xref: /netbsd-src/sys/kern/kern_subr.c (revision f81322cf185a4db50f71fcf7701f20198272620e)
1 /*	$NetBSD: kern_subr.c,v 1.134 2006/03/13 08:52:07 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Luke Mewburn.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1982, 1986, 1991, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Copyright (c) 1992, 1993
50  *	The Regents of the University of California.  All rights reserved.
51  *
52  * This software was developed by the Computer Systems Engineering group
53  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
54  * contributed to Berkeley.
55  *
56  * All advertising materials mentioning features or use of this software
57  * must display the following acknowledgement:
58  *	This product includes software developed by the University of
59  *	California, Lawrence Berkeley Laboratory.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  * 2. Redistributions in binary form must reproduce the above copyright
67  *    notice, this list of conditions and the following disclaimer in the
68  *    documentation and/or other materials provided with the distribution.
69  * 3. Neither the name of the University nor the names of its contributors
70  *    may be used to endorse or promote products derived from this software
71  *    without specific prior written permission.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83  * SUCH DAMAGE.
84  *
85  *	@(#)kern_subr.c	8.4 (Berkeley) 2/14/95
86  */
87 
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.134 2006/03/13 08:52:07 yamt Exp $");
90 
91 #include "opt_ddb.h"
92 #include "opt_md.h"
93 #include "opt_syscall_debug.h"
94 #include "opt_ktrace.h"
95 #include "opt_systrace.h"
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/proc.h>
100 #include <sys/malloc.h>
101 #include <sys/mount.h>
102 #include <sys/device.h>
103 #include <sys/reboot.h>
104 #include <sys/conf.h>
105 #include <sys/disklabel.h>
106 #include <sys/queue.h>
107 #include <sys/systrace.h>
108 #include <sys/ktrace.h>
109 #include <sys/ptrace.h>
110 #include <sys/fcntl.h>
111 
112 #include <uvm/uvm_extern.h>
113 
114 #include <dev/cons.h>
115 
116 #include <net/if.h>
117 
118 /* XXX these should eventually move to subr_autoconf.c */
119 static struct device *finddevice(const char *);
120 static struct device *getdisk(char *, int, int, dev_t *, int);
121 static struct device *parsedisk(char *, int, int, dev_t *);
122 
123 /*
124  * A generic linear hook.
125  */
126 struct hook_desc {
127 	LIST_ENTRY(hook_desc) hk_list;
128 	void	(*hk_fn)(void *);
129 	void	*hk_arg;
130 };
131 typedef LIST_HEAD(, hook_desc) hook_list_t;
132 
133 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
134 
135 void
136 uio_setup_sysspace(struct uio *uio)
137 {
138 
139 	uio->uio_vmspace = vmspace_kernel();
140 }
141 
142 int
143 uiomove(void *buf, size_t n, struct uio *uio)
144 {
145 	struct vmspace *vm = uio->uio_vmspace;
146 	struct iovec *iov;
147 	u_int cnt;
148 	int error = 0;
149 	char *cp = buf;
150 	int hold_count;
151 
152 	hold_count = KERNEL_LOCK_RELEASE_ALL();
153 
154 #ifdef LOCKDEBUG
155 	spinlock_switchcheck();
156 	simple_lock_only_held(NULL, "uiomove");
157 #endif
158 
159 #ifdef DIAGNOSTIC
160 	if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
161 		panic("uiomove: mode");
162 #endif
163 	while (n > 0 && uio->uio_resid) {
164 		iov = uio->uio_iov;
165 		cnt = iov->iov_len;
166 		if (cnt == 0) {
167 			KASSERT(uio->uio_iovcnt > 0);
168 			uio->uio_iov++;
169 			uio->uio_iovcnt--;
170 			continue;
171 		}
172 		if (cnt > n)
173 			cnt = n;
174 		if (!VMSPACE_IS_KERNEL_P(vm)) {
175 			if (curcpu()->ci_schedstate.spc_flags &
176 			    SPCF_SHOULDYIELD)
177 				preempt(1);
178 		}
179 
180 		if (uio->uio_rw == UIO_READ) {
181 			error = copyout_vmspace(vm, cp, iov->iov_base,
182 			    cnt);
183 		} else {
184 			error = copyin_vmspace(vm, iov->iov_base, cp,
185 			    cnt);
186 		}
187 		if (error) {
188 			break;
189 		}
190 		iov->iov_base = (caddr_t)iov->iov_base + cnt;
191 		iov->iov_len -= cnt;
192 		uio->uio_resid -= cnt;
193 		uio->uio_offset += cnt;
194 		cp += cnt;
195 		KDASSERT(cnt <= n);
196 		n -= cnt;
197 	}
198 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
199 	return (error);
200 }
201 
202 /*
203  * Wrapper for uiomove() that validates the arguments against a known-good
204  * kernel buffer.
205  */
206 int
207 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
208 {
209 	size_t offset;
210 
211 	if (uio->uio_offset < 0 || uio->uio_resid < 0 ||
212 	    (offset = uio->uio_offset) != uio->uio_offset)
213 		return (EINVAL);
214 	if (offset >= buflen)
215 		return (0);
216 	return (uiomove((char *)buf + offset, buflen - offset, uio));
217 }
218 
219 /*
220  * Give next character to user as result of read.
