h>
99 #include <sys/simplelock.h>
100 
101 #include <uvm/uvm_extern.h>
102 
103 #include <dev/lockstat.h>
104 
105 static u_int	sched_unsleep(struct lwp *, bool);
106 static void	sched_changepri(struct lwp *, pri_t);
107 static void	sched_lendpri(struct lwp *, pri_t);
108 static void	resched_cpu(struct lwp *);
109 
110 syncobj_t sleep_syncobj = {
111 	SOBJ_SLEEPQ_SORTED,
112 	sleepq_unsleep,
113 	sleepq_changepri,
114 	sleepq_lendpri,
115 	syncobj_noowner,
116 };
117 
118 syncobj_t sched_syncobj = {
119 	SOBJ_SLEEPQ_SORTED,
120 	sched_unsleep,
121 	sched_changepri,
122 	sched_lendpri,
123 	syncobj_noowner,
124 };
125 
126 callout_t 	sched_pstats_ch;
127 unsigned	sched_pstats_ticks;
128 kcondvar_t	lbolt;			/* once a second sleep address */
129 
130 /* Preemption event counters */
131 static struct evcnt kpreempt_ev_crit;
132 static struct evcnt kpreempt_ev_klock;
133 static struct evcnt kpreempt_ev_immed;
134 
135 /*
136  * During autoconfiguration or after a panic, a sleep will simply lower the
137  * priority briefly to allow interrupts, then return.  The priority to be
138  * used (safepri) is machine-dependent, thus this value is initialized and
139  * maintained in the machine-dependent layers.  This priority will typically
140  * be 0, or the lowest priority that is safe for use on the interrupt stack;
141  * it can be made higher to block network software interrupts after panics.
142  */
143 int	safepri;
144 
145 void
146 sched_init(void)
147 {
148 
149 	cv_init(&lbolt, "lbolt");
150 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
151 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
152 
153 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
154 	   "kpreempt", "defer: critical section");
155 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
156 	   "kpreempt", "defer: kernel_lock");
157 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
158 	   "kpreempt", "immediate");
159 
160 	sched_pstats(NULL);
161 }
162 
163 /*
164  * OBSOLETE INTERFACE
165  *
166  * General sleep call.  Suspends the current LWP until a wakeup is
167  * performed on the specified identifier.  The LWP will then be made
168  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
169  * means no timeout).  If pri includes PCATCH flag, signals are checked
170  * before and after sleeping, else signals are not checked.  Returns 0 if
171  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
172  * signal needs to be delivered, ERESTART is returned if the current system
173  * call should be restarted if possible, and EINTR is returned if the system
174  * call should be interrupted by the signal (return EINTR).
175  *
176  * The interlock is held until we are on a sleep queue. The interlock will
177  * be locked before returning back to the caller unless the PNORELOCK flag
178  * is specified, in which case the interlock will always be unlocked upon
179  * return.
180  */
181 int
182 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
183 	volatile struct simplelock *interlock)
184 {
185 	struct lwp *l = curlwp;
186 	sleepq_t *sq;
187 	kmutex_t *mp;
188 	int error;
189 
190 	KASSERT((l->l_pflag & LP_INTR) == 0);
191 
192 	if (sleepq_dontsleep(l)) {
193 		(void)sleepq_abort(NULL, 0);
194 		if ((priority & PNORELOCK) != 0)
195 			simple_unlock(interlock);
196 		return 0;
197 	}
198 
199 	l->l_kpriority = true;
200 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
201 	sleepq_enter(sq, l, mp);
202 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
203 
204 	if (interlock != NULL) {
205 		KASSERT(simple_lock_held(interlock));
206 		simple_unlock(interlock);
207 	}
208 
209 	error = sleepq_block(timo, priority & PCATCH);
210 
211 	if (interlock != NULL && (priority & PNORELOCK) == 0)
212 		simple_lock(interlock);
213 
214 	return error;
215 }
216 
217 int
218 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
219 	kmutex_t *mtx)
220 {
221 	struct lwp *l = curlwp;
222 	sleepq_t *sq;
223 	kmutex_t *mp;
224 	int error;
225 
226 	KASSERT((l->l_pflag & LP_INTR) == 0);
227 
228 	if (sleepq_dontsleep(l)) {
229 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
230 		return 0;
231 	}
232 
233 	l->l_kpriority = true;
234 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
235 	sleepq_enter(sq, l, mp);
236 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
237 	mutex_exit(mtx);
238 	error = sleepq_block(timo, priority & PCATCH);
239 
240 	if ((priority & PNORELOCK) == 0)
241 		mutex_enter(mtx);
242 
243 	return error;
244 }
245 
246 /*
247  * General sleep call for situations where a wake-up is not expected.
