xref: /netbsd-src/sys/kern/kern_subr.c (revision da9817918ec7e88db2912a2882967c7570a83f47)
1 /*	$NetBSD: kern_subr.c,v 1.199 2009/04/02 17:25:24 drochner Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2002, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Luke Mewburn.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Copyright (c) 1992, 1993
43  *	The Regents of the University of California.  All rights reserved.
44  *
45  * This software was developed by the Computer Systems Engineering group
46  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
47  * contributed to Berkeley.
48  *
49  * All advertising materials mentioning features or use of this software
50  * must display the following acknowledgement:
51  *	This product includes software developed by the University of
52  *	California, Lawrence Berkeley Laboratory.
53  *
54  * Redistribution and use in source and binary forms, with or without
55  * modification, are permitted provided that the following conditions
56  * are met:
57  * 1. Redistributions of source code must retain the above copyright
58  *    notice, this list of conditions and the following disclaimer.
59  * 2. Redistributions in binary form must reproduce the above copyright
60  *    notice, this list of conditions and the following disclaimer in the
61  *    documentation and/or other materials provided with the distribution.
62  * 3. Neither the name of the University nor the names of its contributors
63  *    may be used to endorse or promote products derived from this software
64  *    without specific prior written permission.
65  *
66  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
67  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
68  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
69  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
70  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
74  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
75  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
76  * SUCH DAMAGE.
77  *
78  *	@(#)kern_subr.c	8.4 (Berkeley) 2/14/95
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.199 2009/04/02 17:25:24 drochner Exp $");
83 
84 #include "opt_ddb.h"
85 #include "opt_md.h"
86 #include "opt_syscall_debug.h"
87 #include "opt_ktrace.h"
88 #include "opt_ptrace.h"
89 #include "opt_powerhook.h"
90 #include "opt_tftproot.h"
91 
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/proc.h>
95 #include <sys/malloc.h>
96 #include <sys/mount.h>
97 #include <sys/device.h>
98 #include <sys/reboot.h>
99 #include <sys/conf.h>
100 #include <sys/disk.h>
101 #include <sys/disklabel.h>
102 #include <sys/queue.h>
103 #include <sys/ktrace.h>
104 #include <sys/ptrace.h>
105 #include <sys/fcntl.h>
106 #include <sys/kauth.h>
107 #include <sys/vnode.h>
108 #include <sys/syscallvar.h>
109 #include <sys/xcall.h>
110 #include <sys/module.h>
111 
112 #include <uvm/uvm_extern.h>
113 
114 #include <dev/cons.h>
115 
116 #include <net/if.h>
117 
118 /* XXX these should eventually move to subr_autoconf.c */
119 static struct device *finddevice(const char *);
120 static struct device *getdisk(char *, int, int, dev_t *, int);
121 static struct device *parsedisk(char *, int, int, dev_t *);
122 static const char *getwedgename(const char *, int);
123 
124 /*
125  * A generic linear hook.
126  */
127 struct hook_desc {
128 	LIST_ENTRY(hook_desc) hk_list;
129 	void	(*hk_fn)(void *);
130 	void	*hk_arg;
131 };
132 typedef LIST_HEAD(, hook_desc) hook_list_t;
133 
134 #ifdef TFTPROOT
135 int tftproot_dhcpboot(struct device *);
136 #endif
137 
138 dev_t	dumpcdev;	/* for savecore */
139 
140 void
141 uio_setup_sysspace(struct uio *uio)
142 {
143 
144 	uio->uio_vmspace = vmspace_kernel();
145 }
146 
147 int
148 uiomove(void *buf, size_t n, struct uio *uio)
149 {
150 	struct vmspace *vm = uio->uio_vmspace;
151 	struct iovec *iov;
152 	size_t cnt;
153 	int error = 0;
154 	char *cp = buf;
155 
156 	ASSERT_SLEEPABLE();
157 
158 #ifdef DIAGNOSTIC
159 	if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
160 		panic("uiomove: mode");
161 #endif
162 	while (n > 0 && uio->uio_resid) {
163 		iov = uio->uio_iov;
164 		cnt = iov->iov_len;
165 		if (cnt == 0) {
166 			KASSERT(uio->uio_iovcnt > 0);
167 			uio->uio_iov++;
168 			uio->uio_iovcnt--;
169 			continue;
170 		}
171 		if (cnt > n)
172 			cnt = n;
173 		if (!VMSPACE_IS_KERNEL_P(vm)) {
174 			if (curcpu()->ci_schedstate.spc_flags &
175 			    SPCF_SHOULDYIELD)
176 				preempt();
177 		}
178 
179 		if (uio->uio_rw == UIO_READ) {
180 			error = copyout_vmspace(vm, cp, iov->iov_base,
181 			    cnt);
182 		} else {
183 			error = copyin_vmspace(vm, iov->iov_base, cp,
184 			    cnt);
185 		}
186 		if (error) {
187 			break;
188 		}
189 		iov->iov_base = (char *)iov->iov_base + cnt;
190 		iov->iov_len -= cnt;
191 		uio->uio_resid -= cnt;
192 		uio->uio_offset += cnt;
193 		cp += cnt;
194 		KDASSERT(cnt <= n);
195 		n -= cnt;
196 	}
197 
198 	return (error);
199 }
200 
201 /*
202  * Wrapper for uiomove() that validates the arguments against a known-good
203  * kernel buffer.
204  */
205 int
206 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
207 {
208 	size_t offset;
209 
210 	if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
211 	    (offset = uio->uio_offset) != uio->uio_offset)
212 		return (EINVAL);
213 	if (offset >= buflen)
214 		return (0);
215 	return (uiomove((char *)buf + offset, buflen - offset, uio));
216 }
217 
218 /*
219  * Give next character to user as result of read.