221  */
222 int
223 ureadc(int c, struct uio *uio)
224 {
225 	struct iovec *iov;
226 
227 	if (uio->uio_resid <= 0)
228 		panic("ureadc: non-positive resid");
229 again:
230 	if (uio->uio_iovcnt <= 0)
231 		panic("ureadc: non-positive iovcnt");
232 	iov = uio->uio_iov;
233 	if (iov->iov_len <= 0) {
234 		uio->uio_iovcnt--;
235 		uio->uio_iov++;
236 		goto again;
237 	}
238 	if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
239 		if (subyte(iov->iov_base, c) < 0)
240 			return (EFAULT);
241 	} else {
242 		*(char *)iov->iov_base = c;
243 	}
244 	iov->iov_base = (caddr_t)iov->iov_base + 1;
245 	iov->iov_len--;
246 	uio->uio_resid--;
247 	uio->uio_offset++;
248 	return (0);
249 }
250 
251 /*
252  * Like copyin(), but operates on an arbitrary vmspace.
253  */
254 int
255 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
256 {
257 	struct iovec iov;
258 	struct uio uio;
259 	int error;
260 
261 	if (len == 0)
262 		return (0);
263 
264 	if (VMSPACE_IS_KERNEL_P(vm)) {
265 		return kcopy(uaddr, kaddr, len);
266 	}
267 	if (__predict_true(vm == curproc->p_vmspace)) {
268 		return copyin(uaddr, kaddr, len);
269 	}
270 
271 	iov.iov_base = kaddr;
272 	iov.iov_len = len;
273 	uio.uio_iov = &iov;
274 	uio.uio_iovcnt = 1;
275 	uio.uio_offset = (off_t)(intptr_t)uaddr;
276 	uio.uio_resid = len;
277 	uio.uio_rw = UIO_READ;
278 	UIO_SETUP_SYSSPACE(&uio);
279 	error = uvm_io(&vm->vm_map, &uio);
280 
281 	return (error);
282 }
283 
284 /*
285  * Like copyout(), but operates on an arbitrary vmspace.
286  */
287 int
288 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
289 {
290 	struct iovec iov;
291 	struct uio uio;
292 	int error;
293 
294 	if (len == 0)
295 		return (0);
296 
297 	if (VMSPACE_IS_KERNEL_P(vm)) {
298 		return kcopy(kaddr, uaddr, len);
299 	}
300 	if (__predict_true(vm == curproc->p_vmspace)) {
301 		return copyout(kaddr, uaddr, len);
302 	}
303 
304 	iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
305 	iov.iov_len = len;
306 	uio.uio_iov = &iov;
307 	uio.uio_iovcnt = 1;
308 	uio.uio_offset = (off_t)(intptr_t)uaddr;
309 	uio.uio_resid = len;
310 	uio.uio_rw = UIO_WRITE;
311 	UIO_SETUP_SYSSPACE(&uio);
312 	error = uvm_io(&vm->vm_map, &uio);
313 
314 	return (error);
315 }
316 
317 /*
318  * Like copyin(), but operates on an arbitrary process.
319  */
320 int
321 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
322 {
323 	struct vmspace *vm;
324 	int error;
325 
326 	error = proc_vmspace_getref(p, &vm);
327 	if (error) {
328 		return error;
329 	}
330 	error = copyin_vmspace(vm, uaddr, kaddr, len);
331 	uvmspace_free(vm);
332 
333 	return error;
334 }
335 
336 /*
337  * Like copyout(), but operates on an arbitrary process.
338  */
339 int
340 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
341 {
342 	struct vmspace *vm;
343 	int error;
344 
345 	error = proc_vmspace_getref(p, &vm);
346 	if (error) {
347 		return error;
348 	}
349 	error = copyout_vmspace(vm, kaddr, uaddr, len);
350 	uvmspace_free(vm);
351 
352 	return error;
353 }
354 
355 /*
356  * Like copyin(), except it operates on kernel addresses when the FKIOCTL
357  * flag is passed in `ioctlflags' from the ioctl call.
358  */
359 int
360 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
361 {
362 	if (ioctlflags & FKIOCTL)
363 		return kcopy(src, dst, len);
364 	return copyin(src, dst, len);
365 }
366 
367 /*
368  * Like copyout(), except it operates on kernel addresses when the FKIOCTL
369  * flag is passed in `ioctlflags' from the ioctl call.
370  */
371 int
372 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
373 {
374 	if (ioctlflags & FKIOCTL)
375 		return kcopy(src, dst, len);
376 	return copyout(src, dst, len);
377 }
378 
379 /*
380  * General routine to allocate a hash table.
381  * Allocate enough memory to hold at least `elements' list-head pointers.
382  * Return a pointer to the allocated space and set *hashmask to a pattern
383  * suitable for masking a value to use as an index into the returned array.