248  */
249 int
250 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
251 {
252 	struct lwp *l = curlwp;
253 	kmutex_t *mp;
254 	sleepq_t *sq;
255 	int error;
256 
257 	if (sleepq_dontsleep(l))
258 		return sleepq_abort(NULL, 0);
259 
260 	if (mtx != NULL)
261 		mutex_exit(mtx);
262 	l->l_kpriority = true;
263 	sq = sleeptab_lookup(&sleeptab, l, &mp);
264 	sleepq_enter(sq, l, mp);
265 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
266 	error = sleepq_block(timo, intr);
267 	if (mtx != NULL)
268 		mutex_enter(mtx);
269 
270 	return error;
271 }
272 
273 #ifdef KERN_SA
274 /*
275  * sa_awaken:
276  *
277  *	We believe this lwp is an SA lwp. If it's yielding,
278  * let it know it needs to wake up.
279  *
280  *	We are called and exit with the lwp locked. We are
281  * called in the middle of wakeup operations, so we need
282  * to not touch the locks at all.
283  */
284 void
285 sa_awaken(struct lwp *l)
286 {
287 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
288 
289 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
290 		l->l_flag &= ~LW_SA_IDLE;
291 }
292 #endif /* KERN_SA */
293 
294 /*
295  * OBSOLETE INTERFACE
296  *
297  * Make all LWPs sleeping on the specified identifier runnable.
298  */
299 void
300 wakeup(wchan_t ident)
301 {
302 	sleepq_t *sq;
303 	kmutex_t *mp;
304 
305 	if (__predict_false(cold))
306 		return;
307 
308 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
309 	sleepq_wake(sq, ident, (u_int)-1, mp);
310 }
311 
312 /*
313  * OBSOLETE INTERFACE
314  *
315  * Make the highest priority LWP first in line on the specified
316  * identifier runnable.
317  */
318 void
319 wakeup_one(wchan_t ident)
320 {
321 	sleepq_t *sq;
322 	kmutex_t *mp;
323 
324 	if (__predict_false(cold))
325 		return;
326 
327 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
328 	sleepq_wake(sq, ident, 1, mp);
329 }
330 
331 
332 /*
333  * General yield call.  Puts the current LWP back on its run queue and
334  * performs a voluntary context switch.  Should only be called when the
335  * current LWP explicitly requests it (eg sched_yield(2)).
336  */
337 void
338 yield(void)
339 {
340 	struct lwp *l = curlwp;
341 
342 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
343 	lwp_lock(l);
344 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
345 	KASSERT(l->l_stat == LSONPROC);
346 	l->l_kpriority = false;
347 	(void)mi_switch(l);
348 	KERNEL_LOCK(l->l_biglocks, l);
349 }
350 
351 /*
352  * General preemption call.  Puts the current LWP back on its run queue
353  * and performs an involuntary context switch.
354  */
355 void
356 preempt(void)
357 {
358 	struct lwp *l = curlwp;
359 
360 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
361 	lwp_lock(l);
362 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
363 	KASSERT(l->l_stat == LSONPROC);
364 	l->l_kpriority = false;
365 	l->l_nivcsw++;
366 	(void)mi_switch(l);
367 	KERNEL_LOCK(l->l_biglocks, l);
368 }
369 
370 /*
371  * Handle a request made by another agent to preempt the current LWP
372  * in-kernel.  Usually called when l_dopreempt may be non-zero.
373  *
374  * Character addresses for lockstat only.
375  */
376 static char	in_critical_section;
377 static char	kernel_lock_held;
378 static char	is_softint;
379 static char	cpu_kpreempt_enter_fail;
380 
381 bool
382 kpreempt(uintptr_t where)
383 {
384 	uintptr_t failed;
385 	lwp_t *l;
386 	int s, dop, lsflag;
387 
388 	l = curlwp;
389 	failed = 0;
390 	while ((dop = l->l_dopreempt) != 0) {
391 		if (l->l_stat != LSONPROC) {
392 			/*
393 			 * About to block (or die), let it happen.
394 			 * Doesn't really count as "preemption has
395 			 * been blocked", since we're going to
396 			 * context switch.
