xref: /netbsd-src/sys/kern/kern_subr.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: kern_subr.c,v 1.167 2007/12/09 20:28:43 jmcneill Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2002, 2007, 2006 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Luke Mewburn.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1982, 1986, 1991, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Copyright (c) 1992, 1993
50  *	The Regents of the University of California.  All rights reserved.
51  *
52  * This software was developed by the Computer Systems Engineering group
53  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
54  * contributed to Berkeley.
55  *
56  * All advertising materials mentioning features or use of this software
57  * must display the following acknowledgement:
58  *	This product includes software developed by the University of
59  *	California, Lawrence Berkeley Laboratory.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  * 2. Redistributions in binary form must reproduce the above copyright
67  *    notice, this list of conditions and the following disclaimer in the
68  *    documentation and/or other materials provided with the distribution.
69  * 3. Neither the name of the University nor the names of its contributors
70  *    may be used to endorse or promote products derived from this software
71  *    without specific prior written permission.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83  * SUCH DAMAGE.
84  *
85  *	@(#)kern_subr.c	8.4 (Berkeley) 2/14/95
86  */
87 
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.167 2007/12/09 20:28:43 jmcneill Exp $");
90 
91 #include "opt_ddb.h"
92 #include "opt_md.h"
93 #include "opt_syscall_debug.h"
94 #include "opt_ktrace.h"
95 #include "opt_ptrace.h"
96 #include "opt_systrace.h"
97 #include "opt_powerhook.h"
98 #include "opt_tftproot.h"
99 
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/proc.h>
103 #include <sys/malloc.h>
104 #include <sys/mount.h>
105 #include <sys/device.h>
106 #include <sys/reboot.h>
107 #include <sys/conf.h>
108 #include <sys/disk.h>
109 #include <sys/disklabel.h>
110 #include <sys/queue.h>
111 #include <sys/systrace.h>
112 #include <sys/ktrace.h>
113 #include <sys/ptrace.h>
114 #include <sys/fcntl.h>
115 #include <sys/kauth.h>
116 #include <sys/vnode.h>
117 #include <sys/pmf.h>
118 
119 #include <uvm/uvm_extern.h>
120 
121 #include <dev/cons.h>
122 
123 #include <net/if.h>
124 
125 /* XXX these should eventually move to subr_autoconf.c */
126 static struct device *finddevice(const char *);
127 static struct device *getdisk(char *, int, int, dev_t *, int);
128 static struct device *parsedisk(char *, int, int, dev_t *);
129 static const char *getwedgename(const char *, int);
130 
131 /*
132  * A generic linear hook.
133  */
134 struct hook_desc {
135 	LIST_ENTRY(hook_desc) hk_list;
136 	void	(*hk_fn)(void *);
137 	void	*hk_arg;
138 };
139 typedef LIST_HEAD(, hook_desc) hook_list_t;
140 
141 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
142 
143 #ifdef TFTPROOT
144 int tftproot_dhcpboot(struct device *);
145 #endif
146 
147 void
148 uio_setup_sysspace(struct uio *uio)
149 {
150 
151 	uio->uio_vmspace = vmspace_kernel();
152 }
153 
154 int
155 uiomove(void *buf, size_t n, struct uio *uio)
156 {
157 	struct vmspace *vm = uio->uio_vmspace;
158 	struct iovec *iov;
159 	u_int cnt;
160 	int error = 0;
161 	size_t on;
162 	char *cp = buf;
163 #ifdef MULTIPROCESSOR
164 	int hold_count;
165 #endif
166 
167 	if ((on = n) >= 1024) {
168 		KERNEL_UNLOCK_ALL(NULL, &hold_count);
169 	}
170 
171 	ASSERT_SLEEPABLE(NULL, "uiomove");
172 
173 #ifdef DIAGNOSTIC
174 	if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
175 		panic("uiomove: mode");
176 #endif
177 	while (n > 0 && uio->uio_resid) {
178 		iov = uio->uio_iov;
179 		cnt = iov->iov_len;
180 		if (cnt == 0) {
181 			KASSERT(uio->uio_iovcnt > 0);
182 			uio->uio_iov++;
183 			uio->uio_iovcnt--;
184 			continue;
185 		}
186 		if (cnt > n)
187 			cnt = n;
188 		if (!VMSPACE_IS_KERNEL_P(vm)) {
189 			if (curcpu()->ci_schedstate.spc_flags &
190 			    SPCF_SHOULDYIELD)
191 				preempt();
192 		}
193 
194 		if (uio->uio_rw == UIO_READ) {
195 			error = copyout_vmspace(vm, cp, iov->iov_base,
196 			    cnt);
197 		} else {
198 			error = copyin_vmspace(vm, iov->iov_base, cp,
199 			    cnt);
200 		}
201 		if (error) {
202 			break;
203 		}
204 		iov->iov_base = (char *)iov->iov_base + cnt;
205 		iov->iov_len -= cnt;
206 		uio->uio_resid -= cnt;
207 		uio->uio_offset += cnt;
208 		cp += cnt;
209 		KDASSERT(cnt <= n);
210 		n -= cnt;
211 	}
212 
213 	if (on >= 1024) {
214 		KERNEL_LOCK(hold_count, NULL);
215 	}
216 	return (error);
217 }
218 
219 /*
220  * Wrapper for uiomove() that validates the arguments against a known-good
221  * kernel buffer.