384  */
385 void *
386 hashinit(u_int elements, enum hashtype htype, struct malloc_type *mtype,
387     int mflags, u_long *hashmask)
388 {
389 	u_long hashsize, i;
390 	LIST_HEAD(, generic) *hashtbl_list;
391 	TAILQ_HEAD(, generic) *hashtbl_tailq;
392 	size_t esize;
393 	void *p;
394 
395 	if (elements == 0)
396 		panic("hashinit: bad cnt");
397 	for (hashsize = 1; hashsize < elements; hashsize <<= 1)
398 		continue;
399 
400 	switch (htype) {
401 	case HASH_LIST:
402 		esize = sizeof(*hashtbl_list);
403 		break;
404 	case HASH_TAILQ:
405 		esize = sizeof(*hashtbl_tailq);
406 		break;
407 	default:
408 #ifdef DIAGNOSTIC
409 		panic("hashinit: invalid table type");
410 #else
411 		return NULL;
412 #endif
413 	}
414 
415 	if ((p = malloc(hashsize * esize, mtype, mflags)) == NULL)
416 		return (NULL);
417 
418 	switch (htype) {
419 	case HASH_LIST:
420 		hashtbl_list = p;
421 		for (i = 0; i < hashsize; i++)
422 			LIST_INIT(&hashtbl_list[i]);
423 		break;
424 	case HASH_TAILQ:
425 		hashtbl_tailq = p;
426 		for (i = 0; i < hashsize; i++)
427 			TAILQ_INIT(&hashtbl_tailq[i]);
428 		break;
429 	}
430 	*hashmask = hashsize - 1;
431 	return (p);
432 }
433 
434 /*
435  * Free memory from hash table previosly allocated via hashinit().
436  */
437 void
438 hashdone(void *hashtbl, struct malloc_type *mtype)
439 {
440 
441 	free(hashtbl, mtype);
442 }
443 
444 
445 static void *
446 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
447 {
448 	struct hook_desc *hd;
449 
450 	hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
451 	if (hd == NULL)
452 		return (NULL);
453 
454 	hd->hk_fn = fn;
455 	hd->hk_arg = arg;
456 	LIST_INSERT_HEAD(list, hd, hk_list);
457 
458 	return (hd);
459 }
460 
461 static void
462 hook_disestablish(hook_list_t *list, void *vhook)
463 {
464 #ifdef DIAGNOSTIC
465 	struct hook_desc *hd;
466 
467 	LIST_FOREACH(hd, list, hk_list) {
468                 if (hd == vhook)
469 			break;
470 	}
471 
472 	if (hd == NULL)
473 		panic("hook_disestablish: hook %p not established", vhook);
474 #endif
475 	LIST_REMOVE((struct hook_desc *)vhook, hk_list);
476 	free(vhook, M_DEVBUF);
477 }
478 
479 static void
480 hook_destroy(hook_list_t *list)
481 {
482 	struct hook_desc *hd;
483 
484 	while ((hd = LIST_FIRST(list)) != NULL) {
485 		LIST_REMOVE(hd, hk_list);
486 		free(hd, M_DEVBUF);
487 	}
488 }
489 
490 static void
491 hook_proc_run(hook_list_t *list, struct proc *p)
492 {
493 	struct hook_desc *hd;
494 
495 	for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
496 		((void (*)(struct proc *, void *))*hd->hk_fn)(p,
497 		    hd->hk_arg);
498 	}
499 }
500 
501 /*
502  * "Shutdown hook" types, functions, and variables.
503  *
504  * Should be invoked immediately before the
505  * system is halted or rebooted, i.e. after file systems unmounted,
506  * after crash dump done, etc.
507  *
508  * Each shutdown hook is removed from the list before it's run, so that
509  * it won't be run again.
510  */
511 
512 static hook_list_t shutdownhook_list;
513 
514 void *
515 shutdownhook_establish(void (*fn)(void *), void *arg)
516 {
517 	return hook_establish(&shutdownhook_list, fn, arg);
518 }
519 
520 void
521 shutdownhook_disestablish(void *vhook)
522 {
523 	hook_disestablish(&shutdownhook_list, vhook);
524 }
525 
526 /*
527  * Run shutdown hooks.  Should be invoked immediately before the
528  * system is halted or rebooted, i.e. after file systems unmounted,
529  * after crash dump done, etc.
530  *
531  * Each shutdown hook is removed from the list before it's run, so that
532  * it won't be run again.
533  */
534 void
535 doshutdownhooks(void)
536 {
537 	struct hook_desc *dp;
538 
539 	while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
540 		LIST_REMOVE(dp, hk_list);
541 		(*dp->hk_fn)(dp->hk_arg);
542 #if 0
543 		/*
544 		 * Don't bother freeing the hook structure,, since we may
545 		 * be rebooting because of a memory corruption problem,
546 		 * and this might only make things worse.  It doesn't
547 		 * matter, anyway, since the system is just about to
548 		 * reboot.
549 		 */
550 		free(dp, M_DEVBUF);
551 #endif
552 	}
553 }
554 
555 /*
556  * "Mountroot hook" types, functions, and variables.
557  */
558 
559 static hook_list_t mountroothook_list;
560 
561 void *
562 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
563 {
564 	return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
565 }
566 
567 void
568 mountroothook_disestablish(void *vhook)
569 {
570 	hook_disestablish(&mountroothook_list, vhook);
571 }
572 
573 void
574 mountroothook_destroy(void)
575 {
576 	hook_destroy(&mountroothook_list);
577 }
578 
579 void
580 domountroothook(void)
581 {
582 	struct hook_desc *hd;
583 
584 	LIST_FOREACH(hd, &mountroothook_list, hk_list) {
585 		if (hd->hk_arg == (void *)root_device) {
586 			(*hd->hk_fn)(hd->hk_arg);
587 			return;
588 		}
589 	}
590 }
591 
592 static hook_list_t exechook_list;
593 
594 void *
595 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
596 {
597 	return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
598 }
599 
600 void
601 exechook_disestablish(void *vhook)
602 {
603 	hook_disestablish(&exechook_list, vhook);
604 }
605 
606 /*
607  * Run exec hooks.