220  */
221 int
222 ureadc(int c, struct uio *uio)
223 {
224 	struct iovec *iov;
225 
226 	if (uio->uio_resid <= 0)
227 		panic("ureadc: non-positive resid");
228 again:
229 	if (uio->uio_iovcnt <= 0)
230 		panic("ureadc: non-positive iovcnt");
231 	iov = uio->uio_iov;
232 	if (iov->iov_len <= 0) {
233 		uio->uio_iovcnt--;
234 		uio->uio_iov++;
235 		goto again;
236 	}
237 	if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
238 		if (subyte(iov->iov_base, c) < 0)
239 			return (EFAULT);
240 	} else {
241 		*(char *)iov->iov_base = c;
242 	}
243 	iov->iov_base = (char *)iov->iov_base + 1;
244 	iov->iov_len--;
245 	uio->uio_resid--;
246 	uio->uio_offset++;
247 	return (0);
248 }
249 
250 /*
251  * Like copyin(), but operates on an arbitrary vmspace.
252  */
253 int
254 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
255 {
256 	struct iovec iov;
257 	struct uio uio;
258 	int error;
259 
260 	if (len == 0)
261 		return (0);
262 
263 	if (VMSPACE_IS_KERNEL_P(vm)) {
264 		return kcopy(uaddr, kaddr, len);
265 	}
266 	if (__predict_true(vm == curproc->p_vmspace)) {
267 		return copyin(uaddr, kaddr, len);
268 	}
269 
270 	iov.iov_base = kaddr;
271 	iov.iov_len = len;
272 	uio.uio_iov = &iov;
273 	uio.uio_iovcnt = 1;
274 	uio.uio_offset = (off_t)(uintptr_t)uaddr;
275 	uio.uio_resid = len;
276 	uio.uio_rw = UIO_READ;
277 	UIO_SETUP_SYSSPACE(&uio);
278 	error = uvm_io(&vm->vm_map, &uio);
279 
280 	return (error);
281 }
282 
283 /*
284  * Like copyout(), but operates on an arbitrary vmspace.
285  */
286 int
287 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
288 {
289 	struct iovec iov;
290 	struct uio uio;
291 	int error;
292 
293 	if (len == 0)
294 		return (0);
295 
296 	if (VMSPACE_IS_KERNEL_P(vm)) {
297 		return kcopy(kaddr, uaddr, len);
298 	}
299 	if (__predict_true(vm == curproc->p_vmspace)) {
300 		return copyout(kaddr, uaddr, len);
301 	}
302 
303 	iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
304 	iov.iov_len = len;
305 	uio.uio_iov = &iov;
306 	uio.uio_iovcnt = 1;
307 	uio.uio_offset = (off_t)(uintptr_t)uaddr;
308 	uio.uio_resid = len;
309 	uio.uio_rw = UIO_WRITE;
310 	UIO_SETUP_SYSSPACE(&uio);
311 	error = uvm_io(&vm->vm_map, &uio);
312 
313 	return (error);
314 }
315 
316 /*
317  * Like copyin(), but operates on an arbitrary process.
318  */
319 int
320 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
321 {
322 	struct vmspace *vm;
323 	int error;
324 
325 	error = proc_vmspace_getref(p, &vm);
326 	if (error) {
327 		return error;
328 	}
329 	error = copyin_vmspace(vm, uaddr, kaddr, len);
330 	uvmspace_free(vm);
331 
332 	return error;
333 }
334 
335 /*
336  * Like copyout(), but operates on an arbitrary process.
337  */
338 int
339 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
340 {
341 	struct vmspace *vm;
342 	int error;
343 
344 	error = proc_vmspace_getref(p, &vm);
345 	if (error) {
346 		return error;
347 	}
348 	error = copyout_vmspace(vm, kaddr, uaddr, len);
349 	uvmspace_free(vm);
350 
351 	return error;
352 }
353 
354 /*
355  * Like copyin(), except it operates on kernel addresses when the FKIOCTL
356  * flag is passed in `ioctlflags' from the ioctl call.
357  */
358 int
359 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
360 {
361 	if (ioctlflags & FKIOCTL)
362 		return kcopy(src, dst, len);
363 	return copyin(src, dst, len);
364 }
365 
366 /*
367  * Like copyout(), except it operates on kernel addresses when the FKIOCTL
368  * flag is passed in `ioctlflags' from the ioctl call.
369  */
370 int
371 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
372 {
373 	if (ioctlflags & FKIOCTL)
374 		return kcopy(src, dst, len);
375 	return copyout(src, dst, len);
376 }
377 
378 static void *
379 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
380 {
381 	struct hook_desc *hd;
382 
383 	hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
384 	if (hd == NULL)
385 		return (NULL);
386 
387 	hd->hk_fn = fn;
388 	hd->hk_arg = arg;
389 	LIST_INSERT_HEAD(list, hd, hk_list);
390 
391 	return (hd);
392 }
393 
394 static void
395 hook_disestablish(hook_list_t *list, void *vhook)
396 {
397 #ifdef DIAGNOSTIC
398 	struct hook_desc *hd;
399 
400 	LIST_FOREACH(hd, list, hk_list) {
401                 if (hd == vhook)
402 			break;
403 	}
404 
405 	if (hd == NULL)
406 		panic("hook_disestablish: hook %p not established", vhook);
407 #endif
408 	LIST_REMOVE((struct hook_desc *)vhook, hk_list);
409 	free(vhook, M_DEVBUF);
410 }
411 
412 static void
413 hook_destroy(hook_list_t *list)
414 {
415 	struct hook_desc *hd;
416 
417 	while ((hd = LIST_FIRST(list)) != NULL) {
418 		LIST_REMOVE(hd, hk_list);
419 		free(hd, M_DEVBUF);
420 	}
421 }
422 
423 static void
424 hook_proc_run(hook_list_t *list, struct proc *p)
425 {
426 	struct hook_desc *hd;
427 
428 	LIST_FOREACH(hd, list, hk_list)
429 		((void (*)(struct proc *, void *))*hd->hk_fn)(p, hd->hk_arg);
430 }
431 
432 /*
433  * "Shutdown hook" types, functions, and variables.
