xref: /netbsd-src/sys/kern/kern_subr.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /*	$NetBSD: kern_subr.c,v 1.136 2006/06/11 07:32:18 rjs Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Luke Mewburn.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1982, 1986, 1991, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Copyright (c) 1992, 1993
50  *	The Regents of the University of California.  All rights reserved.
51  *
52  * This software was developed by the Computer Systems Engineering group
53  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
54  * contributed to Berkeley.
55  *
56  * All advertising materials mentioning features or use of this software
57  * must display the following acknowledgement:
58  *	This product includes software developed by the University of
59  *	California, Lawrence Berkeley Laboratory.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  * 2. Redistributions in binary form must reproduce the above copyright
67  *    notice, this list of conditions and the following disclaimer in the
68  *    documentation and/or other materials provided with the distribution.
69  * 3. Neither the name of the University nor the names of its contributors
70  *    may be used to endorse or promote products derived from this software
71  *    without specific prior written permission.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83  * SUCH DAMAGE.
84  *
85  *	@(#)kern_subr.c	8.4 (Berkeley) 2/14/95
86  */
87 
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.136 2006/06/11 07:32:18 rjs Exp $");
90 
91 #include "opt_ddb.h"
92 #include "opt_md.h"
93 #include "opt_syscall_debug.h"
94 #include "opt_ktrace.h"
95 #include "opt_systrace.h"
96 #include "opt_lockdebug.h"
97 
98 #include <sys/param.h>
99 #include <sys/systm.h>
100 #include <sys/proc.h>
101 #include <sys/malloc.h>
102 #include <sys/mount.h>
103 #include <sys/device.h>
104 #include <sys/reboot.h>
105 #include <sys/conf.h>
106 #include <sys/disklabel.h>
107 #include <sys/queue.h>
108 #include <sys/systrace.h>
109 #include <sys/ktrace.h>
110 #include <sys/ptrace.h>
111 #include <sys/fcntl.h>
112 
113 #include <uvm/uvm_extern.h>
114 
115 #include <dev/cons.h>
116 
117 #include <net/if.h>
118 
119 /* XXX these should eventually move to subr_autoconf.c */
120 static struct device *finddevice(const char *);
121 static struct device *getdisk(char *, int, int, dev_t *, int);
122 static struct device *parsedisk(char *, int, int, dev_t *);
123 
124 /*
125  * A generic linear hook.
126  */
127 struct hook_desc {
128 	LIST_ENTRY(hook_desc) hk_list;
129 	void	(*hk_fn)(void *);
130 	void	*hk_arg;
131 };
132 typedef LIST_HEAD(, hook_desc) hook_list_t;
133 
134 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
135 
136 void
137 uio_setup_sysspace(struct uio *uio)
138 {
139 
140 	uio->uio_vmspace = vmspace_kernel();
141 }
142 
143 int
144 uiomove(void *buf, size_t n, struct uio *uio)
145 {
146 	struct vmspace *vm = uio->uio_vmspace;
147 	struct iovec *iov;
148 	u_int cnt;
149 	int error = 0;
150 	char *cp = buf;
151 	int hold_count;
152 
153 	hold_count = KERNEL_LOCK_RELEASE_ALL();
154 
155 #ifdef LOCKDEBUG
156 	spinlock_switchcheck();
157 	simple_lock_only_held(NULL, "uiomove");
158 #endif
159 
160 #ifdef DIAGNOSTIC
161 	if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
162 		panic("uiomove: mode");
163 #endif
164 	while (n > 0 && uio->uio_resid) {
165 		iov = uio->uio_iov;
166 		cnt = iov->iov_len;
167 		if (cnt == 0) {
168 			KASSERT(uio->uio_iovcnt > 0);
169 			uio->uio_iov++;
170 			uio->uio_iovcnt--;
171 			continue;
172 		}
173 		if (cnt > n)
174 			cnt = n;
175 		if (!VMSPACE_IS_KERNEL_P(vm)) {
176 			if (curcpu()->ci_schedstate.spc_flags &
177 			    SPCF_SHOULDYIELD)
178 				preempt(1);
179 		}
180 
181 		if (uio->uio_rw == UIO_READ) {
182 			error = copyout_vmspace(vm, cp, iov->iov_base,
183 			    cnt);
184 		} else {
185 			error = copyin_vmspace(vm, iov->iov_base, cp,
186 			    cnt);
187 		}
188 		if (error) {
189 			break;
190 		}
191 		iov->iov_base = (caddr_t)iov->iov_base + cnt;
192 		iov->iov_len -= cnt;
193 		uio->uio_resid -= cnt;
194 		uio->uio_offset += cnt;
195 		cp += cnt;
196 		KDASSERT(cnt <= n);
197 		n -= cnt;
198 	}
199 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
200 	return (error);
201 }
202 
203 /*
204  * Wrapper for uiomove() that validates the arguments against a known-good
205  * kernel buffer.
206  */
207 int
208 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
209 {
210 	size_t offset;
211 
212 	if (uio->uio_offset < 0 || uio->uio_resid < 0 ||
213 	    (offset = uio->uio_offset) != uio->uio_offset)
214 		return (EINVAL);
215 	if (offset >= buflen)
216 		return (0);
217 	return (uiomove((char *)buf + offset, buflen - offset, uio));
218 }
219 
220 /*
221  * Give next character to user as result of read.