608  */
609 void
610 doexechooks(struct proc *p)
611 {
612 	hook_proc_run(&exechook_list, p);
613 }
614 
615 static hook_list_t exithook_list;
616 
617 void *
618 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
619 {
620 	return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
621 }
622 
623 void
624 exithook_disestablish(void *vhook)
625 {
626 	hook_disestablish(&exithook_list, vhook);
627 }
628 
629 /*
630  * Run exit hooks.
631  */
632 void
633 doexithooks(struct proc *p)
634 {
635 	hook_proc_run(&exithook_list, p);
636 }
637 
638 static hook_list_t forkhook_list;
639 
640 void *
641 forkhook_establish(void (*fn)(struct proc *, struct proc *))
642 {
643 	return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
644 }
645 
646 void
647 forkhook_disestablish(void *vhook)
648 {
649 	hook_disestablish(&forkhook_list, vhook);
650 }
651 
652 /*
653  * Run fork hooks.
654  */
655 void
656 doforkhooks(struct proc *p2, struct proc *p1)
657 {
658 	struct hook_desc *hd;
659 
660 	LIST_FOREACH(hd, &forkhook_list, hk_list) {
661 		((void (*)(struct proc *, struct proc *))*hd->hk_fn)
662 		    (p2, p1);
663 	}
664 }
665 
666 /*
667  * "Power hook" types, functions, and variables.
668  * The list of power hooks is kept ordered with the last registered hook
669  * first.
670  * When running the hooks on power down the hooks are called in reverse
671  * registration order, when powering up in registration order.
672  */
673 struct powerhook_desc {
674 	CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
675 	void	(*sfd_fn)(int, void *);
676 	void	*sfd_arg;
677 };
678 
679 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
680     CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
681 
682 void *
683 powerhook_establish(void (*fn)(int, void *), void *arg)
684 {
685 	struct powerhook_desc *ndp;
686 
687 	ndp = (struct powerhook_desc *)
688 	    malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
689 	if (ndp == NULL)
690 		return (NULL);
691 
692 	ndp->sfd_fn = fn;
693 	ndp->sfd_arg = arg;
694 	CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
695 
696 	return (ndp);
697 }
698 
699 void
700 powerhook_disestablish(void *vhook)
701 {
702 #ifdef DIAGNOSTIC
703 	struct powerhook_desc *dp;
704 
705 	CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
706                 if (dp == vhook)
707 			goto found;
708 	panic("powerhook_disestablish: hook %p not established", vhook);
709  found:
710 #endif
711 
712 	CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
713 	    sfd_list);
714 	free(vhook, M_DEVBUF);
715 }
716 
717 /*
718  * Run power hooks.
719  */
720 void
721 dopowerhooks(int why)
722 {
723 	struct powerhook_desc *dp;
724 
725 	if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
726 		CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
727 			(*dp->sfd_fn)(why, dp->sfd_arg);
728 		}
729 	} else {
730 		CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
731 			(*dp->sfd_fn)(why, dp->sfd_arg);
732 		}
733 	}
734 }
735 
736 /*
737  * Determine the root device and, if instructed to, the root file system.
738  */
739 
740 #include "md.h"
741 #if NMD == 0
742 #undef MEMORY_DISK_HOOKS
743 #endif
744 
745 #ifdef MEMORY_DISK_HOOKS
746 static struct device fakemdrootdev[NMD];
747 extern struct cfdriver md_cd;
748 #endif
749 
750 #ifdef MEMORY_DISK_IS_ROOT
751 #define BOOT_FROM_MEMORY_HOOKS 1
752 #endif
753 
754 #include "raid.h"
755 #if NRAID == 1
756 #define BOOT_FROM_RAID_HOOKS 1
757 #endif
758 
759 #ifdef BOOT_FROM_RAID_HOOKS
760 extern int numraid;
761 extern struct device *raidrootdev;
762 #endif
763 
764 /*
765  * The device and wedge that we booted from.  If booted_wedge is NULL,
766  * the we might consult booted_partition.
767  */
768 struct device *booted_device;
769 struct device *booted_wedge;
770 int booted_partition;
771 
772 /*
773  * Use partition letters if it's a disk class but not a wedge.
774  * XXX Check for wedge is kinda gross.
775  */
776 #define	DEV_USES_PARTITIONS(dv)						\
777 	(device_class((dv)) == DV_DISK &&				\
778 	 !device_is_a((dv), "dk"))
779 
780 void
781 setroot(struct device *bootdv, int bootpartition)
782 {
783 	struct device *dv;
784 	int len;
785 #ifdef MEMORY_DISK_HOOKS
786 	int i;
787 #endif
788 	dev_t nrootdev;
789 	dev_t ndumpdev = NODEV;
790 	char buf[128];
791 	const char *rootdevname;
792 	const char *dumpdevname;
793 	struct device *rootdv = NULL;		/* XXX gcc -Wuninitialized */
794 	struct device *dumpdv = NULL;
795 	struct ifnet *ifp;
796 	const char *deffsname;
797 	struct vfsops *vops;
798 
799 #ifdef MEMORY_DISK_HOOKS
800 	for (i = 0; i < NMD; i++) {
801 		fakemdrootdev[i].dv_class  = DV_DISK;
802 		fakemdrootdev[i].dv_cfdata = NULL;
803 		fakemdrootdev[i].dv_cfdriver = &md_cd;
804 		fakemdrootdev[i].dv_unit   = i;
805 		fakemdrootdev[i].dv_parent = NULL;
806 		snprintf(fakemdrootdev[i].dv_xname,
807 		    sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
808 	}
809 #endif /* MEMORY_DISK_HOOKS */
810 
811 #ifdef MEMORY_DISK_IS_ROOT
812 	bootdv = &fakemdrootdev[0];
813 	bootpartition = 0;
814 #endif
815 
816 	/*
817 	 * If NFS is specified as the file system, and we found
818 	 * a DV_DISK boot device (or no boot device at all), then
819 	 * find a reasonable network interface for "rootspec".