434  *
435  * Should be invoked immediately before the
436  * system is halted or rebooted, i.e. after file systems unmounted,
437  * after crash dump done, etc.
438  *
439  * Each shutdown hook is removed from the list before it's run, so that
440  * it won't be run again.
441  */
442 
443 static hook_list_t shutdownhook_list;
444 
445 void *
446 shutdownhook_establish(void (*fn)(void *), void *arg)
447 {
448 	return hook_establish(&shutdownhook_list, fn, arg);
449 }
450 
451 void
452 shutdownhook_disestablish(void *vhook)
453 {
454 	hook_disestablish(&shutdownhook_list, vhook);
455 }
456 
457 /*
458  * Run shutdown hooks.  Should be invoked immediately before the
459  * system is halted or rebooted, i.e. after file systems unmounted,
460  * after crash dump done, etc.
461  *
462  * Each shutdown hook is removed from the list before it's run, so that
463  * it won't be run again.
464  */
465 void
466 doshutdownhooks(void)
467 {
468 	struct hook_desc *dp;
469 
470 	while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
471 		LIST_REMOVE(dp, hk_list);
472 		(*dp->hk_fn)(dp->hk_arg);
473 #if 0
474 		/*
475 		 * Don't bother freeing the hook structure,, since we may
476 		 * be rebooting because of a memory corruption problem,
477 		 * and this might only make things worse.  It doesn't
478 		 * matter, anyway, since the system is just about to
479 		 * reboot.
480 		 */
481 		free(dp, M_DEVBUF);
482 #endif
483 	}
484 }
485 
486 /*
487  * "Mountroot hook" types, functions, and variables.
488  */
489 
490 static hook_list_t mountroothook_list;
491 
492 void *
493 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
494 {
495 	return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
496 }
497 
498 void
499 mountroothook_disestablish(void *vhook)
500 {
501 	hook_disestablish(&mountroothook_list, vhook);
502 }
503 
504 void
505 mountroothook_destroy(void)
506 {
507 	hook_destroy(&mountroothook_list);
508 }
509 
510 void
511 domountroothook(void)
512 {
513 	struct hook_desc *hd;
514 
515 	LIST_FOREACH(hd, &mountroothook_list, hk_list) {
516 		if (hd->hk_arg == (void *)root_device) {
517 			(*hd->hk_fn)(hd->hk_arg);
518 			return;
519 		}
520 	}
521 }
522 
523 static hook_list_t exechook_list;
524 
525 void *
526 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
527 {
528 	return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
529 }
530 
531 void
532 exechook_disestablish(void *vhook)
533 {
534 	hook_disestablish(&exechook_list, vhook);
535 }
536 
537 /*
538  * Run exec hooks.
539  */
540 void
541 doexechooks(struct proc *p)
542 {
543 	hook_proc_run(&exechook_list, p);
544 }
545 
546 static hook_list_t exithook_list;
547 extern krwlock_t exec_lock;
548 
549 void *
550 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
551 {
552 	void *rv;
553 
554 	rw_enter(&exec_lock, RW_WRITER);
555 	rv = hook_establish(&exithook_list, (void (*)(void *))fn, arg);
556 	rw_exit(&exec_lock);
557 	return rv;
558 }
559 
560 void
561 exithook_disestablish(void *vhook)
562 {
563 
564 	rw_enter(&exec_lock, RW_WRITER);
565 	hook_disestablish(&exithook_list, vhook);
566 	rw_exit(&exec_lock);
567 }
568 
569 /*
570  * Run exit hooks.
571  */
572 void
573 doexithooks(struct proc *p)
574 {
575 	hook_proc_run(&exithook_list, p);
576 }
577 
578 static hook_list_t forkhook_list;
579 
580 void *
581 forkhook_establish(void (*fn)(struct proc *, struct proc *))
582 {
583 	return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
584 }
585 
586 void
587 forkhook_disestablish(void *vhook)
588 {
589 	hook_disestablish(&forkhook_list, vhook);
590 }
591 
592 /*
593  * Run fork hooks.
594  */
595 void
596 doforkhooks(struct proc *p2, struct proc *p1)
597 {
598 	struct hook_desc *hd;
599 
600 	LIST_FOREACH(hd, &forkhook_list, hk_list) {
601 		((void (*)(struct proc *, struct proc *))*hd->hk_fn)
602 		    (p2, p1);
603 	}
604 }
605 
606 /*
607  * "Power hook" types, functions, and variables.
608  * The list of power hooks is kept ordered with the last registered hook
609  * first.
610  * When running the hooks on power down the hooks are called in reverse
611  * registration order, when powering up in registration order.