397 			 */
398 			l->l_dopreempt = 0;
399 			return true;
400 		}
401 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
402 			/* Can't preempt idle loop, don't count as failure. */
403 			l->l_dopreempt = 0;
404 			return true;
405 		}
406 		if (__predict_false(l->l_nopreempt != 0)) {
407 			/* LWP holds preemption disabled, explicitly. */
408 			if ((dop & DOPREEMPT_COUNTED) == 0) {
409 				kpreempt_ev_crit.ev_count++;
410 			}
411 			failed = (uintptr_t)&in_critical_section;
412 			break;
413 		}
414 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
415 			/* Can't preempt soft interrupts yet. */
416 			l->l_dopreempt = 0;
417 			failed = (uintptr_t)&is_softint;
418 			break;
419 		}
420 		s = splsched();
421 		if (__predict_false(l->l_blcnt != 0 ||
422 		    curcpu()->ci_biglock_wanted != NULL)) {
423 			/* Hold or want kernel_lock, code is not MT safe. */
424 			splx(s);
425 			if ((dop & DOPREEMPT_COUNTED) == 0) {
426 				kpreempt_ev_klock.ev_count++;
427 			}
428 			failed = (uintptr_t)&kernel_lock_held;
429 			break;
430 		}
431 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
432 			/*
433 			 * It may be that the IPL is too high.
434 			 * kpreempt_enter() can schedule an
435 			 * interrupt to retry later.
436 			 */
437 			splx(s);
438 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
439 			break;
440 		}
441 		/* Do it! */
442 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
443 			kpreempt_ev_immed.ev_count++;
444 		}
445 		lwp_lock(l);
446 		mi_switch(l);
447 		l->l_nopreempt++;
448 		splx(s);
449 
450 		/* Take care of any MD cleanup. */
451 		cpu_kpreempt_exit(where);
452 		l->l_nopreempt--;
453 	}
454 
455 	if (__predict_true(!failed)) {
456 		return false;
457 	}
458 
459 	/* Record preemption failure for reporting via lockstat. */
460 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
461 	lsflag = 0;
462 	LOCKSTAT_ENTER(lsflag);
463 	if (__predict_false(lsflag)) {
464 		if (where == 0) {
465 			where = (uintptr_t)__builtin_return_address(0);
466 		}
467 		/* Preemption is on, might recurse, so make it atomic. */
468 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
469 		    (void *)where) == NULL) {
470 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
471 			l->l_pfaillock = failed;
472 		}
473 	}
474 	LOCKSTAT_EXIT(lsflag);
475 	return true;
476 }
477 
478 /*
479  * Return true if preemption is explicitly disabled.
480  */
481 bool
482 kpreempt_disabled(void)
483 {
484 	const lwp_t *l = curlwp;
485 
486 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
487 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
488 }
489 
490 /*
491  * Disable kernel preemption.
492  */
493 void
494 kpreempt_disable(void)
495 {
496 
497 	KPREEMPT_DISABLE(curlwp);
498 }
499 
500 /*
501  * Reenable kernel preemption.
502  */
503 void
504 kpreempt_enable(void)
505 {
506 
507 	KPREEMPT_ENABLE(curlwp);
508 }
509 
510 /*
511  * Compute the amount of time during which the current lwp was running.
512  *
513  * - update l_rtime unless it's an idle lwp.
514  */
515 
516 void
517 updatertime(lwp_t *l, const struct bintime *now)
518 {
519 
520 	if (__predict_false(l->l_flag & LW_IDLE))
521 		return;
522 
523 	/* rtime += now - stime */
524 	bintime_add(&l->l_rtime, now);
525 	bintime_sub(&l->l_rtime, &l->l_stime);
526 }
527 
528 /*
529  * Select next LWP from the current CPU to run..
530  */
531 static inline lwp_t *
532 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
533 {
534 	lwp_t *newl;
535 
536 	/*
537 	 * Let sched_nextlwp() select the LWP to run the CPU next.
538 	 * If no LWP is runnable, select the idle LWP.
539 	 *
540 	 * Note that spc_lwplock might not necessary be held, and
541 	 * new thread would be unlocked after setting the LWP-lock.
542 	 */
543 	newl = sched_nextlwp();
544 	if (newl != NULL) {
545 		sched_dequeue(newl);
546 		KASSERT(lwp_locked(newl, spc->spc_mutex));
547 		newl->l_stat = LSONPROC;
548 		newl->l_cpu = ci;
549 		newl->l_pflag |= LP_RUNNING;
550 		lwp_setlock(newl, spc->spc_lwplock);
551 	} else {
552 		newl = ci->ci_data.cpu_idlelwp;
553 		newl->l_stat = LSONPROC;
554 		newl->l_pflag |= LP_RUNNING;
555 	}
556 
557 	/*
558 	 * Only clear want_resched if there are no pending (slow)
559 	 * software interrupts.