820 	 */
821 	vops = vfs_getopsbyname("nfs");
822 	if (vops != NULL && vops->vfs_mountroot == mountroot &&
823 	    rootspec == NULL &&
824 	    (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
825 		IFNET_FOREACH(ifp) {
826 			if ((ifp->if_flags &
827 			     (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
828 				break;
829 		}
830 		if (ifp == NULL) {
831 			/*
832 			 * Can't find a suitable interface; ask the
833 			 * user.
834 			 */
835 			boothowto |= RB_ASKNAME;
836 		} else {
837 			/*
838 			 * Have a suitable interface; behave as if
839 			 * the user specified this interface.
840 			 */
841 			rootspec = (const char *)ifp->if_xname;
842 		}
843 	}
844 
845 	/*
846 	 * If wildcarded root and we the boot device wasn't determined,
847 	 * ask the user.
848 	 */
849 	if (rootspec == NULL && bootdv == NULL)
850 		boothowto |= RB_ASKNAME;
851 
852  top:
853 	if (boothowto & RB_ASKNAME) {
854 		struct device *defdumpdv;
855 
856 		for (;;) {
857 			printf("root device");
858 			if (bootdv != NULL) {
859 				printf(" (default %s", bootdv->dv_xname);
860 				if (DEV_USES_PARTITIONS(bootdv))
861 					printf("%c", bootpartition + 'a');
862 				printf(")");
863 			}
864 			printf(": ");
865 			len = cngetsn(buf, sizeof(buf));
866 			if (len == 0 && bootdv != NULL) {
867 				strlcpy(buf, bootdv->dv_xname, sizeof(buf));
868 				len = strlen(buf);
869 			}
870 			if (len > 0 && buf[len - 1] == '*') {
871 				buf[--len] = '\0';
872 				dv = getdisk(buf, len, 1, &nrootdev, 0);
873 				if (dv != NULL) {
874 					rootdv = dv;
875 					break;
876 				}
877 			}
878 			dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
879 			if (dv != NULL) {
880 				rootdv = dv;
881 				break;
882 			}
883 		}
884 
885 		/*
886 		 * Set up the default dump device.  If root is on
887 		 * a network device, there is no default dump
888 		 * device, since we don't support dumps to the
889 		 * network.
890 		 */
891 		if (DEV_USES_PARTITIONS(rootdv) == 0)
892 			defdumpdv = NULL;
893 		else
894 			defdumpdv = rootdv;
895 
896 		for (;;) {
897 			printf("dump device");
898 			if (defdumpdv != NULL) {
899 				/*
900 				 * Note, we know it's a disk if we get here.
901 				 */
902 				printf(" (default %sb)", defdumpdv->dv_xname);
903 			}
904 			printf(": ");
905 			len = cngetsn(buf, sizeof(buf));
906 			if (len == 0) {
907 				if (defdumpdv != NULL) {
908 					ndumpdev = MAKEDISKDEV(major(nrootdev),
909 					    DISKUNIT(nrootdev), 1);
910 				}
911 				dumpdv = defdumpdv;
912 				break;
913 			}
914 			if (len == 4 && strcmp(buf, "none") == 0) {
915 				dumpdv = NULL;
916 				break;
917 			}
918 			dv = getdisk(buf, len, 1, &ndumpdev, 1);
919 			if (dv != NULL) {
920 				dumpdv = dv;
921 				break;
922 			}
923 		}
924 
925 		rootdev = nrootdev;
926 		dumpdev = ndumpdev;
927 
928 		for (vops = LIST_FIRST(&vfs_list); vops != NULL;
929 		     vops = LIST_NEXT(vops, vfs_list)) {
930 			if (vops->vfs_mountroot != NULL &&
931 			    vops->vfs_mountroot == mountroot)
932 			break;
933 		}
934 
935 		if (vops == NULL) {
936 			mountroot = NULL;
937 			deffsname = "generic";
938 		} else
939 			deffsname = vops->vfs_name;
940 
941 		for (;;) {
942 			printf("file system (default %s): ", deffsname);
943 			len = cngetsn(buf, sizeof(buf));
944 			if (len == 0)
945 				break;
946 			if (len == 4 && strcmp(buf, "halt") == 0)
947 				cpu_reboot(RB_HALT, NULL);
948 			else if (len == 6 && strcmp(buf, "reboot") == 0)
949 				cpu_reboot(0, NULL);
950 #if defined(DDB)
951 			else if (len == 3 && strcmp(buf, "ddb") == 0) {
952 				console_debugger();
953 			}
954 #endif
955 			else if (len == 7 && strcmp(buf, "generic") == 0) {
956 				mountroot = NULL;
957 				break;
958 			}
959 			vops = vfs_getopsbyname(buf);
960 			if (vops == NULL || vops->vfs_mountroot == NULL) {
961 				printf("use one of: generic");
962 				for (vops = LIST_FIRST(&vfs_list);
963 				     vops != NULL;
964 				     vops = LIST_NEXT(vops, vfs_list)) {
965 					if (vops->vfs_mountroot != NULL)
966 						printf(" %s", vops->vfs_name);
967 				}
968 #if defined(DDB)
969 				printf(" ddb");
970 #endif
971 				printf(" halt reboot\n");
972 			} else {
973 				mountroot = vops->vfs_mountroot;
974 				break;
975 			}
976 		}
977 
978 	} else if (rootspec == NULL) {
979 		int majdev;
980 
981 		/*
982 		 * Wildcarded root; use the boot device.