222  */
223 int
224 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
225 {
226 	size_t offset;
227 
228 	if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
229 	    (offset = uio->uio_offset) != uio->uio_offset)
230 		return (EINVAL);
231 	if (offset >= buflen)
232 		return (0);
233 	return (uiomove((char *)buf + offset, buflen - offset, uio));
234 }
235 
236 /*
237  * Give next character to user as result of read.
238  */
239 int
240 ureadc(int c, struct uio *uio)
241 {
242 	struct iovec *iov;
243 
244 	if (uio->uio_resid <= 0)
245 		panic("ureadc: non-positive resid");
246 again:
247 	if (uio->uio_iovcnt <= 0)
248 		panic("ureadc: non-positive iovcnt");
249 	iov = uio->uio_iov;
250 	if (iov->iov_len <= 0) {
251 		uio->uio_iovcnt--;
252 		uio->uio_iov++;
253 		goto again;
254 	}
255 	if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
256 		if (subyte(iov->iov_base, c) < 0)
257 			return (EFAULT);
258 	} else {
259 		*(char *)iov->iov_base = c;
260 	}
261 	iov->iov_base = (char *)iov->iov_base + 1;
262 	iov->iov_len--;
263 	uio->uio_resid--;
264 	uio->uio_offset++;
265 	return (0);
266 }
267 
268 /*
269  * Like copyin(), but operates on an arbitrary vmspace.
270  */
271 int
272 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
273 {
274 	struct iovec iov;
275 	struct uio uio;
276 	int error;
277 
278 	if (len == 0)
279 		return (0);
280 
281 	if (VMSPACE_IS_KERNEL_P(vm)) {
282 		return kcopy(uaddr, kaddr, len);
283 	}
284 	if (__predict_true(vm == curproc->p_vmspace)) {
285 		return copyin(uaddr, kaddr, len);
286 	}
287 
288 	iov.iov_base = kaddr;
289 	iov.iov_len = len;
290 	uio.uio_iov = &iov;
291 	uio.uio_iovcnt = 1;
292 	uio.uio_offset = (off_t)(intptr_t)uaddr;
293 	uio.uio_resid = len;
294 	uio.uio_rw = UIO_READ;
295 	UIO_SETUP_SYSSPACE(&uio);
296 	error = uvm_io(&vm->vm_map, &uio);
297 
298 	return (error);
299 }
300 
301 /*
302  * Like copyout(), but operates on an arbitrary vmspace.
303  */
304 int
305 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
306 {
307 	struct iovec iov;
308 	struct uio uio;
309 	int error;
310 
311 	if (len == 0)
312 		return (0);
313 
314 	if (VMSPACE_IS_KERNEL_P(vm)) {
315 		return kcopy(kaddr, uaddr, len);
316 	}
317 	if (__predict_true(vm == curproc->p_vmspace)) {
318 		return copyout(kaddr, uaddr, len);
319 	}
320 
321 	iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
322 	iov.iov_len = len;
323 	uio.uio_iov = &iov;
324 	uio.uio_iovcnt = 1;
325 	uio.uio_offset = (off_t)(intptr_t)uaddr;
326 	uio.uio_resid = len;
327 	uio.uio_rw = UIO_WRITE;
328 	UIO_SETUP_SYSSPACE(&uio);
329 	error = uvm_io(&vm->vm_map, &uio);
330 
331 	return (error);
332 }
333 
334 /*
335  * Like copyin(), but operates on an arbitrary process.