560 	 */
561 	ci->ci_want_resched = ci->ci_data.cpu_softints;
562 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
563 	spc->spc_curpriority = lwp_eprio(newl);
564 
565 	return newl;
566 }
567 
568 /*
569  * The machine independent parts of context switch.
570  *
571  * Returns 1 if another LWP was actually run.
572  */
573 int
574 mi_switch(lwp_t *l)
575 {
576 	struct cpu_info *ci;
577 	struct schedstate_percpu *spc;
578 	struct lwp *newl;
579 	int retval, oldspl;
580 	struct bintime bt;
581 	bool returning;
582 
583 	KASSERT(lwp_locked(l, NULL));
584 	KASSERT(kpreempt_disabled());
585 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
586 
587 	kstack_check_magic(l);
588 
589 	binuptime(&bt);
590 
591 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
592 	KASSERT(l->l_cpu == curcpu());
593 	ci = l->l_cpu;
594 	spc = &ci->ci_schedstate;
595 	returning = false;
596 	newl = NULL;
597 
598 	/*
599 	 * If we have been asked to switch to a specific LWP, then there
600 	 * is no need to inspect the run queues.  If a soft interrupt is
601 	 * blocking, then return to the interrupted thread without adjusting
602 	 * VM context or its start time: neither have been changed in order
603 	 * to take the interrupt.
604 	 */
605 	if (l->l_switchto != NULL) {
606 		if ((l->l_pflag & LP_INTR) != 0) {
607 			returning = true;
608 			softint_block(l);
609 			if ((l->l_pflag & LP_TIMEINTR) != 0)
610 				updatertime(l, &bt);
611 		}
612 		newl = l->l_switchto;
613 		l->l_switchto = NULL;
614 	}
615 #ifndef __HAVE_FAST_SOFTINTS
616 	else if (ci->ci_data.cpu_softints != 0) {
617 		/* There are pending soft interrupts, so pick one. */
618 		newl = softint_picklwp();
619 		newl->l_stat = LSONPROC;
620 		newl->l_pflag |= LP_RUNNING;
621 	}
622 #endif	/* !__HAVE_FAST_SOFTINTS */
623 
624 	/* Count time spent in current system call */
625 	if (!returning) {
626 		SYSCALL_TIME_SLEEP(l);
627 
628 		/*
629 		 * XXXSMP If we are using h/w performance counters,
630 		 * save context.
631 		 */
632 #if PERFCTRS
633 		if (PMC_ENABLED(l->l_proc)) {
634 			pmc_save_context(l->l_proc);
635 		}
636 #endif
637 		updatertime(l, &bt);
638 	}
639 
640 	/* Lock the runqueue */
641 	KASSERT(l->l_stat != LSRUN);
642 	mutex_spin_enter(spc->spc_mutex);
643 
644 	/*
645 	 * If on the CPU and we have gotten this far, then we must yield.
646 	 */
647 	if (l->l_stat == LSONPROC && l != newl) {
648 		KASSERT(lwp_locked(l, spc->spc_lwplock));
649 		if ((l->l_flag & LW_IDLE) == 0) {
650 			l->l_stat = LSRUN;
651 			lwp_setlock(l, spc->spc_mutex);
652 			sched_enqueue(l, true);
653 			/* Handle migration case */
654 			KASSERT(spc->spc_migrating == NULL);
655 			if (l->l_target_cpu !=  NULL) {
656 				spc->spc_migrating = l;
657 			}
658 		} else
659 			l->l_stat = LSIDL;
660 	}
661 
662 	/* Pick new LWP to run. */
663 	if (newl == NULL) {
664 		newl = nextlwp(ci, spc);
665 	}
666 
667 	/* Items that must be updated with the CPU locked. */
668 	if (!returning) {
669 		/* Update the new LWP's start time. */
670 		newl->l_stime = bt;
671 
672 		/*
673 		 * ci_curlwp changes when a fast soft interrupt occurs.
674 		 * We use cpu_onproc to keep track of which kernel or
675 		 * user thread is running 'underneath' the software
676 		 * interrupt.  This is important for time accounting,
677 		 * itimers and forcing user threads to preempt (aston).