222  */
223 int
224 ureadc(int c, struct uio *uio)
225 {
226 	struct iovec *iov;
227 
228 	if (uio->uio_resid <= 0)
229 		panic("ureadc: non-positive resid");
230 again:
231 	if (uio->uio_iovcnt <= 0)
232 		panic("ureadc: non-positive iovcnt");
233 	iov = uio->uio_iov;
234 	if (iov->iov_len <= 0) {
235 		uio->uio_iovcnt--;
236 		uio->uio_iov++;
237 		goto again;
238 	}
239 	if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
240 		if (subyte(iov->iov_base, c) < 0)
241 			return (EFAULT);
242 	} else {
243 		*(char *)iov->iov_base = c;
244 	}
245 	iov->iov_base = (caddr_t)iov->iov_base + 1;
246 	iov->iov_len--;
247 	uio->uio_resid--;
248 	uio->uio_offset++;
249 	return (0);
250 }
251 
252 /*
253  * Like copyin(), but operates on an arbitrary vmspace.
254  */
255 int
256 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
257 {
258 	struct iovec iov;
259 	struct uio uio;
260 	int error;
261 
262 	if (len == 0)
263 		return (0);
264 
265 	if (VMSPACE_IS_KERNEL_P(vm)) {
266 		return kcopy(uaddr, kaddr, len);
267 	}
268 	if (__predict_true(vm == curproc->p_vmspace)) {
269 		return copyin(uaddr, kaddr, len);
270 	}
271 
272 	iov.iov_base = kaddr;
273 	iov.iov_len = len;
274 	uio.uio_iov = &iov;
275 	uio.uio_iovcnt = 1;
276 	uio.uio_offset = (off_t)(intptr_t)uaddr;
277 	uio.uio_resid = len;
278 	uio.uio_rw = UIO_READ;
279 	UIO_SETUP_SYSSPACE(&uio);
280 	error = uvm_io(&vm->vm_map, &uio);
281 
282 	return (error);
283 }
284 
285 /*
286  * Like copyout(), but operates on an arbitrary vmspace.
287  */
288 int
289 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
290 {
291 	struct iovec iov;
292 	struct uio uio;
293 	int error;
294 
295 	if (len == 0)
296 		return (0);
297 
298 	if (VMSPACE_IS_KERNEL_P(vm)) {
299 		return kcopy(kaddr, uaddr, len);
300 	}
301 	if (__predict_true(vm == curproc->p_vmspace)) {
302 		return copyout(kaddr, uaddr, len);
303 	}
304 
305 	iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
306 	iov.iov_len = len;
307 	uio.uio_iov = &iov;
308 	uio.uio_iovcnt = 1;
309 	uio.uio_offset = (off_t)(intptr_t)uaddr;
310 	uio.uio_resid = len;
311 	uio.uio_rw = UIO_WRITE;
312 	UIO_SETUP_SYSSPACE(&uio);
313 	error = uvm_io(&vm->vm_map, &uio);
314 
315 	return (error);
316 }
317 
318 /*
319  * Like copyin(), but operates on an arbitrary process.
320  */
321 int
322 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
323 {
324 	struct vmspace *vm;
325 	int error;
326 
327 	error = proc_vmspace_getref(p, &vm);
328 	if (error) {
329 		return error;
330 	}
331 	error = copyin_vmspace(vm, uaddr, kaddr, len);
332 	uvmspace_free(vm);
333 
334 	return error;
335 }
336 
337 /*
338  * Like copyout(), but operates on an arbitrary process.
339  */
340 int
341 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
342 {
343 	struct vmspace *vm;
344 	int error;
345 
346 	error = proc_vmspace_getref(p, &vm);
347 	if (error) {
348 		return error;
349 	}
350 	error = copyout_vmspace(vm, kaddr, uaddr, len);
351 	uvmspace_free(vm);
352 
353 	return error;
354 }
355 
356 /*
357  * Like copyin(), except it operates on kernel addresses when the FKIOCTL
358  * flag is passed in `ioctlflags' from the ioctl call.
359  */
360 int
361 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
362 {
363 	if (ioctlflags & FKIOCTL)
364 		return kcopy(src, dst, len);
365 	return copyin(src, dst, len);
366 }
367 
368 /*
369  * Like copyout(), except it operates on kernel addresses when the FKIOCTL
370  * flag is passed in `ioctlflags' from the ioctl call.
371  */
372 int
373 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
374 {
375 	if (ioctlflags & FKIOCTL)
376 		return kcopy(src, dst, len);
377 	return copyout(src, dst, len);
378 }
379 
380 /*
381  * General routine to allocate a hash table.
382  * Allocate enough memory to hold at least `elements' list-head pointers.
383  * Return a pointer to the allocated space and set *hashmask to a pattern
384  * suitable for masking a value to use as an index into the returned array.