336  */
337 int
338 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
339 {
340 	struct vmspace *vm;
341 	int error;
342 
343 	error = proc_vmspace_getref(p, &vm);
344 	if (error) {
345 		return error;
346 	}
347 	error = copyin_vmspace(vm, uaddr, kaddr, len);
348 	uvmspace_free(vm);
349 
350 	return error;
351 }
352 
353 /*
354  * Like copyout(), but operates on an arbitrary process.
355  */
356 int
357 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
358 {
359 	struct vmspace *vm;
360 	int error;
361 
362 	error = proc_vmspace_getref(p, &vm);
363 	if (error) {
364 		return error;
365 	}
366 	error = copyout_vmspace(vm, kaddr, uaddr, len);
367 	uvmspace_free(vm);
368 
369 	return error;
370 }
371 
372 /*
373  * Like copyin(), except it operates on kernel addresses when the FKIOCTL
374  * flag is passed in `ioctlflags' from the ioctl call.
375  */
376 int
377 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
378 {
379 	if (ioctlflags & FKIOCTL)
380 		return kcopy(src, dst, len);
381 	return copyin(src, dst, len);
382 }
383 
384 /*
385  * Like copyout(), except it operates on kernel addresses when the FKIOCTL
386  * flag is passed in `ioctlflags' from the ioctl call.
387  */
388 int
389 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
390 {
391 	if (ioctlflags & FKIOCTL)
392 		return kcopy(src, dst, len);
393 	return copyout(src, dst, len);
394 }
395 
396 static void *
397 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
398 {
399 	struct hook_desc *hd;
400 
401 	hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
402 	if (hd == NULL)
403 		return (NULL);
404 
405 	hd->hk_fn = fn;
406 	hd->hk_arg = arg;
407 	LIST_INSERT_HEAD(list, hd, hk_list);
408 
409 	return (hd);
410 }
411 
412 static void
413 hook_disestablish(hook_list_t *list, void *vhook)
414 {
415 #ifdef DIAGNOSTIC
416 	struct hook_desc *hd;
417 
418 	LIST_FOREACH(hd, list, hk_list) {
419                 if (hd == vhook)
420 			break;
421 	}
422 
423 	if (hd == NULL)
424 		panic("hook_disestablish: hook %p not established", vhook);
425 #endif
426 	LIST_REMOVE((struct hook_desc *)vhook, hk_list);
427 	free(vhook, M_DEVBUF);
428 }
429 
430 static void
431 hook_destroy(hook_list_t *list)
432 {
433 	struct hook_desc *hd;
434 
435 	while ((hd = LIST_FIRST(list)) != NULL) {
436 		LIST_REMOVE(hd, hk_list);
437 		free(hd, M_DEVBUF);
438 	}
439 }
440 
441 static void
442 hook_proc_run(hook_list_t *list, struct proc *p)
443 {
444 	struct hook_desc *hd;
445 
446 	for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
447 		((void (*)(struct proc *, void *))*hd->hk_fn)(p,
448 		    hd->hk_arg);
449 	}
450 }
451 
452 /*
453  * "Shutdown hook" types, functions, and variables.
454  *
455  * Should be invoked immediately before the
456  * system is halted or rebooted, i.e. after file systems unmounted,
457  * after crash dump done, etc.
458  *
459  * Each shutdown hook is removed from the list before it's run, so that
460  * it won't be run again.
461  */
462 
463 static hook_list_t shutdownhook_list;
464 
465 void *
466 shutdownhook_establish(void (*fn)(void *), void *arg)
467 {
468 	return hook_establish(&shutdownhook_list, fn, arg);
469 }
470 
471 void
472 shutdownhook_disestablish(void *vhook)
473 {
474 	hook_disestablish(&shutdownhook_list, vhook);
475 }
476 
477 /*
478  * Run shutdown hooks.  Should be invoked immediately before the
479  * system is halted or rebooted, i.e. after file systems unmounted,
480  * after crash dump done, etc.
481  *
482  * Each shutdown hook is removed from the list before it's run, so that
483  * it won't be run again.
484  */
485 void
486 doshutdownhooks(void)
487 {
488 	struct hook_desc *dp;
489 
490 	while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
491 		LIST_REMOVE(dp, hk_list);
492 		(*dp->hk_fn)(dp->hk_arg);
493 #if 0
494 		/*
495 		 * Don't bother freeing the hook structure,, since we may
496 		 * be rebooting because of a memory corruption problem,
497 		 * and this might only make things worse.  It doesn't
498 		 * matter, anyway, since the system is just about to
499 		 * reboot.