678 		 */
679 		ci->ci_data.cpu_onproc = newl;
680 	}
681 
682 	/*
683 	 * Preemption related tasks.  Must be done with the current
684 	 * CPU locked.
685 	 */
686 	cpu_did_resched(l);
687 	l->l_dopreempt = 0;
688 	if (__predict_false(l->l_pfailaddr != 0)) {
689 		LOCKSTAT_FLAG(lsflag);
690 		LOCKSTAT_ENTER(lsflag);
691 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
692 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
693 		    1, l->l_pfailtime, l->l_pfailaddr);
694 		LOCKSTAT_EXIT(lsflag);
695 		l->l_pfailtime = 0;
696 		l->l_pfaillock = 0;
697 		l->l_pfailaddr = 0;
698 	}
699 
700 	if (l != newl) {
701 		struct lwp *prevlwp;
702 
703 		/* Release all locks, but leave the current LWP locked */
704 		if (l->l_mutex == spc->spc_mutex) {
705 			/*
706 			 * Drop spc_lwplock, if the current LWP has been moved
707 			 * to the run queue (it is now locked by spc_mutex).
708 			 */
709 			mutex_spin_exit(spc->spc_lwplock);
710 		} else {
711 			/*
712 			 * Otherwise, drop the spc_mutex, we are done with the
713 			 * run queues.
714 			 */
715 			mutex_spin_exit(spc->spc_mutex);
716 		}
717 
718 		/*
719 		 * Mark that context switch is going to be performed
720 		 * for this LWP, to protect it from being switched
721 		 * to on another CPU.
722 		 */
723 		KASSERT(l->l_ctxswtch == 0);
724 		l->l_ctxswtch = 1;
725 		l->l_ncsw++;
726 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
727 		l->l_pflag &= ~LP_RUNNING;
728 
729 		/*
730 		 * Increase the count of spin-mutexes before the release
731 		 * of the last lock - we must remain at IPL_SCHED during
732 		 * the context switch.
733 		 */
734 		oldspl = MUTEX_SPIN_OLDSPL(ci);
735 		ci->ci_mtx_count--;
736 		lwp_unlock(l);
737 
738 		/* Count the context switch on this CPU. */
739 		ci->ci_data.cpu_nswtch++;
740 
741 		/* Update status for lwpctl, if present. */
742 		if (l->l_lwpctl != NULL)
743 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
744 
745 		/*
746 		 * Save old VM context, unless a soft interrupt
747 		 * handler is blocking.
748 		 */
749 		if (!returning)
750 			pmap_deactivate(l);
751 
752 		/*
753 		 * We may need to spin-wait for if 'newl' is still
754 		 * context switching on another CPU.
755 		 */
756 		if (__predict_false(newl->l_ctxswtch != 0)) {
757 			u_int count;
758 			count = SPINLOCK_BACKOFF_MIN;
759 			while (newl->l_ctxswtch)
760 				SPINLOCK_BACKOFF(count);
761 		}
762 
763 		/* Switch to the new LWP.. */
764 		prevlwp = cpu_switchto(l, newl, returning);
765 		ci = curcpu();
766 
767 		/*
768 		 * Switched away - we have new curlwp.
769 		 * Restore VM context and IPL.
770 		 */
771 		pmap_activate(l);
772 		uvm_emap_switch(l);
773 
774 		if (prevlwp != NULL) {
775 			/* Normalize the count of the spin-mutexes */
776 			ci->ci_mtx_count++;
777 			/* Unmark the state of context switch */
778 			membar_exit();
779 			prevlwp->l_ctxswtch = 0;
780 		}
781 
782 		/* Update status for lwpctl, if present. */
783 		if (l->l_lwpctl != NULL) {
784 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
785 			l->l_lwpctl->lc_pctr++;
786 		}
787 
788 		KASSERT(l->l_cpu == ci);
789 		splx(oldspl);
790 		retval = 1;
791 	} else {
792 		/* Nothing to do - just unlock and return. */
793 		mutex_spin_exit(spc->spc_mutex);
794 		lwp_unlock(l);
795 		retval = 0;
796 	}
797 
798 	KASSERT(l == curlwp);
799 	KASSERT(l->l_stat == LSONPROC);
800 
801 	/*
802 	 * XXXSMP If we are using h/w performance counters, restore context.
803 	 * XXXSMP preemption problem.