385  */
386 void *
387 hashinit(u_int elements, enum hashtype htype, struct malloc_type *mtype,
388     int mflags, u_long *hashmask)
389 {
390 	u_long hashsize, i;
391 	LIST_HEAD(, generic) *hashtbl_list;
392 	TAILQ_HEAD(, generic) *hashtbl_tailq;
393 	size_t esize;
394 	void *p;
395 
396 	if (elements == 0)
397 		panic("hashinit: bad cnt");
398 	for (hashsize = 1; hashsize < elements; hashsize <<= 1)
399 		continue;
400 
401 	switch (htype) {
402 	case HASH_LIST:
403 		esize = sizeof(*hashtbl_list);
404 		break;
405 	case HASH_TAILQ:
406 		esize = sizeof(*hashtbl_tailq);
407 		break;
408 	default:
409 #ifdef DIAGNOSTIC
410 		panic("hashinit: invalid table type");
411 #else
412 		return NULL;
413 #endif
414 	}
415 
416 	if ((p = malloc(hashsize * esize, mtype, mflags)) == NULL)
417 		return (NULL);
418 
419 	switch (htype) {
420 	case HASH_LIST:
421 		hashtbl_list = p;
422 		for (i = 0; i < hashsize; i++)
423 			LIST_INIT(&hashtbl_list[i]);
424 		break;
425 	case HASH_TAILQ:
426 		hashtbl_tailq = p;
427 		for (i = 0; i < hashsize; i++)
428 			TAILQ_INIT(&hashtbl_tailq[i]);
429 		break;
430 	}
431 	*hashmask = hashsize - 1;
432 	return (p);
433 }
434 
435 /*
436  * Free memory from hash table previosly allocated via hashinit().
437  */
438 void
439 hashdone(void *hashtbl, struct malloc_type *mtype)
440 {
441 
442 	free(hashtbl, mtype);
443 }
444 
445 
446 static void *
447 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
448 {
449 	struct hook_desc *hd;
450 
451 	hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
452 	if (hd == NULL)
453 		return (NULL);
454 
455 	hd->hk_fn = fn;
456 	hd->hk_arg = arg;
457 	LIST_INSERT_HEAD(list, hd, hk_list);
458 
459 	return (hd);
460 }
461 
462 static void
463 hook_disestablish(hook_list_t *list, void *vhook)
464 {
465 #ifdef DIAGNOSTIC
466 	struct hook_desc *hd;
467 
468 	LIST_FOREACH(hd, list, hk_list) {
469                 if (hd == vhook)
470 			break;
471 	}
472 
473 	if (hd == NULL)
474 		panic("hook_disestablish: hook %p not established", vhook);
475 #endif
476 	LIST_REMOVE((struct hook_desc *)vhook, hk_list);
477 	free(vhook, M_DEVBUF);
478 }
479 
480 static void
481 hook_destroy(hook_list_t *list)
482 {
483 	struct hook_desc *hd;
484 
485 	while ((hd = LIST_FIRST(list)) != NULL) {
486 		LIST_REMOVE(hd, hk_list);
487 		free(hd, M_DEVBUF);
488 	}
489 }
490 
491 static void
492 hook_proc_run(hook_list_t *list, struct proc *p)
493 {
494 	struct hook_desc *hd;
495 
496 	for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
497 		((void (*)(struct proc *, void *))*hd->hk_fn)(p,
498 		    hd->hk_arg);
499 	}
500 }
501 
502 /*
503  * "Shutdown hook" types, functions, and variables.
504  *
505  * Should be invoked immediately before the
506  * system is halted or rebooted, i.e. after file systems unmounted,
507  * after crash dump done, etc.
508  *
509  * Each shutdown hook is removed from the list before it's run, so that
510  * it won't be run again.
511  */
512 
513 static hook_list_t shutdownhook_list;
514 
515 void *
516 shutdownhook_establish(void (*fn)(void *), void *arg)
517 {
518 	return hook_establish(&shutdownhook_list, fn, arg);
519 }
520 
521 void
522 shutdownhook_disestablish(void *vhook)
523 {
524 	hook_disestablish(&shutdownhook_list, vhook);
525 }
526 
527 /*
528  * Run shutdown hooks.  Should be invoked immediately before the
529  * system is halted or rebooted, i.e. after file systems unmounted,
530  * after crash dump done, etc.
531  *
532  * Each shutdown hook is removed from the list before it's run, so that
533  * it won't be run again.
534  */
535 void
536 doshutdownhooks(void)
537 {
538 	struct hook_desc *dp;
539 
540 	while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
541 		LIST_REMOVE(dp, hk_list);
542 		(*dp->hk_fn)(dp->hk_arg);
543 #if 0
544 		/*
545 		 * Don't bother freeing the hook structure,, since we may
546 		 * be rebooting because of a memory corruption problem,
547 		 * and this might only make things worse.  It doesn't
548 		 * matter, anyway, since the system is just about to
549 		 * reboot.
550 		 */
551 		free(dp, M_DEVBUF);
552 #endif
553 	}
554 }
555 
556 /*
557  * "Mountroot hook" types, functions, and variables.
558  */
559 
560 static hook_list_t mountroothook_list;
561 
562 void *
563 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
564 {
565 	return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
566 }
567 
568 void
569 mountroothook_disestablish(void *vhook)
570 {
571 	hook_disestablish(&mountroothook_list, vhook);
572 }
573 
574 void
575 mountroothook_destroy(void)
576 {
577 	hook_destroy(&mountroothook_list);
578 }
579 
580 void
581 domountroothook(void)
582 {
583 	struct hook_desc *hd;
584 
585 	LIST_FOREACH(hd, &mountroothook_list, hk_list) {
586 		if (hd->hk_arg == (void *)root_device) {
587 			(*hd->hk_fn)(hd->hk_arg);
588 			return;
589 		}
590 	}
591 }
592 
593 static hook_list_t exechook_list;
594 
595 void *
596 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
597 {
598 	return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
599 }
600 
601 void
602 exechook_disestablish(void *vhook)
603 {
604 	hook_disestablish(&exechook_list, vhook);
605 }
606 
607 /*
608  * Run exec hooks.