612  */
613 struct powerhook_desc {
614 	CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
615 	void	(*sfd_fn)(int, void *);
616 	void	*sfd_arg;
617 	char	sfd_name[16];
618 };
619 
620 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
621     CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
622 
623 void *
624 powerhook_establish(const char *name, void (*fn)(int, void *), void *arg)
625 {
626 	struct powerhook_desc *ndp;
627 
628 	ndp = (struct powerhook_desc *)
629 	    malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
630 	if (ndp == NULL)
631 		return (NULL);
632 
633 	ndp->sfd_fn = fn;
634 	ndp->sfd_arg = arg;
635 	strlcpy(ndp->sfd_name, name, sizeof(ndp->sfd_name));
636 	CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
637 
638 	aprint_error("%s: WARNING: powerhook_establish is deprecated\n", name);
639 	return (ndp);
640 }
641 
642 void
643 powerhook_disestablish(void *vhook)
644 {
645 #ifdef DIAGNOSTIC
646 	struct powerhook_desc *dp;
647 
648 	CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
649                 if (dp == vhook)
650 			goto found;
651 	panic("powerhook_disestablish: hook %p not established", vhook);
652  found:
653 #endif
654 
655 	CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
656 	    sfd_list);
657 	free(vhook, M_DEVBUF);
658 }
659 
660 /*
661  * Run power hooks.
662  */
663 void
664 dopowerhooks(int why)
665 {
666 	struct powerhook_desc *dp;
667 
668 #ifdef POWERHOOK_DEBUG
669 	const char *why_name;
670 	static const char * pwr_names[] = {PWR_NAMES};
671 	why_name = why < __arraycount(pwr_names) ? pwr_names[why] : "???";
672 #endif
673 
674 	if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
675 		CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
676 #ifdef POWERHOOK_DEBUG
677 			printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
678 #endif
679 			(*dp->sfd_fn)(why, dp->sfd_arg);
680 		}
681 	} else {
682 		CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
683 #ifdef POWERHOOK_DEBUG
684 			printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
685 #endif
686 			(*dp->sfd_fn)(why, dp->sfd_arg);
687 		}
688 	}
689 
690 #ifdef POWERHOOK_DEBUG
691 	printf("dopowerhooks: %s done\n", why_name);
692 #endif
693 }
694 
695 static int
696 isswap(struct device *dv)
697 {
698 	struct dkwedge_info wi;
699 	struct vnode *vn;
700 	int error;
701 
702 	if (device_class(dv) != DV_DISK || !device_is_a(dv, "dk"))
703 		return 0;
704 
705 	if ((vn = opendisk(dv)) == NULL)
706 		return 0;
707 
708 	error = VOP_IOCTL(vn, DIOCGWEDGEINFO, &wi, FREAD, NOCRED);
709 	VOP_CLOSE(vn, FREAD, NOCRED);
710 	vput(vn);
711 	if (error) {
712 #ifdef DEBUG_WEDGE
713 		printf("%s: Get wedge info returned %d\n", device_xname(dv), error);
714 #endif
715 		return 0;
716 	}
717 	return strcmp(wi.dkw_ptype, DKW_PTYPE_SWAP) == 0;
718 }
719 
720 /*
721  * Determine the root device and, if instructed to, the root file system.
722  */
723 
724 #include "md.h"
725 
726 #if NMD > 0
727 extern struct cfdriver md_cd;
728 #ifdef MEMORY_DISK_IS_ROOT
729 int md_is_root = 1;
730 #else
731 int md_is_root = 0;
732 #endif
733 #endif
734 
735 /*
736  * The device and wedge that we booted from.  If booted_wedge is NULL,
737  * the we might consult booted_partition.
738  */
739 struct device *booted_device;
740 struct device *booted_wedge;
741 int booted_partition;
742 
743 /*
744  * Use partition letters if it's a disk class but not a wedge.
745  * XXX Check for wedge is kinda gross.
746  */
747 #define	DEV_USES_PARTITIONS(dv)						\
748 	(device_class((dv)) == DV_DISK &&				\
749 	 !device_is_a((dv), "dk"))
750 
751 void
752 setroot(struct device *bootdv, int bootpartition)
753 {
754 	struct device *dv;
755 	int len, majdev;
756 	dev_t nrootdev;
757 	dev_t ndumpdev = NODEV;
758 	char buf[128];
759 	const char *rootdevname;
760 	const char *dumpdevname;
761 	struct device *rootdv = NULL;		/* XXX gcc -Wuninitialized */
762 	struct device *dumpdv = NULL;
763 	struct ifnet *ifp;
764 	const char *deffsname;
765 	struct vfsops *vops;
766 
767 #ifdef TFTPROOT
768 	if (tftproot_dhcpboot(bootdv) != 0)
769 		boothowto |= RB_ASKNAME;
770 #endif
771 
772 #if NMD > 0
773 	if (md_is_root) {
774 		/*
775 		 * XXX there should be "root on md0" in the config file,
776 		 * but it isn't always
777 		 */
778 		bootdv = md_cd.cd_devs[0];
779 		bootpartition = 0;
780 	}
781 #endif
782 
783 	/*
784 	 * If NFS is specified as the file system, and we found
785 	 * a DV_DISK boot device (or no boot device at all), then
786 	 * find a reasonable network interface for "rootspec".
787 	 */
788 	vops = vfs_getopsbyname(MOUNT_NFS);
789 	if (vops != NULL && strcmp(rootfstype, MOUNT_NFS) == 0 &&
790 	    rootspec == NULL &&
791 	    (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
792 		IFNET_FOREACH(ifp) {
793 			if ((ifp->if_flags &
794 			     (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
795 				break;
796 		}
797 		if (ifp == NULL) {
798 			/*
799 			 * Can't find a suitable interface; ask the
800 			 * user.
801 			 */
802 			boothowto |= RB_ASKNAME;
803 		} else {
804 			/*
805 			 * Have a suitable interface; behave as if
806 			 * the user specified this interface.
807 			 */
808 			rootspec = (const char *)ifp->if_xname;
809 		}
810 	}
811 	if (vops != NULL)
812 		vfs_delref(vops);
813 
814 	/*
815 	 * If wildcarded root and we the boot device wasn't determined,
816 	 * ask the user.