500 		 */
501 		free(dp, M_DEVBUF);
502 #endif
503 	}
504 
505 	pmf_system_shutdown();
506 }
507 
508 /*
509  * "Mountroot hook" types, functions, and variables.
510  */
511 
512 static hook_list_t mountroothook_list;
513 
514 void *
515 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
516 {
517 	return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
518 }
519 
520 void
521 mountroothook_disestablish(void *vhook)
522 {
523 	hook_disestablish(&mountroothook_list, vhook);
524 }
525 
526 void
527 mountroothook_destroy(void)
528 {
529 	hook_destroy(&mountroothook_list);
530 }
531 
532 void
533 domountroothook(void)
534 {
535 	struct hook_desc *hd;
536 
537 	LIST_FOREACH(hd, &mountroothook_list, hk_list) {
538 		if (hd->hk_arg == (void *)root_device) {
539 			(*hd->hk_fn)(hd->hk_arg);
540 			return;
541 		}
542 	}
543 }
544 
545 static hook_list_t exechook_list;
546 
547 void *
548 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
549 {
550 	return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
551 }
552 
553 void
554 exechook_disestablish(void *vhook)
555 {
556 	hook_disestablish(&exechook_list, vhook);
557 }
558 
559 /*
560  * Run exec hooks.
561  */
562 void
563 doexechooks(struct proc *p)
564 {
565 	hook_proc_run(&exechook_list, p);
566 }
567 
568 static hook_list_t exithook_list;
569 
570 void *
571 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
572 {
573 	return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
574 }
575 
576 void
577 exithook_disestablish(void *vhook)
578 {
579 	hook_disestablish(&exithook_list, vhook);
580 }
581 
582 /*
583  * Run exit hooks.
584  */
585 void
586 doexithooks(struct proc *p)
587 {
588 	hook_proc_run(&exithook_list, p);
589 }
590 
591 static hook_list_t forkhook_list;
592 
593 void *
594 forkhook_establish(void (*fn)(struct proc *, struct proc *))
595 {
596 	return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
597 }
598 
599 void
600 forkhook_disestablish(void *vhook)
601 {
602 	hook_disestablish(&forkhook_list, vhook);
603 }
604 
605 /*
606  * Run fork hooks.
607  */
608 void
609 doforkhooks(struct proc *p2, struct proc *p1)
610 {
611 	struct hook_desc *hd;
612 
613 	LIST_FOREACH(hd, &forkhook_list, hk_list) {
614 		((void (*)(struct proc *, struct proc *))*hd->hk_fn)
615 		    (p2, p1);
616 	}
617 }
618 
619 /*
620  * "Power hook" types, functions, and variables.
621  * The list of power hooks is kept ordered with the last registered hook
622  * first.
623  * When running the hooks on power down the hooks are called in reverse
624  * registration order, when powering up in registration order.
625  */
626 struct powerhook_desc {
627 	CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
628 	void	(*sfd_fn)(int, void *);
629 	void	*sfd_arg;
630 	char	sfd_name[16];
631 };
632 
633 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
634     CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
635 
636 void *
637 powerhook_establish(const char *name, void (*fn)(int, void *), void *arg)
638 {
639 	struct powerhook_desc *ndp;
640 
641 	ndp = (struct powerhook_desc *)
642 	    malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
643 	if (ndp == NULL)
644 		return (NULL);
645 
646 	ndp->sfd_fn = fn;
647 	ndp->sfd_arg = arg;
648 	strlcpy(ndp->sfd_name, name, sizeof(ndp->sfd_name));
649 	CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
650 
651 	aprint_error("%s: WARNING: powerhook_establish is deprecated\n", name);
652 	return (ndp);
653 }
654 
655 void
656 powerhook_disestablish(void *vhook)
657 {
658 #ifdef DIAGNOSTIC
659 	struct powerhook_desc *dp;
660 
661 	CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
662                 if (dp == vhook)
663 			goto found;
664 	panic("powerhook_disestablish: hook %p not established", vhook);
665  found:
666 #endif
667 
668 	CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
669 	    sfd_list);
670 	free(vhook, M_DEVBUF);
671 }
672 
673 /*
674  * Run power hooks.