609  */
610 void
611 doexechooks(struct proc *p)
612 {
613 	hook_proc_run(&exechook_list, p);
614 }
615 
616 static hook_list_t exithook_list;
617 
618 void *
619 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
620 {
621 	return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
622 }
623 
624 void
625 exithook_disestablish(void *vhook)
626 {
627 	hook_disestablish(&exithook_list, vhook);
628 }
629 
630 /*
631  * Run exit hooks.
632  */
633 void
634 doexithooks(struct proc *p)
635 {
636 	hook_proc_run(&exithook_list, p);
637 }
638 
639 static hook_list_t forkhook_list;
640 
641 void *
642 forkhook_establish(void (*fn)(struct proc *, struct proc *))
643 {
644 	return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
645 }
646 
647 void
648 forkhook_disestablish(void *vhook)
649 {
650 	hook_disestablish(&forkhook_list, vhook);
651 }
652 
653 /*
654  * Run fork hooks.
655  */
656 void
657 doforkhooks(struct proc *p2, struct proc *p1)
658 {
659 	struct hook_desc *hd;
660 
661 	LIST_FOREACH(hd, &forkhook_list, hk_list) {
662 		((void (*)(struct proc *, struct proc *))*hd->hk_fn)
663 		    (p2, p1);
664 	}
665 }
666 
667 /*
668  * "Power hook" types, functions, and variables.
669  * The list of power hooks is kept ordered with the last registered hook
670  * first.
671  * When running the hooks on power down the hooks are called in reverse
672  * registration order, when powering up in registration order.
673  */
674 struct powerhook_desc {
675 	CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
676 	void	(*sfd_fn)(int, void *);
677 	void	*sfd_arg;
678 };
679 
680 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
681     CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
682 
683 void *
684 powerhook_establish(void (*fn)(int, void *), void *arg)
685 {
686 	struct powerhook_desc *ndp;
687 
688 	ndp = (struct powerhook_desc *)
689 	    malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
690 	if (ndp == NULL)
691 		return (NULL);
692 
693 	ndp->sfd_fn = fn;
694 	ndp->sfd_arg = arg;
695 	CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
696 
697 	return (ndp);
698 }
699 
700 void
701 powerhook_disestablish(void *vhook)
702 {
703 #ifdef DIAGNOSTIC
704 	struct powerhook_desc *dp;
705 
706 	CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
707                 if (dp == vhook)
708 			goto found;
709 	panic("powerhook_disestablish: hook %p not established", vhook);
710  found:
711 #endif
712 
713 	CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
714 	    sfd_list);
715 	free(vhook, M_DEVBUF);
716 }
717 
718 /*
719  * Run power hooks.
720  */
721 void
722 dopowerhooks(int why)
723 {
724 	struct powerhook_desc *dp;
725 
726 	if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
727 		CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
728 			(*dp->sfd_fn)(why, dp->sfd_arg);
729 		}
730 	} else {
731 		CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
732 			(*dp->sfd_fn)(why, dp->sfd_arg);
733 		}
734 	}
735 }
736 
737 /*
738  * Determine the root device and, if instructed to, the root file system.
739  */
740 
741 #include "md.h"
742 #if NMD == 0
743 #undef MEMORY_DISK_HOOKS
744 #endif
745 
746 #ifdef MEMORY_DISK_HOOKS
747 static struct device fakemdrootdev[NMD];
748 extern struct cfdriver md_cd;
749 #endif
750 
751 #ifdef MEMORY_DISK_IS_ROOT
752 #define BOOT_FROM_MEMORY_HOOKS 1
753 #endif
754 
755 #include "raid.h"
756 #if NRAID == 1
757 #define BOOT_FROM_RAID_HOOKS 1
758 #endif
759 
760 #ifdef BOOT_FROM_RAID_HOOKS
761 extern int numraid;
762 extern struct device *raidrootdev;
763 #endif
764 
765 /*
766  * The device and wedge that we booted from.  If booted_wedge is NULL,
767  * the we might consult booted_partition.
768  */
769 struct device *booted_device;
770 struct device *booted_wedge;
771 int booted_partition;
772 
773 /*
774  * Use partition letters if it's a disk class but not a wedge.
775  * XXX Check for wedge is kinda gross.
776  */
777 #define	DEV_USES_PARTITIONS(dv)						\
778 	(device_class((dv)) == DV_DISK &&				\
779 	 !device_is_a((dv), "dk"))
780 
781 void
782 setroot(struct device *bootdv, int bootpartition)
783 {
784 	struct device *dv;
785 	int len;
786 #ifdef MEMORY_DISK_HOOKS
787 	int i;
788 #endif
789 	dev_t nrootdev;
790 	dev_t ndumpdev = NODEV;
791 	char buf[128];
792 	const char *rootdevname;
793 	const char *dumpdevname;
794 	struct device *rootdv = NULL;		/* XXX gcc -Wuninitialized */
795 	struct device *dumpdv = NULL;
796 	struct ifnet *ifp;
797 	const char *deffsname;
798 	struct vfsops *vops;
799 
800 #ifdef MEMORY_DISK_HOOKS
801 	for (i = 0; i < NMD; i++) {
802 		fakemdrootdev[i].dv_class  = DV_DISK;
803 		fakemdrootdev[i].dv_cfdata = NULL;
804 		fakemdrootdev[i].dv_cfdriver = &md_cd;
805 		fakemdrootdev[i].dv_unit   = i;
806 		fakemdrootdev[i].dv_parent = NULL;
807 		snprintf(fakemdrootdev[i].dv_xname,
808 		    sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
809 	}
810 #endif /* MEMORY_DISK_HOOKS */
811 
812 #ifdef MEMORY_DISK_IS_ROOT
813 	bootdv = &fakemdrootdev[0];
814 	bootpartition = 0;
815 #endif
816 
817 	/*
818 	 * If NFS is specified as the file system, and we found
819 	 * a DV_DISK boot device (or no boot device at all), then
820 	 * find a reasonable network interface for "rootspec".