817 	 */
818 	if (rootspec == NULL && bootdv == NULL)
819 		boothowto |= RB_ASKNAME;
820 
821  top:
822 	if (boothowto & RB_ASKNAME) {
823 		struct device *defdumpdv;
824 
825 		for (;;) {
826 			printf("root device");
827 			if (bootdv != NULL) {
828 				printf(" (default %s", device_xname(bootdv));
829 				if (DEV_USES_PARTITIONS(bootdv))
830 					printf("%c", bootpartition + 'a');
831 				printf(")");
832 			}
833 			printf(": ");
834 			len = cngetsn(buf, sizeof(buf));
835 			if (len == 0 && bootdv != NULL) {
836 				strlcpy(buf, device_xname(bootdv), sizeof(buf));
837 				len = strlen(buf);
838 			}
839 			if (len > 0 && buf[len - 1] == '*') {
840 				buf[--len] = '\0';
841 				dv = getdisk(buf, len, 1, &nrootdev, 0);
842 				if (dv != NULL) {
843 					rootdv = dv;
844 					break;
845 				}
846 			}
847 			dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
848 			if (dv != NULL) {
849 				rootdv = dv;
850 				break;
851 			}
852 		}
853 
854 		/*
855 		 * Set up the default dump device.  If root is on
856 		 * a network device, there is no default dump
857 		 * device, since we don't support dumps to the
858 		 * network.
859 		 */
860 		if (DEV_USES_PARTITIONS(rootdv) == 0)
861 			defdumpdv = NULL;
862 		else
863 			defdumpdv = rootdv;
864 
865 		for (;;) {
866 			printf("dump device");
867 			if (defdumpdv != NULL) {
868 				/*
869 				 * Note, we know it's a disk if we get here.
870 				 */
871 				printf(" (default %sb)", device_xname(defdumpdv));
872 			}
873 			printf(": ");
874 			len = cngetsn(buf, sizeof(buf));
875 			if (len == 0) {
876 				if (defdumpdv != NULL) {
877 					ndumpdev = MAKEDISKDEV(major(nrootdev),
878 					    DISKUNIT(nrootdev), 1);
879 				}
880 				dumpdv = defdumpdv;
881 				break;
882 			}
883 			if (len == 4 && strcmp(buf, "none") == 0) {
884 				dumpdv = NULL;
885 				break;
886 			}
887 			dv = getdisk(buf, len, 1, &ndumpdev, 1);
888 			if (dv != NULL) {
889 				dumpdv = dv;
890 				break;
891 			}
892 		}
893 
894 		rootdev = nrootdev;
895 		dumpdev = ndumpdev;
896 
897 		for (vops = LIST_FIRST(&vfs_list); vops != NULL;
898 		     vops = LIST_NEXT(vops, vfs_list)) {
899 			if (vops->vfs_mountroot != NULL &&
900 			    strcmp(rootfstype, vops->vfs_name) == 0)
901 			break;
902 		}
903 
904 		if (vops == NULL) {
905 			deffsname = "generic";
906 		} else
907 			deffsname = vops->vfs_name;
908 
909 		for (;;) {
910 			printf("file system (default %s): ", deffsname);
911 			len = cngetsn(buf, sizeof(buf));
912 			if (len == 0) {
913 				if (strcmp(deffsname, "generic") == 0)
914 					rootfstype = ROOT_FSTYPE_ANY;
915 				break;
916 			}
917 			if (len == 4 && strcmp(buf, "halt") == 0)
918 				cpu_reboot(RB_HALT, NULL);
919 			else if (len == 6 && strcmp(buf, "reboot") == 0)
920 				cpu_reboot(0, NULL);
921 #if defined(DDB)
922 			else if (len == 3 && strcmp(buf, "ddb") == 0) {
923 				console_debugger();
924 			}
925 #endif
926 			else if (len == 7 && strcmp(buf, "generic") == 0) {
927 				rootfstype = ROOT_FSTYPE_ANY;
928 				break;
929 			}
930 			vops = vfs_getopsbyname(buf);
931 			if (vops == NULL || vops->vfs_mountroot == NULL) {
932 				printf("use one of: generic");
933 				for (vops = LIST_FIRST(&vfs_list);
934 				     vops != NULL;
935 				     vops = LIST_NEXT(vops, vfs_list)) {
936 					if (vops->vfs_mountroot != NULL)
937 						printf(" %s", vops->vfs_name);
938 				}
939 				if (vops != NULL)
940 					vfs_delref(vops);
941 #if defined(DDB)
942 				printf(" ddb");
943 #endif
944 				printf(" halt reboot\n");
945 			} else {
946 				/*
947 				 * XXX If *vops gets freed between here and
948 				 * the call to mountroot(), rootfstype will
949 				 * point to something unexpected.  But in
950 				 * this case the system will fail anyway.
951 				 */
952 				rootfstype = vops->vfs_name;
953 				vfs_delref(vops);
954 				break;
955 			}
956 		}
957 
958 	} else if (rootspec == NULL) {
959 		/*
960 		 * Wildcarded root; use the boot device.
961 		 */
962 		rootdv = bootdv;
963 
964 		if (bootdv)
965 			majdev = devsw_name2blk(device_xname(bootdv), NULL, 0);
966 		else
967 			majdev = -1;
968 		if (majdev >= 0) {
969 			/*
970 			 * Root is on a disk.  `bootpartition' is root,
971 			 * unless the device does not use partitions.