675  */
676 void
677 dopowerhooks(int why)
678 {
679 	struct powerhook_desc *dp;
680 
681 #ifdef POWERHOOK_DEBUG
682 	const char *why_name;
683 	static const char * pwr_names[] = {PWR_NAMES};
684 	why_name = why < __arraycount(pwr_names) ? pwr_names[why] : "???";
685 #endif
686 
687 	if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
688 		CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
689 #ifdef POWERHOOK_DEBUG
690 			printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
691 #endif
692 			(*dp->sfd_fn)(why, dp->sfd_arg);
693 		}
694 	} else {
695 		CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
696 #ifdef POWERHOOK_DEBUG
697 			printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
698 #endif
699 			(*dp->sfd_fn)(why, dp->sfd_arg);
700 		}
701 	}
702 
703 #ifdef POWERHOOK_DEBUG
704 	printf("dopowerhooks: %s done\n", why_name);
705 #endif
706 }
707 
708 static int
709 isswap(struct device *dv)
710 {
711 	struct dkwedge_info wi;
712 	struct vnode *vn;
713 	int error;
714 
715 	if (device_class(dv) != DV_DISK || !device_is_a(dv, "dk"))
716 		return 0;
717 
718 	if ((vn = opendisk(dv)) == NULL)
719 		return 0;
720 
721 	error = VOP_IOCTL(vn, DIOCGWEDGEINFO, &wi, FREAD, NOCRED);
722 	VOP_CLOSE(vn, FREAD, NOCRED);
723 	vput(vn);
724 	if (error) {
725 #ifdef DEBUG_WEDGE
726 		printf("%s: Get wedge info returned %d\n", dv->dv_xname, error);
727 #endif
728 		return 0;
729 	}
730 	return strcmp(wi.dkw_ptype, DKW_PTYPE_SWAP) == 0;
731 }
732 
733 /*
734  * Determine the root device and, if instructed to, the root file system.
735  */
736 
737 #include "md.h"
738 #if NMD == 0
739 #undef MEMORY_DISK_HOOKS
740 #endif
741 
742 #ifdef MEMORY_DISK_HOOKS
743 static struct device fakemdrootdev[NMD];
744 extern struct cfdriver md_cd;
745 #endif
746 
747 #ifdef MEMORY_DISK_IS_ROOT
748 #define BOOT_FROM_MEMORY_HOOKS 1
749 #endif
750 
751 /*
752  * The device and wedge that we booted from.  If booted_wedge is NULL,
753  * the we might consult booted_partition.
754  */
755 struct device *booted_device;
756 struct device *booted_wedge;
757 int booted_partition;
758 
759 /*
760  * Use partition letters if it's a disk class but not a wedge.
761  * XXX Check for wedge is kinda gross.
762  */
763 #define	DEV_USES_PARTITIONS(dv)						\
764 	(device_class((dv)) == DV_DISK &&				\
765 	 !device_is_a((dv), "dk"))
766 
767 void
768 setroot(struct device *bootdv, int bootpartition)
769 {
770 	struct device *dv;
771 	int len, majdev;
772 #ifdef MEMORY_DISK_HOOKS
773 	int i;
774 #endif
775 	dev_t nrootdev;
776 	dev_t ndumpdev = NODEV;
777 	char buf[128];
778 	const char *rootdevname;
779 	const char *dumpdevname;
780 	struct device *rootdv = NULL;		/* XXX gcc -Wuninitialized */
781 	struct device *dumpdv = NULL;
782 	struct ifnet *ifp;
783 	const char *deffsname;
784 	struct vfsops *vops;
785 
786 #ifdef TFTPROOT
787 	if (tftproot_dhcpboot(bootdv) != 0)
788 		boothowto |= RB_ASKNAME;
789 #endif
790 
791 #ifdef MEMORY_DISK_HOOKS
792 	for (i = 0; i < NMD; i++) {
793 		fakemdrootdev[i].dv_class  = DV_DISK;
794 		fakemdrootdev[i].dv_cfdata = NULL;
795 		fakemdrootdev[i].dv_cfdriver = &md_cd;
796 		fakemdrootdev[i].dv_unit   = i;
797 		fakemdrootdev[i].dv_parent = NULL;
798 		snprintf(fakemdrootdev[i].dv_xname,
799 		    sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
800 	}
801 #endif /* MEMORY_DISK_HOOKS */
802 
803 #ifdef MEMORY_DISK_IS_ROOT
804 	bootdv = &fakemdrootdev[0];
805 	bootpartition = 0;
806 #endif
807 
808 	/*
809 	 * If NFS is specified as the file system, and we found
810 	 * a DV_DISK boot device (or no boot device at all), then
811 	 * find a reasonable network interface for "rootspec".