821 	 */
822 	vops = vfs_getopsbyname("nfs");
823 	if (vops != NULL && vops->vfs_mountroot == mountroot &&
824 	    rootspec == NULL &&
825 	    (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
826 		IFNET_FOREACH(ifp) {
827 			if ((ifp->if_flags &
828 			     (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
829 				break;
830 		}
831 		if (ifp == NULL) {
832 			/*
833 			 * Can't find a suitable interface; ask the
834 			 * user.
835 			 */
836 			boothowto |= RB_ASKNAME;
837 		} else {
838 			/*
839 			 * Have a suitable interface; behave as if
840 			 * the user specified this interface.
841 			 */
842 			rootspec = (const char *)ifp->if_xname;
843 		}
844 	}
845 
846 	/*
847 	 * If wildcarded root and we the boot device wasn't determined,
848 	 * ask the user.
849 	 */
850 	if (rootspec == NULL && bootdv == NULL)
851 		boothowto |= RB_ASKNAME;
852 
853  top:
854 	if (boothowto & RB_ASKNAME) {
855 		struct device *defdumpdv;
856 
857 		for (;;) {
858 			printf("root device");
859 			if (bootdv != NULL) {
860 				printf(" (default %s", bootdv->dv_xname);
861 				if (DEV_USES_PARTITIONS(bootdv))
862 					printf("%c", bootpartition + 'a');
863 				printf(")");
864 			}
865 			printf(": ");
866 			len = cngetsn(buf, sizeof(buf));
867 			if (len == 0 && bootdv != NULL) {
868 				strlcpy(buf, bootdv->dv_xname, sizeof(buf));
869 				len = strlen(buf);
870 			}
871 			if (len > 0 && buf[len - 1] == '*') {
872 				buf[--len] = '\0';
873 				dv = getdisk(buf, len, 1, &nrootdev, 0);
874 				if (dv != NULL) {
875 					rootdv = dv;
876 					break;
877 				}
878 			}
879 			dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
880 			if (dv != NULL) {
881 				rootdv = dv;
882 				break;
883 			}
884 		}
885 
886 		/*
887 		 * Set up the default dump device.  If root is on
888 		 * a network device, there is no default dump
889 		 * device, since we don't support dumps to the
890 		 * network.
891 		 */
892 		if (DEV_USES_PARTITIONS(rootdv) == 0)
893 			defdumpdv = NULL;
894 		else
895 			defdumpdv = rootdv;
896 
897 		for (;;) {
898 			printf("dump device");
899 			if (defdumpdv != NULL) {
900 				/*
901 				 * Note, we know it's a disk if we get here.
902 				 */
903 				printf(" (default %sb)", defdumpdv->dv_xname);
904 			}
905 			printf(": ");
906 			len = cngetsn(buf, sizeof(buf));
907 			if (len == 0) {
908 				if (defdumpdv != NULL) {
909 					ndumpdev = MAKEDISKDEV(major(nrootdev),
910 					    DISKUNIT(nrootdev), 1);
911 				}
912 				dumpdv = defdumpdv;
913 				break;
914 			}
915 			if (len == 4 && strcmp(buf, "none") == 0) {
916 				dumpdv = NULL;
917 				break;
918 			}
919 			dv = getdisk(buf, len, 1, &ndumpdev, 1);
920 			if (dv != NULL) {
921 				dumpdv = dv;
922 				break;
923 			}
924 		}
925 
926 		rootdev = nrootdev;
927 		dumpdev = ndumpdev;
928 
929 		for (vops = LIST_FIRST(&vfs_list); vops != NULL;
930 		     vops = LIST_NEXT(vops, vfs_list)) {
931 			if (vops->vfs_mountroot != NULL &&
932 			    vops->vfs_mountroot == mountroot)
933 			break;
934 		}
935 
936 		if (vops == NULL) {
937 			mountroot = NULL;
938 			deffsname = "generic";
939 		} else
940 			deffsname = vops->vfs_name;
941 
942 		for (;;) {
943 			printf("file system (default %s): ", deffsname);
944 			len = cngetsn(buf, sizeof(buf));
945 			if (len == 0)
946 				break;
947 			if (len == 4 && strcmp(buf, "halt") == 0)
948 				cpu_reboot(RB_HALT, NULL);
949 			else if (len == 6 && strcmp(buf, "reboot") == 0)
950 				cpu_reboot(0, NULL);
951 #if defined(DDB)
952 			else if (len == 3 && strcmp(buf, "ddb") == 0) {
953 				console_debugger();
954 			}
955 #endif
956 			else if (len == 7 && strcmp(buf, "generic") == 0) {
957 				mountroot = NULL;
958 				break;
959 			}
960 			vops = vfs_getopsbyname(buf);
961 			if (vops == NULL || vops->vfs_mountroot == NULL) {
962 				printf("use one of: generic");
963 				for (vops = LIST_FIRST(&vfs_list);
964 				     vops != NULL;
965 				     vops = LIST_NEXT(vops, vfs_list)) {
966 					if (vops->vfs_mountroot != NULL)
967 						printf(" %s", vops->vfs_name);
968 				}
969 #if defined(DDB)
970 				printf(" ddb");
971 #endif
972 				printf(" halt reboot\n");
973 			} else {
974 				mountroot = vops->vfs_mountroot;
975 				break;
976 			}
977 		}
978 
979 	} else if (rootspec == NULL) {
980 		int majdev;
981 
982 		/*
983 		 * Wildcarded root; use the boot device.