972 			 */
973 			if (DEV_USES_PARTITIONS(bootdv))
974 				rootdev = MAKEDISKDEV(majdev,
975 						      device_unit(bootdv),
976 						      bootpartition);
977 			else
978 				rootdev = makedev(majdev, device_unit(bootdv));
979 		}
980 	} else {
981 
982 		/*
983 		 * `root on <dev> ...'
984 		 */
985 
986 		/*
987 		 * If it's a network interface, we can bail out
988 		 * early.
989 		 */
990 		dv = finddevice(rootspec);
991 		if (dv != NULL && device_class(dv) == DV_IFNET) {
992 			rootdv = dv;
993 			goto haveroot;
994 		}
995 
996 		if (rootdev == NODEV &&
997 		    device_class(dv) == DV_DISK && device_is_a(dv, "dk") &&
998 		    (majdev = devsw_name2blk(device_xname(dv), NULL, 0)) >= 0)
999 			rootdev = makedev(majdev, device_unit(dv));
1000 
1001 		rootdevname = devsw_blk2name(major(rootdev));
1002 		if (rootdevname == NULL) {
1003 			printf("unknown device major 0x%llx\n",
1004 			    (unsigned long long)rootdev);
1005 			boothowto |= RB_ASKNAME;
1006 			goto top;
1007 		}
1008 		memset(buf, 0, sizeof(buf));
1009 		snprintf(buf, sizeof(buf), "%s%llu", rootdevname,
1010 		    (unsigned long long)DISKUNIT(rootdev));
1011 
1012 		rootdv = finddevice(buf);
1013 		if (rootdv == NULL) {
1014 			printf("device %s (0x%llx) not configured\n",
1015 			    buf, (unsigned long long)rootdev);
1016 			boothowto |= RB_ASKNAME;
1017 			goto top;
1018 		}
1019 	}
1020 
1021  haveroot:
1022 
1023 	root_device = rootdv;
1024 
1025 	switch (device_class(rootdv)) {
1026 	case DV_IFNET:
1027 	case DV_DISK:
1028 		aprint_normal("root on %s", device_xname(rootdv));
1029 		if (DEV_USES_PARTITIONS(rootdv))
1030 			aprint_normal("%c", (int)DISKPART(rootdev) + 'a');
1031 		break;
1032 
1033 	default:
1034 		printf("can't determine root device\n");
1035 		boothowto |= RB_ASKNAME;
1036 		goto top;
1037 	}
1038 
1039 	/*
1040 	 * Now configure the dump device.
1041 	 *
1042 	 * If we haven't figured out the dump device, do so, with
1043 	 * the following rules:
1044 	 *
1045 	 *	(a) We already know dumpdv in the RB_ASKNAME case.
1046 	 *
1047 	 *	(b) If dumpspec is set, try to use it.  If the device
1048 	 *	    is not available, punt.
1049 	 *
1050 	 *	(c) If dumpspec is not set, the dump device is
1051 	 *	    wildcarded or unspecified.  If the root device
1052 	 *	    is DV_IFNET, punt.  Otherwise, use partition b
1053 	 *	    of the root device.
1054 	 */
1055 
1056 	if (boothowto & RB_ASKNAME) {		/* (a) */
1057 		if (dumpdv == NULL)
1058 			goto nodumpdev;
1059 	} else if (dumpspec != NULL) {		/* (b) */
1060 		if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
1061 			/*
1062 			 * Operator doesn't want a dump device.
1063 			 * Or looks like they tried to pick a network
1064 			 * device.  Oops.
1065 			 */
1066 			goto nodumpdev;
1067 		}
1068 
1069 		dumpdevname = devsw_blk2name(major(dumpdev));
1070 		if (dumpdevname == NULL)
1071 			goto nodumpdev;
1072 		memset(buf, 0, sizeof(buf));
1073 		snprintf(buf, sizeof(buf), "%s%llu", dumpdevname,
1074 		    (unsigned long long)DISKUNIT(dumpdev));
1075 
1076 		dumpdv = finddevice(buf);
1077 		if (dumpdv == NULL) {
1078 			/*
1079 			 * Device not configured.