983 		 */
984 		rootdv = bootdv;
985 
986 		majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
987 		if (majdev >= 0) {
988 			/*
989 			 * Root is on a disk.  `bootpartition' is root,
990 			 * unless the device does not use partitions.
991 			 */
992 			if (DEV_USES_PARTITIONS(bootdv))
993 				rootdev = MAKEDISKDEV(majdev, bootdv->dv_unit,
994 				    bootpartition);
995 			else
996 				rootdev = makedev(majdev, bootdv->dv_unit);
997 		}
998 	} else {
999 
1000 		/*
1001 		 * `root on <dev> ...'
1002 		 */
1003 
1004 		/*
1005 		 * If it's a network interface, we can bail out
1006 		 * early.
1007 		 */
1008 		dv = finddevice(rootspec);
1009 		if (dv != NULL && device_class(dv) == DV_IFNET) {
1010 			rootdv = dv;
1011 			goto haveroot;
1012 		}
1013 
1014 		rootdevname = devsw_blk2name(major(rootdev));
1015 		if (rootdevname == NULL) {
1016 			printf("unknown device major 0x%x\n", rootdev);
1017 			boothowto |= RB_ASKNAME;
1018 			goto top;
1019 		}
1020 		memset(buf, 0, sizeof(buf));
1021 		snprintf(buf, sizeof(buf), "%s%d", rootdevname,
1022 		    DISKUNIT(rootdev));
1023 
1024 		rootdv = finddevice(buf);
1025 		if (rootdv == NULL) {
1026 			printf("device %s (0x%x) not configured\n",
1027 			    buf, rootdev);
1028 			boothowto |= RB_ASKNAME;
1029 			goto top;
1030 		}
1031 	}
1032 
1033  haveroot:
1034 
1035 	root_device = rootdv;
1036 
1037 	switch (device_class(rootdv)) {
1038 	case DV_IFNET:
1039 		aprint_normal("root on %s", rootdv->dv_xname);
1040 		break;
1041 
1042 	case DV_DISK:
1043 		aprint_normal("root on %s%c", rootdv->dv_xname,
1044 		    DISKPART(rootdev) + 'a');
1045 		break;
1046 
1047 	default:
1048 		printf("can't determine root device\n");
1049 		boothowto |= RB_ASKNAME;
1050 		goto top;
1051 	}
1052 
1053 	/*
1054 	 * Now configure the dump device.
1055 	 *
1056 	 * If we haven't figured out the dump device, do so, with
1057 	 * the following rules:
1058 	 *
1059 	 *	(a) We already know dumpdv in the RB_ASKNAME case.
1060 	 *
1061 	 *	(b) If dumpspec is set, try to use it.  If the device
1062 	 *	    is not available, punt.
1063 	 *
1064 	 *	(c) If dumpspec is not set, the dump device is
1065 	 *	    wildcarded or unspecified.  If the root device
1066 	 *	    is DV_IFNET, punt.  Otherwise, use partition b
1067 	 *	    of the root device.
1068 	 */
1069 
1070 	if (boothowto & RB_ASKNAME) {		/* (a) */
1071 		if (dumpdv == NULL)
1072 			goto nodumpdev;
1073 	} else if (dumpspec != NULL) {		/* (b) */
1074 		if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
1075 			/*
1076 			 * Operator doesn't want a dump device.
1077 			 * Or looks like they tried to pick a network
1078 			 * device.  Oops.
1079 			 */
1080 			goto nodumpdev;
1081 		}
1082 
1083 		dumpdevname = devsw_blk2name(major(dumpdev));
1084 		if (dumpdevname == NULL)
1085 			goto nodumpdev;
1086 		memset(buf, 0, sizeof(buf));
1087 		snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
1088 		    DISKUNIT(dumpdev));
1089 
1090 		dumpdv = finddevice(buf);
1091 		if (dumpdv == NULL) {
1092 			/*
1093 			 * Device not configured.