984 		 */
985 		rootdv = bootdv;
986 
987 		majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
988 		if (majdev >= 0) {
989 			/*
990 			 * Root is on a disk.  `bootpartition' is root,
991 			 * unless the device does not use partitions.
992 			 */
993 			if (DEV_USES_PARTITIONS(bootdv))
994 				rootdev = MAKEDISKDEV(majdev,
995 						      device_unit(bootdv),
996 						      bootpartition);
997 			else
998 				rootdev = makedev(majdev, device_unit(bootdv));
999 		}
1000 	} else {
1001 
1002 		/*
1003 		 * `root on <dev> ...'
1004 		 */
1005 
1006 		/*
1007 		 * If it's a network interface, we can bail out
1008 		 * early.
1009 		 */
1010 		dv = finddevice(rootspec);
1011 		if (dv != NULL && device_class(dv) == DV_IFNET) {
1012 			rootdv = dv;
1013 			goto haveroot;
1014 		}
1015 
1016 		rootdevname = devsw_blk2name(major(rootdev));
1017 		if (rootdevname == NULL) {
1018 			printf("unknown device major 0x%x\n", rootdev);
1019 			boothowto |= RB_ASKNAME;
1020 			goto top;
1021 		}
1022 		memset(buf, 0, sizeof(buf));
1023 		snprintf(buf, sizeof(buf), "%s%d", rootdevname,
1024 		    DISKUNIT(rootdev));
1025 
1026 		rootdv = finddevice(buf);
1027 		if (rootdv == NULL) {
1028 			printf("device %s (0x%x) not configured\n",
1029 			    buf, rootdev);
1030 			boothowto |= RB_ASKNAME;
1031 			goto top;
1032 		}
1033 	}
1034 
1035  haveroot:
1036 
1037 	root_device = rootdv;
1038 
1039 	switch (device_class(rootdv)) {
1040 	case DV_IFNET:
1041 		aprint_normal("root on %s", rootdv->dv_xname);
1042 		break;
1043 
1044 	case DV_DISK:
1045 		aprint_normal("root on %s%c", rootdv->dv_xname,
1046 		    DISKPART(rootdev) + 'a');
1047 		break;
1048 
1049 	default:
1050 		printf("can't determine root device\n");
1051 		boothowto |= RB_ASKNAME;
1052 		goto top;
1053 	}
1054 
1055 	/*
1056 	 * Now configure the dump device.
1057 	 *
1058 	 * If we haven't figured out the dump device, do so, with
1059 	 * the following rules:
1060 	 *
1061 	 *	(a) We already know dumpdv in the RB_ASKNAME case.
1062 	 *
1063 	 *	(b) If dumpspec is set, try to use it.  If the device
1064 	 *	    is not available, punt.
1065 	 *
1066 	 *	(c) If dumpspec is not set, the dump device is
1067 	 *	    wildcarded or unspecified.  If the root device
1068 	 *	    is DV_IFNET, punt.  Otherwise, use partition b
1069 	 *	    of the root device.
1070 	 */
1071 
1072 	if (boothowto & RB_ASKNAME) {		/* (a) */
1073 		if (dumpdv == NULL)
1074 			goto nodumpdev;
1075 	} else if (dumpspec != NULL) {		/* (b) */
1076 		if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
1077 			/*
1078 			 * Operator doesn't want a dump device.
1079 			 * Or looks like they tried to pick a network
1080 			 * device.  Oops.
1081 			 */
1082 			goto nodumpdev;
1083 		}
1084 
1085 		dumpdevname = devsw_blk2name(major(dumpdev));
1086 		if (dumpdevname == NULL)
1087 			goto nodumpdev;
1088 		memset(buf, 0, sizeof(buf));
1089 		snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
1090 		    DISKUNIT(dumpdev));
1091 
1092 		dumpdv = finddevice(buf);
1093 		if (dumpdv == NULL) {
1094 			/*
1095 			 * Device not configured.