1080 			 */
1081 			goto nodumpdev;
1082 		}
1083 	} else {				/* (c) */
1084 		if (DEV_USES_PARTITIONS(rootdv) == 0) {
1085 			for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
1086 			    dv = TAILQ_NEXT(dv, dv_list))
1087 				if (isswap(dv))
1088 					break;
1089 			if (dv == NULL)
1090 				goto nodumpdev;
1091 
1092 			majdev = devsw_name2blk(device_xname(dv), NULL, 0);
1093 			if (majdev < 0)
1094 				goto nodumpdev;
1095 			dumpdv = dv;
1096 			dumpdev = makedev(majdev, device_unit(dumpdv));
1097 		} else {
1098 			dumpdv = rootdv;
1099 			dumpdev = MAKEDISKDEV(major(rootdev),
1100 			    device_unit(dumpdv), 1);
1101 		}
1102 	}
1103 
1104 	dumpcdev = devsw_blk2chr(dumpdev);
1105 	aprint_normal(" dumps on %s", device_xname(dumpdv));
1106 	if (DEV_USES_PARTITIONS(dumpdv))
1107 		aprint_normal("%c", (int)DISKPART(dumpdev) + 'a');
1108 	aprint_normal("\n");
1109 	return;
1110 
1111  nodumpdev:
1112 	dumpdev = NODEV;
1113 	dumpcdev = NODEV;
1114 	aprint_normal("\n");
1115 }
1116 
1117 static struct device *
1118 finddevice(const char *name)
1119 {
1120 	const char *wname;
1121 
1122 	if ((wname = getwedgename(name, strlen(name))) != NULL)
1123 		return dkwedge_find_by_wname(wname);
1124 
1125 	return device_find_by_xname(name);
1126 }
1127 
1128 static struct device *
1129 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
1130 {
1131 	struct device	*dv;
1132 
1133 	if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
1134 		printf("use one of:");
1135 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
1136 			if (DEV_USES_PARTITIONS(dv))
1137 				printf(" %s[a-%c]", device_xname(dv),
1138 				    'a' + MAXPARTITIONS - 1);
1139 			else if (device_class(dv) == DV_DISK)
1140 				printf(" %s", device_xname(dv));
1141 			if (isdump == 0 && device_class(dv) == DV_IFNET)
1142 				printf(" %s", device_xname(dv));
1143 		}
1144 		dkwedge_print_wnames();
1145 		if (isdump)
1146 			printf(" none");
1147 #if defined(DDB)
1148 		printf(" ddb");
1149 #endif
1150 		printf(" halt reboot\n");
1151 	}
1152 	return dv;
1153 }
1154 
1155 static const char *
1156 getwedgename(const char *name, int namelen)
1157 {
1158 	const char *wpfx = "wedge:";
1159 	const int wpfxlen = strlen(wpfx);
1160 
1161 	if (namelen < wpfxlen || strncmp(name, wpfx, wpfxlen) != 0)
1162 		return NULL;
1163 
1164 	return name + wpfxlen;
1165 }
1166 
1167 static struct device *
1168 parsedisk(char *str, int len, int defpart, dev_t *devp)
1169 {
1170 	struct device *dv;
1171 	const char *wname;
1172 	char *cp, c;
1173 	int majdev, part;
1174 	if (len == 0)
1175 		return (NULL);
1176 
1177 	if (len == 4 && strcmp(str, "halt") == 0)
1178 		cpu_reboot(RB_HALT, NULL);
1179 	else if (len == 6 && strcmp(str, "reboot") == 0)
1180 		cpu_reboot(0, NULL);
1181 #if defined(DDB)
1182 	else if (len == 3 && strcmp(str, "ddb") == 0)
1183 		console_debugger();
1184 #endif
1185 
1186 	cp = str + len - 1;
1187 	c = *cp;
1188 
1189 	if ((wname = getwedgename(str, len)) != NULL) {
1190 		if ((dv = dkwedge_find_by_wname(wname)) == NULL)
1191 			return NULL;
1192 		part = defpart;
1193 		goto gotdisk;
1194 	} else if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
1195 		part = c - 'a';
1196 		*cp = '\0';
1197 	} else
1198 		part = defpart;
1199 
1200 	dv = finddevice(str);
1201 	if (dv != NULL) {
1202 		if (device_class(dv) == DV_DISK) {
1203  gotdisk:
1204 			majdev = devsw_name2blk(device_xname(dv), NULL, 0);
1205 			if (majdev < 0)
1206 				panic("parsedisk");
1207 			if (DEV_USES_PARTITIONS(dv))
1208 				*devp = MAKEDISKDEV(majdev, device_unit(dv),
1209 						    part);
1210 			else
1211 				*devp = makedev(majdev, device_unit(dv));
1212 		}
1213 
1214 		if (device_class(dv) == DV_IFNET)
1215 			*devp = NODEV;
1216 	}
1217 
1218 	*cp = c;
1219 	return (dv);
1220 }
1221 
1222 /*
1223  * snprintf() `bytes' into `buf', reformatting it so that the number,
1224  * plus a possible `x' + suffix extension) fits into len bytes (including
1225  * the terminating NUL).
1226  * Returns the number of bytes stored in buf, or -1 if there was a problem.
1227  * E.g, given a len of 9 and a suffix of `B':
1228  *	bytes		result
1229  *	-----		------
1230  *	99999		`99999 B'
1231  *	100000		`97 kB'
1232  *	66715648	`65152 kB'
1233  *	252215296	`240 MB'
1234  */
1235 int
1236 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
1237     int divisor)
1238 {
1239        	/* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
1240 	const char *prefixes;
1241 	int		r;
1242 	uint64_t	umax;
1243 	size_t		i, suffixlen;
1244 
1245 	if (buf == NULL || suffix == NULL)
1246 		return (-1);
1247 	if (len > 0)
1248 		buf[0] = '\0';
1249 	suffixlen = strlen(suffix);
1250 	/* check if enough room for `x y' + suffix + `\0' */
1251 	if (len < 4 + suffixlen)
1252 		return (-1);
1253 
1254 	if (divisor == 1024) {
1255 		/*
1256 		 * binary multiplies
1257 		 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
1258 		 */
1259 		prefixes = " KMGTPE";
1260 	} else
1261 		prefixes = " kMGTPE"; /* SI for decimal multiplies */
1262 
1263 	umax = 1;
1264 	for (i = 0; i < len - suffixlen - 3; i++) {
1265 		umax *= 10;
1266 		if (umax > bytes)
1267 			break;
1268 	}
1269 	for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
1270 		bytes /= divisor;
1271 
1272 	r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
1273 	    i == 0 ? "" : " ", prefixes[i], suffix);
1274 
1275 	return (r);
1276 }
1277 
1278 int
1279 format_bytes(char *buf, size_t len, uint64_t bytes)
1280 {
1281 	int	rv;
1282 	size_t	nlen;
1283 
1284 	rv = humanize_number(buf, len, bytes, "B", 1024);
1285 	if (rv != -1) {
1286 			/* nuke the trailing ` B' if it exists */
1287 		nlen = strlen(buf) - 2;
1288 		if (strcmp(&buf[nlen], " B") == 0)
1289 			buf[nlen] = '\0';
1290 	}
1291 	return (rv);
1292 }
1293 
1294 /*
1295  * Return true if system call tracing is enabled for the specified process.