804 	 */
805 #if PERFCTRS
806 	if (PMC_ENABLED(l->l_proc)) {
807 		pmc_restore_context(l->l_proc);
808 	}
809 #endif
810 	SYSCALL_TIME_WAKEUP(l);
811 	LOCKDEBUG_BARRIER(NULL, 1);
812 
813 	return retval;
814 }
815 
816 /*
817  * The machine independent parts of context switch to oblivion.
818  * Does not return.  Call with the LWP unlocked.
819  */
820 void
821 lwp_exit_switchaway(lwp_t *l)
822 {
823 	struct cpu_info *ci;
824 	struct lwp *newl;
825 	struct bintime bt;
826 
827 	ci = l->l_cpu;
828 
829 	KASSERT(kpreempt_disabled());
830 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
831 	KASSERT(ci == curcpu());
832 	LOCKDEBUG_BARRIER(NULL, 0);
833 
834 	kstack_check_magic(l);
835 
836 	/* Count time spent in current system call */
837 	SYSCALL_TIME_SLEEP(l);
838 	binuptime(&bt);
839 	updatertime(l, &bt);
840 
841 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
842 	(void)splsched();
843 
844 	/*
845 	 * Let sched_nextlwp() select the LWP to run the CPU next.
846 	 * If no LWP is runnable, select the idle LWP.
847 	 *
848 	 * Note that spc_lwplock might not necessary be held, and
849 	 * new thread would be unlocked after setting the LWP-lock.
850 	 */
851 	spc_lock(ci);
852 #ifndef __HAVE_FAST_SOFTINTS
853 	if (ci->ci_data.cpu_softints != 0) {
854 		/* There are pending soft interrupts, so pick one. */
855 		newl = softint_picklwp();
856 		newl->l_stat = LSONPROC;
857 		newl->l_pflag |= LP_RUNNING;
858 	} else
859 #endif	/* !__HAVE_FAST_SOFTINTS */
860 	{
861 		newl = nextlwp(ci, &ci->ci_schedstate);
862 	}
863 
864 	/* Update the new LWP's start time. */
865 	newl->l_stime = bt;
866 	l->l_pflag &= ~LP_RUNNING;
867 
868 	/*
869 	 * ci_curlwp changes when a fast soft interrupt occurs.
870 	 * We use cpu_onproc to keep track of which kernel or
871 	 * user thread is running 'underneath' the software
872 	 * interrupt.  This is important for time accounting,
873 	 * itimers and forcing user threads to preempt (aston).
874 	 */
875 	ci->ci_data.cpu_onproc = newl;
876 
877 	/*
878 	 * Preemption related tasks.  Must be done with the current
879 	 * CPU locked.
880 	 */
881 	cpu_did_resched(l);
882 
883 	/* Unlock the run queue. */
884 	spc_unlock(ci);
885 
886 	/* Count the context switch on this CPU. */
887 	ci->ci_data.cpu_nswtch++;
888 
889 	/* Update status for lwpctl, if present. */
890 	if (l->l_lwpctl != NULL)
891 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
892 
893 	/*
894 	 * We may need to spin-wait for if 'newl' is still
895 	 * context switching on another CPU.
896 	 */
897 	if (__predict_false(newl->l_ctxswtch != 0)) {
898 		u_int count;
899 		count = SPINLOCK_BACKOFF_MIN;
900 		while (newl->l_ctxswtch)
901 			SPINLOCK_BACKOFF(count);
902 	}
903 
904 	/* Switch to the new LWP.. */
905 	(void)cpu_switchto(NULL, newl, false);
906 
907 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
908 	/* NOTREACHED */
909 }
910 
911 /*
912  * Change LWP state to be runnable, placing it on the run queue if it is
913  * in memory, and awakening the swapper if it isn't in memory.
914  *
915  * Call with the process and LWP locked.  Will return with the LWP unlocked.
916  */
917 void
918 setrunnable(struct lwp *l)
919 {
920 	struct proc *p = l->l_proc;
921 	struct cpu_info *ci;
922 
923 	KASSERT((l->l_flag & LW_IDLE) == 0);
924 	KASSERT(mutex_owned(p->p_lock));
925 	KASSERT(lwp_locked(l, NULL));
926 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
927 
928 	switch (l->l_stat) {
929 	case LSSTOP:
930 		/*
931 		 * If we're being traced (possibly because someone attached us
932 		 * while we were stopped), check for a signal from the debugger.