1096 			 */
1097 			goto nodumpdev;
1098 		}
1099 	} else {				/* (c) */
1100 		if (DEV_USES_PARTITIONS(rootdv) == 0)
1101 			goto nodumpdev;
1102 		else {
1103 			dumpdv = rootdv;
1104 			dumpdev = MAKEDISKDEV(major(rootdev),
1105 			    device_unit(dumpdv), 1);
1106 		}
1107 	}
1108 
1109 	aprint_normal(" dumps on %s%c\n", dumpdv->dv_xname,
1110 	    DISKPART(dumpdev) + 'a');
1111 	return;
1112 
1113  nodumpdev:
1114 	dumpdev = NODEV;
1115 	aprint_normal("\n");
1116 }
1117 
1118 static struct device *
1119 finddevice(const char *name)
1120 {
1121 	struct device *dv;
1122 #if defined(BOOT_FROM_RAID_HOOKS) || defined(BOOT_FROM_MEMORY_HOOKS)
1123 	int j;
1124 #endif /* BOOT_FROM_RAID_HOOKS || BOOT_FROM_MEMORY_HOOKS */
1125 
1126 #ifdef BOOT_FROM_RAID_HOOKS
1127 	for (j = 0; j < numraid; j++) {
1128 		if (strcmp(name, raidrootdev[j].dv_xname) == 0) {
1129 			dv = &raidrootdev[j];
1130 			return (dv);
1131 		}
1132 	}
1133 #endif /* BOOT_FROM_RAID_HOOKS */
1134 
1135 #ifdef BOOT_FROM_MEMORY_HOOKS
1136 	for (j = 0; j < NMD; j++) {
1137 		if (strcmp(name, fakemdrootdev[j].dv_xname) == 0) {
1138 			dv = &fakemdrootdev[j];
1139 			return (dv);
1140 		}
1141 	}
1142 #endif /* BOOT_FROM_MEMORY_HOOKS */
1143 
1144 	for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
1145 	    dv = TAILQ_NEXT(dv, dv_list))
1146 		if (strcmp(dv->dv_xname, name) == 0)
1147 			break;
1148 	return (dv);
1149 }
1150 
1151 static struct device *
1152 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
1153 {
1154 	struct device	*dv;
1155 #ifdef MEMORY_DISK_HOOKS
1156 	int		i;
1157 #endif
1158 #ifdef BOOT_FROM_RAID_HOOKS
1159 	int 		j;
1160 #endif
1161 
1162 	if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
1163 		printf("use one of:");
1164 #ifdef MEMORY_DISK_HOOKS
1165 		if (isdump == 0)
1166 			for (i = 0; i < NMD; i++)
1167 				printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
1168 				    'a' + MAXPARTITIONS - 1);
1169 #endif
1170 #ifdef BOOT_FROM_RAID_HOOKS
1171 		if (isdump == 0)
1172 			for (j = 0; j < numraid; j++)
1173 				printf(" %s[a-%c]", raidrootdev[j].dv_xname,
1174 				    'a' + MAXPARTITIONS - 1);
1175 #endif
1176 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
1177 			if (DEV_USES_PARTITIONS(dv))
1178 				printf(" %s[a-%c]", dv->dv_xname,
1179 				    'a' + MAXPARTITIONS - 1);
1180 			else if (device_class(dv) == DV_DISK)
1181 				printf(" %s", dv->dv_xname);
1182 			if (isdump == 0 && device_class(dv) == DV_IFNET)
1183 				printf(" %s", dv->dv_xname);
1184 		}
1185 		if (isdump)
1186 			printf(" none");
1187 #if defined(DDB)
1188 		printf(" ddb");
1189 #endif
1190 		printf(" halt reboot\n");
1191 	}
1192 	return (dv);
1193 }
1194 
1195 static struct device *
1196 parsedisk(char *str, int len, int defpart, dev_t *devp)
1197 {
1198 	struct device *dv;
1199 	char *cp, c;
1200 	int majdev, part;
1201 #ifdef MEMORY_DISK_HOOKS
1202 	int i;
1203 #endif
1204 	if (len == 0)
1205 		return (NULL);
1206 
1207 	if (len == 4 && strcmp(str, "halt") == 0)
1208 		cpu_reboot(RB_HALT, NULL);
1209 	else if (len == 6 && strcmp(str, "reboot") == 0)
1210 		cpu_reboot(0, NULL);
1211 #if defined(DDB)
1212 	else if (len == 3 && strcmp(str, "ddb") == 0)
1213 		console_debugger();
1214 #endif
1215 
1216 	cp = str + len - 1;
1217 	c = *cp;
1218 	if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
1219 		part = c - 'a';
1220 		*cp = '\0';
1221 	} else
1222 		part = defpart;
1223 
1224 #ifdef MEMORY_DISK_HOOKS
1225 	for (i = 0; i < NMD; i++)
1226 		if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
1227 			dv = &fakemdrootdev[i];
1228 			goto gotdisk;
1229 		}
1230 #endif
1231 
1232 	dv = finddevice(str);
1233 	if (dv != NULL) {
1234 		if (device_class(dv) == DV_DISK) {
1235 #ifdef MEMORY_DISK_HOOKS
1236  gotdisk:
1237 #endif
1238 			majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
1239 			if (majdev < 0)
1240 				panic("parsedisk");
1241 			if (DEV_USES_PARTITIONS(dv))
1242 				*devp = MAKEDISKDEV(majdev, device_unit(dv),
1243 						    part);
1244 			else
1245 				*devp = makedev(majdev, device_unit(dv));
1246 		}
1247 
1248 		if (device_class(dv) == DV_IFNET)
1249 			*devp = NODEV;
1250 	}
1251 
1252 	*cp = c;
1253 	return (dv);
1254 }
1255 
1256 /*
1257  * snprintf() `bytes' into `buf', reformatting it so that the number,
1258  * plus a possible `x' + suffix extension) fits into len bytes (including
1259  * the terminating NUL).
1260  * Returns the number of bytes stored in buf, or -1 if there was a problem.