1094 			 */
1095 			goto nodumpdev;
1096 		}
1097 	} else {				/* (c) */
1098 		if (DEV_USES_PARTITIONS(rootdv) == 0)
1099 			goto nodumpdev;
1100 		else {
1101 			dumpdv = rootdv;
1102 			dumpdev = MAKEDISKDEV(major(rootdev),
1103 			    dumpdv->dv_unit, 1);
1104 		}
1105 	}
1106 
1107 	aprint_normal(" dumps on %s%c\n", dumpdv->dv_xname,
1108 	    DISKPART(dumpdev) + 'a');
1109 	return;
1110 
1111  nodumpdev:
1112 	dumpdev = NODEV;
1113 	aprint_normal("\n");
1114 }
1115 
1116 static struct device *
1117 finddevice(const char *name)
1118 {
1119 	struct device *dv;
1120 #if defined(BOOT_FROM_RAID_HOOKS) || defined(BOOT_FROM_MEMORY_HOOKS)
1121 	int j;
1122 #endif /* BOOT_FROM_RAID_HOOKS || BOOT_FROM_MEMORY_HOOKS */
1123 
1124 #ifdef BOOT_FROM_RAID_HOOKS
1125 	for (j = 0; j < numraid; j++) {
1126 		if (strcmp(name, raidrootdev[j].dv_xname) == 0) {
1127 			dv = &raidrootdev[j];
1128 			return (dv);
1129 		}
1130 	}
1131 #endif /* BOOT_FROM_RAID_HOOKS */
1132 
1133 #ifdef BOOT_FROM_MEMORY_HOOKS
1134 	for (j = 0; j < NMD; j++) {
1135 		if (strcmp(name, fakemdrootdev[j].dv_xname) == 0) {
1136 			dv = &fakemdrootdev[j];
1137 			return (dv);
1138 		}
1139 	}
1140 #endif /* BOOT_FROM_MEMORY_HOOKS */
1141 
1142 	for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
1143 	    dv = TAILQ_NEXT(dv, dv_list))
1144 		if (strcmp(dv->dv_xname, name) == 0)
1145 			break;
1146 	return (dv);
1147 }
1148 
1149 static struct device *
1150 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
1151 {
1152 	struct device	*dv;
1153 #ifdef MEMORY_DISK_HOOKS
1154 	int		i;
1155 #endif
1156 #ifdef BOOT_FROM_RAID_HOOKS
1157 	int 		j;
1158 #endif
1159 
1160 	if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
1161 		printf("use one of:");
1162 #ifdef MEMORY_DISK_HOOKS
1163 		if (isdump == 0)
1164 			for (i = 0; i < NMD; i++)
1165 				printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
1166 				    'a' + MAXPARTITIONS - 1);
1167 #endif
1168 #ifdef BOOT_FROM_RAID_HOOKS
1169 		if (isdump == 0)
1170 			for (j = 0; j < numraid; j++)
1171 				printf(" %s[a-%c]", raidrootdev[j].dv_xname,
1172 				    'a' + MAXPARTITIONS - 1);
1173 #endif
1174 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
1175 			if (DEV_USES_PARTITIONS(dv))
1176 				printf(" %s[a-%c]", dv->dv_xname,
1177 				    'a' + MAXPARTITIONS - 1);
1178 			else if (device_class(dv) == DV_DISK)
1179 				printf(" %s", dv->dv_xname);
1180 			if (isdump == 0 && device_class(dv) == DV_IFNET)
1181 				printf(" %s", dv->dv_xname);
1182 		}
1183 		if (isdump)
1184 			printf(" none");
1185 #if defined(DDB)
1186 		printf(" ddb");
1187 #endif
1188 		printf(" halt reboot\n");
1189 	}
1190 	return (dv);
1191 }
1192 
1193 static struct device *
1194 parsedisk(char *str, int len, int defpart, dev_t *devp)
1195 {
1196 	struct device *dv;
1197 	char *cp, c;
1198 	int majdev, part;
1199 #ifdef MEMORY_DISK_HOOKS
1200 	int i;
1201 #endif
1202 	if (len == 0)
1203 		return (NULL);
1204 
1205 	if (len == 4 && strcmp(str, "halt") == 0)
1206 		cpu_reboot(RB_HALT, NULL);
1207 	else if (len == 6 && strcmp(str, "reboot") == 0)
1208 		cpu_reboot(0, NULL);
1209 #if defined(DDB)
1210 	else if (len == 3 && strcmp(str, "ddb") == 0)
1211 		console_debugger();
1212 #endif
1213 
1214 	cp = str + len - 1;
1215 	c = *cp;
1216 	if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
1217 		part = c - 'a';
1218 		*cp = '\0';
1219 	} else
1220 		part = defpart;
1221 
1222 #ifdef MEMORY_DISK_HOOKS
1223 	for (i = 0; i < NMD; i++)
1224 		if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
1225 			dv = &fakemdrootdev[i];
1226 			goto gotdisk;
1227 		}
1228 #endif
1229 
1230 	dv = finddevice(str);
1231 	if (dv != NULL) {
1232 		if (device_class(dv) == DV_DISK) {
1233 #ifdef MEMORY_DISK_HOOKS
1234  gotdisk:
1235 #endif
1236 			majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
1237 			if (majdev < 0)
1238 				panic("parsedisk");
1239 			if (DEV_USES_PARTITIONS(dv))
1240 				*devp = MAKEDISKDEV(majdev, dv->dv_unit, part);
1241 			else
1242 				*devp = makedev(majdev, dv->dv_unit);
1243 		}
1244 
1245 		if (device_class(dv) == DV_IFNET)
1246 			*devp = NODEV;
1247 	}
1248 
1249 	*cp = c;
1250 	return (dv);
1251 }
1252 
1253 /*
1254  * snprintf() `bytes' into `buf', reformatting it so that the number,
1255  * plus a possible `x' + suffix extension) fits into len bytes (including
1256  * the terminating NUL).
1257  * Returns the number of bytes stored in buf, or -1 if there was a problem.