933 		 */
934 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
935 			signotify(l);
936 		p->p_nrlwps++;
937 		break;
938 	case LSSUSPENDED:
939 		l->l_flag &= ~LW_WSUSPEND;
940 		p->p_nrlwps++;
941 		cv_broadcast(&p->p_lwpcv);
942 		break;
943 	case LSSLEEP:
944 		KASSERT(l->l_wchan != NULL);
945 		break;
946 	default:
947 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
948 	}
949 
950 #ifdef KERN_SA
951 	if (l->l_proc->p_sa)
952 		sa_awaken(l);
953 #endif /* KERN_SA */
954 
955 	/*
956 	 * If the LWP was sleeping interruptably, then it's OK to start it
957 	 * again.  If not, mark it as still sleeping.
958 	 */
959 	if (l->l_wchan != NULL) {
960 		l->l_stat = LSSLEEP;
961 		/* lwp_unsleep() will release the lock. */
962 		lwp_unsleep(l, true);
963 		return;
964 	}
965 
966 	/*
967 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
968 	 * about to call mi_switch(), in which case it will yield.
969 	 */
970 	if ((l->l_pflag & LP_RUNNING) != 0) {
971 		l->l_stat = LSONPROC;
972 		l->l_slptime = 0;
973 		lwp_unlock(l);
974 		return;
975 	}
976 
977 	/*
978 	 * Look for a CPU to run.
979 	 * Set the LWP runnable.
980 	 */
981 	ci = sched_takecpu(l);
982 	l->l_cpu = ci;
983 	spc_lock(ci);
984 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
985 	sched_setrunnable(l);
986 	l->l_stat = LSRUN;
987 	l->l_slptime = 0;
988 
989 	/*
990 	 * If thread is swapped out - wake the swapper to bring it back in.
991 	 * Otherwise, enter it into a run queue.
992 	 */
993 	if (l->l_flag & LW_INMEM) {
994 		sched_enqueue(l, false);
995 		resched_cpu(l);
996 		lwp_unlock(l);
997 	} else {
998 		lwp_unlock(l);
999 		uvm_kick_scheduler();
1000 	}
1001 }
1002 
1003 /*
1004  * suspendsched:
1005  *
1006  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1007  */
1008 void
1009 suspendsched(void)
1010 {
1011 	CPU_INFO_ITERATOR cii;
1012 	struct cpu_info *ci;
1013 	struct lwp *l;
1014 	struct proc *p;
1015 
1016 	/*
1017 	 * We do this by process in order not to violate the locking rules.
1018 	 */
1019 	mutex_enter(proc_lock);
1020 	PROCLIST_FOREACH(p, &allproc) {
1021 		if ((p->p_flag & PK_MARKER) != 0)
1022 			continue;
1023 
1024 		mutex_enter(p->p_lock);
1025 		if ((p->p_flag & PK_SYSTEM) != 0) {
1026 			mutex_exit(p->p_lock);
1027 			continue;
1028 		}
1029 
1030 		p->p_stat = SSTOP;
1031 
1032 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1033 			if (l == curlwp)
1034 				continue;
1035 
1036 			lwp_lock(l);
1037 
1038 			/*
1039 			 * Set L_WREBOOT so that the LWP will suspend itself
1040 			 * when it tries to return to user mode.  We want to
1041 			 * try and get to get as many LWPs as possible to
1042 			 * the user / kernel boundary, so that they will
1043 			 * release any locks that they hold.
1044 			 */
1045 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1046 
1047 			if (l->l_stat == LSSLEEP &&
1048 			    (l->l_flag & LW_SINTR) != 0) {
1049 				/* setrunnable() will release the lock. */
1050 				setrunnable(l);
1051 				continue;
1052 			}
1053 
1054 			lwp_unlock(l);
1055 		}
1056 
1057 		mutex_exit(p->p_lock);
1058 	}
1059 	mutex_exit(proc_lock);
1060 
1061 	/*
1062 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
1063 	 * They'll trap into the kernel and suspend themselves in userret().
1064 	 */
1065 	for (CPU_INFO_FOREACH(cii, ci)) {
1066 		spc_lock(ci);
1067 		cpu_need_resched(ci, RESCHED_IMMED);
1068 		spc_unlock(ci);
1069 	}
1070 }
1071 
1072 /*
1073  * sched_unsleep:
1074  *
1075  *	The is called when the LWP has not been awoken normally but instead
1076  *	interrupted: for example, if the sleep timed out.  Because of this,
1077  *	it's not a valid action for running or idle LWPs.