1261  * E.g, given a len of 9 and a suffix of `B':
1262  *	bytes		result
1263  *	-----		------
1264  *	99999		`99999 B'
1265  *	100000		`97 kB'
1266  *	66715648	`65152 kB'
1267  *	252215296	`240 MB'
1268  */
1269 int
1270 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
1271     int divisor)
1272 {
1273        	/* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
1274 	const char *prefixes;
1275 	int		r;
1276 	uint64_t	umax;
1277 	size_t		i, suffixlen;
1278 
1279 	if (buf == NULL || suffix == NULL)
1280 		return (-1);
1281 	if (len > 0)
1282 		buf[0] = '\0';
1283 	suffixlen = strlen(suffix);
1284 	/* check if enough room for `x y' + suffix + `\0' */
1285 	if (len < 4 + suffixlen)
1286 		return (-1);
1287 
1288 	if (divisor == 1024) {
1289 		/*
1290 		 * binary multiplies
1291 		 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
1292 		 */
1293 		prefixes = " KMGTPE";
1294 	} else
1295 		prefixes = " kMGTPE"; /* SI for decimal multiplies */
1296 
1297 	umax = 1;
1298 	for (i = 0; i < len - suffixlen - 3; i++)
1299 		umax *= 10;
1300 	for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
1301 		bytes /= divisor;
1302 
1303 	r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
1304 	    i == 0 ? "" : " ", prefixes[i], suffix);
1305 
1306 	return (r);
1307 }
1308 
1309 int
1310 format_bytes(char *buf, size_t len, uint64_t bytes)
1311 {
1312 	int	rv;
1313 	size_t	nlen;
1314 
1315 	rv = humanize_number(buf, len, bytes, "B", 1024);
1316 	if (rv != -1) {
1317 			/* nuke the trailing ` B' if it exists */
1318 		nlen = strlen(buf) - 2;
1319 		if (strcmp(&buf[nlen], " B") == 0)
1320 			buf[nlen] = '\0';
1321 	}
1322 	return (rv);
1323 }
1324 
1325 /*
1326  * Return TRUE if system call tracing is enabled for the specified process.
1327  */
1328 boolean_t
1329 trace_is_enabled(struct proc *p)
1330 {
1331 #ifdef SYSCALL_DEBUG
1332 	return (TRUE);
1333 #endif
1334 #ifdef KTRACE
1335 	if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
1336 		return (TRUE);
1337 #endif
1338 #ifdef SYSTRACE
1339 	if (ISSET(p->p_flag, P_SYSTRACE))
1340 		return (TRUE);
1341 #endif
1342 	if (ISSET(p->p_flag, P_SYSCALL))
1343 		return (TRUE);
1344 
1345 	return (FALSE);
1346 }
1347 
1348 /*
1349  * Start trace of particular system call. If process is being traced,
1350  * this routine is called by MD syscall dispatch code just before
1351  * a system call is actually executed.
1352  * MD caller guarantees the passed 'code' is within the supported
1353  * system call number range for emulation the process runs under.
1354  */
1355 int
1356 trace_enter(struct lwp *l, register_t code,
1357     register_t realcode, const struct sysent *callp, void *args)
1358 {
1359 	struct proc *p = l->l_proc;
1360 
1361 #ifdef SYSCALL_DEBUG
1362 	scdebug_call(l, code, args);
1363 #endif /* SYSCALL_DEBUG */
1364 
1365 #ifdef KTRACE
1366 	if (KTRPOINT(p, KTR_SYSCALL))
1367 		ktrsyscall(l, code, realcode, callp, args);
1368 #endif /* KTRACE */
1369 
1370 	if ((p->p_flag & (P_SYSCALL|P_TRACED)) == (P_SYSCALL|P_TRACED))
1371 		process_stoptrace(l);
1372 
1373 #ifdef SYSTRACE
1374 	if (ISSET(p->p_flag, P_SYSTRACE))
1375 		return systrace_enter(p, code, args);
1376 #endif
1377 	return 0;
1378 }
1379 
1380 /*
1381  * End trace of particular system call. If process is being traced,
1382  * this routine is called by MD syscall dispatch code just after
1383  * a system call finishes.
1384  * MD caller guarantees the passed 'code' is within the supported
1385  * system call number range for emulation the process runs under.
1386  */
1387 void
1388 trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
1389     int error)
1390 {
1391 	struct proc *p = l->l_proc;
1392 
1393 #ifdef SYSCALL_DEBUG
1394 	scdebug_ret(l, code, error, rval);
1395 #endif /* SYSCALL_DEBUG */
1396 
1397 #ifdef KTRACE
1398 	if (KTRPOINT(p, KTR_SYSRET)) {
1399 		KERNEL_PROC_LOCK(l);
1400 		ktrsysret(l, code, error, rval);
1401 		KERNEL_PROC_UNLOCK(l);
1402 	}
1403 #endif /* KTRACE */
1404 
1405 	if ((p->p_flag & (P_SYSCALL|P_TRACED)) == (P_SYSCALL|P_TRACED))
1406 		process_stoptrace(l);
1407 
1408 #ifdef SYSTRACE
1409 	if (ISSET(p->p_flag, P_SYSTRACE)) {
1410 		KERNEL_PROC_LOCK(l);
1411 		systrace_exit(p, code, args, rval, error);
1412 		KERNEL_PROC_UNLOCK(l);
1413 	}
1414 #endif
1415 }
1416