1258  * E.g, given a len of 9 and a suffix of `B':
1259  *	bytes		result
1260  *	-----		------
1261  *	99999		`99999 B'
1262  *	100000		`97 kB'
1263  *	66715648	`65152 kB'
1264  *	252215296	`240 MB'
1265  */
1266 int
1267 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
1268     int divisor)
1269 {
1270        	/* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
1271 	const char *prefixes;
1272 	int		r;
1273 	uint64_t	umax;
1274 	size_t		i, suffixlen;
1275 
1276 	if (buf == NULL || suffix == NULL)
1277 		return (-1);
1278 	if (len > 0)
1279 		buf[0] = '\0';
1280 	suffixlen = strlen(suffix);
1281 	/* check if enough room for `x y' + suffix + `\0' */
1282 	if (len < 4 + suffixlen)
1283 		return (-1);
1284 
1285 	if (divisor == 1024) {
1286 		/*
1287 		 * binary multiplies
1288 		 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
1289 		 */
1290 		prefixes = " KMGTPE";
1291 	} else
1292 		prefixes = " kMGTPE"; /* SI for decimal multiplies */
1293 
1294 	umax = 1;
1295 	for (i = 0; i < len - suffixlen - 3; i++)
1296 		umax *= 10;
1297 	for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
1298 		bytes /= divisor;
1299 
1300 	r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
1301 	    i == 0 ? "" : " ", prefixes[i], suffix);
1302 
1303 	return (r);
1304 }
1305 
1306 int
1307 format_bytes(char *buf, size_t len, uint64_t bytes)
1308 {
1309 	int	rv;
1310 	size_t	nlen;
1311 
1312 	rv = humanize_number(buf, len, bytes, "B", 1024);
1313 	if (rv != -1) {
1314 			/* nuke the trailing ` B' if it exists */
1315 		nlen = strlen(buf) - 2;
1316 		if (strcmp(&buf[nlen], " B") == 0)
1317 			buf[nlen] = '\0';
1318 	}
1319 	return (rv);
1320 }
1321 
1322 /*
1323  * Return TRUE if system call tracing is enabled for the specified process.
1324  */
1325 boolean_t
1326 trace_is_enabled(struct proc *p)
1327 {
1328 #ifdef SYSCALL_DEBUG
1329 	return (TRUE);
1330 #endif
1331 #ifdef KTRACE
1332 	if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
1333 		return (TRUE);
1334 #endif
1335 #ifdef SYSTRACE
1336 	if (ISSET(p->p_flag, P_SYSTRACE))
1337 		return (TRUE);
1338 #endif
1339 	if (ISSET(p->p_flag, P_SYSCALL))
1340 		return (TRUE);
1341 
1342 	return (FALSE);
1343 }
1344 
1345 /*
1346  * Start trace of particular system call. If process is being traced,
1347  * this routine is called by MD syscall dispatch code just before
1348  * a system call is actually executed.
1349  * MD caller guarantees the passed 'code' is within the supported
1350  * system call number range for emulation the process runs under.
1351  */
1352 int
1353 trace_enter(struct lwp *l, register_t code,
1354     register_t realcode, const struct sysent *callp, void *args)
1355 {
1356 	struct proc *p = l->l_proc;
1357 
1358 #ifdef SYSCALL_DEBUG
1359 	scdebug_call(l, code, args);
1360 #endif /* SYSCALL_DEBUG */
1361 
1362 #ifdef KTRACE
1363 	if (KTRPOINT(p, KTR_SYSCALL))
1364 		ktrsyscall(l, code, realcode, callp, args);
1365 #endif /* KTRACE */
1366 
1367 	if ((p->p_flag & (P_SYSCALL|P_TRACED)) == (P_SYSCALL|P_TRACED))
1368 		process_stoptrace(l);
1369 
1370 #ifdef SYSTRACE
1371 	if (ISSET(p->p_flag, P_SYSTRACE))
1372 		return systrace_enter(p, code, args);
1373 #endif
1374 	return 0;
1375 }
1376 
1377 /*
1378  * End trace of particular system call. If process is being traced,
1379  * this routine is called by MD syscall dispatch code just after
1380  * a system call finishes.
1381  * MD caller guarantees the passed 'code' is within the supported
1382  * system call number range for emulation the process runs under.
1383  */
1384 void
1385 trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
1386     int error)
1387 {
1388 	struct proc *p = l->l_proc;
1389 
1390 #ifdef SYSCALL_DEBUG
1391 	scdebug_ret(l, code, error, rval);
1392 #endif /* SYSCALL_DEBUG */
1393 
1394 #ifdef KTRACE
1395 	if (KTRPOINT(p, KTR_SYSRET)) {
1396 		KERNEL_PROC_LOCK(l);
1397 		ktrsysret(l, code, error, rval);
1398 		KERNEL_PROC_UNLOCK(l);
1399 	}
1400 #endif /* KTRACE */
1401 
1402 	if ((p->p_flag & (P_SYSCALL|P_TRACED)) == (P_SYSCALL|P_TRACED))
1403 		process_stoptrace(l);
1404 
1405 #ifdef SYSTRACE
1406 	if (ISSET(p->p_flag, P_SYSTRACE)) {
1407 		KERNEL_PROC_LOCK(l);
1408 		systrace_exit(p, code, args, rval, error);
1409 		KERNEL_PROC_UNLOCK(l);
1410 	}
1411 #endif
1412 }
1413