1078  */
1079 static u_int
1080 sched_unsleep(struct lwp *l, bool cleanup)
1081 {
1082 
1083 	lwp_unlock(l);
1084 	panic("sched_unsleep");
1085 }
1086 
1087 static void
1088 resched_cpu(struct lwp *l)
1089 {
1090 	struct cpu_info *ci = ci = l->l_cpu;
1091 
1092 	KASSERT(lwp_locked(l, NULL));
1093 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1094 		cpu_need_resched(ci, 0);
1095 }
1096 
1097 static void
1098 sched_changepri(struct lwp *l, pri_t pri)
1099 {
1100 
1101 	KASSERT(lwp_locked(l, NULL));
1102 
1103 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1104 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1105 		sched_dequeue(l);
1106 		l->l_priority = pri;
1107 		sched_enqueue(l, false);
1108 	} else {
1109 		l->l_priority = pri;
1110 	}
1111 	resched_cpu(l);
1112 }
1113 
1114 static void
1115 sched_lendpri(struct lwp *l, pri_t pri)
1116 {
1117 
1118 	KASSERT(lwp_locked(l, NULL));
1119 
1120 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1121 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1122 		sched_dequeue(l);
1123 		l->l_inheritedprio = pri;
1124 		sched_enqueue(l, false);
1125 	} else {
1126 		l->l_inheritedprio = pri;
1127 	}
1128 	resched_cpu(l);
1129 }
1130 
1131 struct lwp *
1132 syncobj_noowner(wchan_t wchan)
1133 {
1134 
1135 	return NULL;
1136 }
1137 
1138 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1139 const fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;
1140 
1141 /*
1142  * sched_pstats:
1143  *
1144  * Update process statistics and check CPU resource allocation.
1145  * Call scheduler-specific hook to eventually adjust process/LWP
1146  * priorities.
1147  */
1148 /* ARGSUSED */
1149 void
1150 sched_pstats(void *arg)
1151 {
1152 	const int clkhz = (stathz != 0 ? stathz : hz);
1153 	static bool backwards;
1154 	struct rlimit *rlim;
1155 	struct lwp *l;
1156 	struct proc *p;
1157 	long runtm;
1158 	fixpt_t lpctcpu;
1159 	u_int lcpticks;
1160 	int sig;
1161 
1162 	sched_pstats_ticks++;
1163 
1164 	mutex_enter(proc_lock);
1165 	PROCLIST_FOREACH(p, &allproc) {
1166 		if (__predict_false((p->p_flag & PK_MARKER) != 0))
1167 			continue;
1168 
1169 		/*
1170 		 * Increment time in/out of memory and sleep
1171 		 * time (if sleeping), ignore overflow.
1172 		 */
1173 		mutex_enter(p->p_lock);
1174 		runtm = p->p_rtime.sec;
1175 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1176 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
1177 				continue;
1178 			lwp_lock(l);
1179 			runtm += l->l_rtime.sec;
1180 			l->l_swtime++;
1181 			sched_lwp_stats(l);
1182 			lwp_unlock(l);
1183 
1184 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1185 			if (l->l_slptime != 0)
1186 				continue;
1187 
1188 			lpctcpu = l->l_pctcpu;
1189 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1190 			lpctcpu += ((FSCALE - ccpu) *
1191 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1192 			l->l_pctcpu = lpctcpu;
1193 		}
1194 		/* Calculating p_pctcpu only for ps(1) */
1195 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1196 
1197 		/*
1198 		 * Check if the process exceeds its CPU resource allocation.
1199 		 * If over max, kill it.
1200 		 */
1201 		rlim = &p->p_rlimit[RLIMIT_CPU];
1202 		sig = 0;
1203 		if (__predict_false(runtm >= rlim->rlim_cur)) {
1204 			if (runtm >= rlim->rlim_max)
1205 				sig = SIGKILL;
1206 			else {
1207 				sig = SIGXCPU;
1208 				if (rlim->rlim_cur < rlim->rlim_max)
1209 					rlim->rlim_cur += 5;
1210 			}
1211 		}
1212 		mutex_exit(p->p_lock);
1213 		if (__predict_false(runtm < 0)) {
1214 			if (!backwards) {
1215 				backwards = true;
1216 				printf("WARNING: negative runtime; "
1217 				    "monotonic clock has gone backwards\n");
1218 			}
1219 		} else if (__predict_false(sig)) {
1220 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
1221 			psignal(p, sig);
1222 		}
1223 	}
1224 	mutex_exit(proc_lock);
1225 	uvm_meter();
1226 	cv_wakeup(&lbolt);
1227 	callout_schedule(&sched_pstats_ch, hz);
1228 }
1229