1296  */
1297 bool
1298 trace_is_enabled(struct proc *p)
1299 {
1300 #ifdef SYSCALL_DEBUG
1301 	return (true);
1302 #endif
1303 #ifdef KTRACE
1304 	if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
1305 		return (true);
1306 #endif
1307 #ifdef PTRACE
1308 	if (ISSET(p->p_slflag, PSL_SYSCALL))
1309 		return (true);
1310 #endif
1311 
1312 	return (false);
1313 }
1314 
1315 /*
1316  * Start trace of particular system call. If process is being traced,
1317  * this routine is called by MD syscall dispatch code just before
1318  * a system call is actually executed.
1319  */
1320 int
1321 trace_enter(register_t code, const register_t *args, int narg)
1322 {
1323 #ifdef SYSCALL_DEBUG
1324 	scdebug_call(code, args);
1325 #endif /* SYSCALL_DEBUG */
1326 
1327 	ktrsyscall(code, args, narg);
1328 
1329 #ifdef PTRACE
1330 	if ((curlwp->l_proc->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1331 	    (PSL_SYSCALL|PSL_TRACED))
1332 		process_stoptrace();
1333 #endif
1334 	return 0;
1335 }
1336 
1337 /*
1338  * End trace of particular system call. If process is being traced,
1339  * this routine is called by MD syscall dispatch code just after
1340  * a system call finishes.
1341  * MD caller guarantees the passed 'code' is within the supported
1342  * system call number range for emulation the process runs under.
1343  */
1344 void
1345 trace_exit(register_t code, register_t rval[], int error)
1346 {
1347 #ifdef SYSCALL_DEBUG
1348 	scdebug_ret(code, error, rval);
1349 #endif /* SYSCALL_DEBUG */
1350 
1351 	ktrsysret(code, error, rval);
1352 
1353 #ifdef PTRACE
1354 	if ((curlwp->l_proc->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1355 	    (PSL_SYSCALL|PSL_TRACED))
1356 		process_stoptrace();
1357 #endif
1358 }
1359 
1360 int
1361 syscall_establish(const struct emul *em, const struct syscall_package *sp)
1362 {
1363 	struct sysent *sy;
1364 	int i;
1365 
1366 	KASSERT(mutex_owned(&module_lock));
1367 
1368 	if (em == NULL) {
1369 		em = &emul_netbsd;
1370 	}
1371 	sy = em->e_sysent;
1372 
1373 	/*
1374 	 * Ensure that all preconditions are valid, since this is
1375 	 * an all or nothing deal.  Once a system call is entered,
1376 	 * it can become busy and we could be unable to remove it
1377 	 * on error.
1378 	 */
1379 	for (i = 0; sp[i].sp_call != NULL; i++) {
1380 		if (sy[sp[i].sp_code].sy_call != sys_nomodule) {
1381 #ifdef DIAGNOSTIC
1382 			printf("syscall %d is busy\n", sp[i].sp_code);
1383 #endif
1384 			return EBUSY;
1385 		}
1386 	}
1387 	/* Everything looks good, patch them in. */
1388 	for (i = 0; sp[i].sp_call != NULL; i++) {
1389 		sy[sp[i].sp_code].sy_call = sp[i].sp_call;
1390 	}
1391 
1392 	return 0;
1393 }
1394 
1395 int
1396 syscall_disestablish(const struct emul *em, const struct syscall_package *sp)
1397 {
1398 	struct sysent *sy;
1399 	uint64_t where;
1400 	lwp_t *l;
1401 	int i;
1402 
1403 	KASSERT(mutex_owned(&module_lock));
1404 
1405 	if (em == NULL) {
1406 		em = &emul_netbsd;
1407 	}
1408 	sy = em->e_sysent;
1409 
1410 	/*
1411 	 * First, patch the system calls to sys_nomodule to gate further
1412 	 * activity.
1413 	 */
1414 	for (i = 0; sp[i].sp_call != NULL; i++) {
1415 		KASSERT(sy[sp[i].sp_code].sy_call == sp[i].sp_call);
1416 		sy[sp[i].sp_code].sy_call = sys_nomodule;
1417 	}
1418 
1419 	/*
1420 	 * Run a cross call to cycle through all CPUs.  This does two
1421 	 * things: lock activity provides a barrier and makes our update
1422 	 * of sy_call visible to all CPUs, and upon return we can be sure
1423 	 * that we see pertinent values of l_sysent posted by remote CPUs.
1424 	 */
1425 	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1426 	xc_wait(where);
1427 
1428 	/*
1429 	 * Now it's safe to check l_sysent.  Run through all LWPs and see
1430 	 * if anyone is still using the system call.
1431 	 */
1432 	for (i = 0; sp[i].sp_call != NULL; i++) {
1433 		mutex_enter(proc_lock);
1434 		LIST_FOREACH(l, &alllwp, l_list) {
1435 			if (l->l_sysent == &sy[sp[i].sp_code]) {
1436 				break;
1437 			}
1438 		}
1439 		mutex_exit(proc_lock);
1440 		if (l == NULL) {
1441 			continue;
1442 		}
1443 		/*
1444 		 * We lose: one or more calls are still in use.  Put back
1445 		 * the old entrypoints and act like nothing happened.
1446 		 * When we drop module_lock, any system calls held in
1447 		 * sys_nomodule() will be restarted.
1448 		 */
1449 		for (i = 0; sp[i].sp_call != NULL; i++) {
1450 			sy[sp[i].sp_code].sy_call = sp[i].sp_call;
1451 		}
1452 		return EBUSY;
1453 	}
1454 
1455 	return 0;
1456 }
1457