812 	 */
813 	vops = vfs_getopsbyname("nfs");
814 	if (vops != NULL && vops->vfs_mountroot == mountroot &&
815 	    rootspec == NULL &&
816 	    (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
817 		IFNET_FOREACH(ifp) {
818 			if ((ifp->if_flags &
819 			     (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
820 				break;
821 		}
822 		if (ifp == NULL) {
823 			/*
824 			 * Can't find a suitable interface; ask the
825 			 * user.
826 			 */
827 			boothowto |= RB_ASKNAME;
828 		} else {
829 			/*
830 			 * Have a suitable interface; behave as if
831 			 * the user specified this interface.
832 			 */
833 			rootspec = (const char *)ifp->if_xname;
834 		}
835 	}
836 	if (vops != NULL)
837 		vfs_delref(vops);
838 
839 	/*
840 	 * If wildcarded root and we the boot device wasn't determined,
841 	 * ask the user.
842 	 */
843 	if (rootspec == NULL && bootdv == NULL)
844 		boothowto |= RB_ASKNAME;
845 
846  top:
847 	if (boothowto & RB_ASKNAME) {
848 		struct device *defdumpdv;
849 
850 		for (;;) {
851 			printf("root device");
852 			if (bootdv != NULL) {
853 				printf(" (default %s", bootdv->dv_xname);
854 				if (DEV_USES_PARTITIONS(bootdv))
855 					printf("%c", bootpartition + 'a');
856 				printf(")");
857 			}
858 			printf(": ");
859 			len = cngetsn(buf, sizeof(buf));
860 			if (len == 0 && bootdv != NULL) {
861 				strlcpy(buf, bootdv->dv_xname, sizeof(buf));
862 				len = strlen(buf);
863 			}
864 			if (len > 0 && buf[len - 1] == '*') {
865 				buf[--len] = '\0';
866 				dv = getdisk(buf, len, 1, &nrootdev, 0);
867 				if (dv != NULL) {
868 					rootdv = dv;
869 					break;
870 				}
871 			}
872 			dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
873 			if (dv != NULL) {
874 				rootdv = dv;
875 				break;
876 			}
877 		}
878 
879 		/*
880 		 * Set up the default dump device.  If root is on
881 		 * a network device, there is no default dump
882 		 * device, since we don't support dumps to the
883 		 * network.
884 		 */
885 		if (DEV_USES_PARTITIONS(rootdv) == 0)
886 			defdumpdv = NULL;
887 		else
888 			defdumpdv = rootdv;
889 
890 		for (;;) {
891 			printf("dump device");
892 			if (defdumpdv != NULL) {
893 				/*
894 				 * Note, we know it's a disk if we get here.
895 				 */
896 				printf(" (default %sb)", defdumpdv->dv_xname);
897 			}
898 			printf(": ");
899 			len = cngetsn(buf, sizeof(buf));
900 			if (len == 0) {
901 				if (defdumpdv != NULL) {
902 					ndumpdev = MAKEDISKDEV(major(nrootdev),
903 					    DISKUNIT(nrootdev), 1);
904 				}
905 				dumpdv = defdumpdv;
906 				break;
907 			}
908 			if (len == 4 && strcmp(buf, "none") == 0) {
909 				dumpdv = NULL;
910 				break;
911 			}
912 			dv = getdisk(buf, len, 1, &ndumpdev, 1);
913 			if (dv != NULL) {
914 				dumpdv = dv;
915 				break;
916 			}
917 		}
918 
919 		rootdev = nrootdev;
920 		dumpdev = ndumpdev;
921 
922 		for (vops = LIST_FIRST(&vfs_list); vops != NULL;
923 		     vops = LIST_NEXT(vops, vfs_list)) {
924 			if (vops->vfs_mountroot != NULL &&
925 			    vops->vfs_mountroot == mountroot)
926 			break;
927 		}
928 
929 		if (vops == NULL) {
930 			mountroot = NULL;
931 			deffsname = "generic";
932 		} else
933 			deffsname = vops->vfs_name;
934 
935 		for (;;) {
936 			printf("file system (default %s): ", deffsname);
937 			len = cngetsn(buf, sizeof(buf));
938 			if (len == 0)
939 				break;
940 			if (len == 4 && strcmp(buf, "halt") == 0)
941 				cpu_reboot(RB_HALT, NULL);
942 			else if (len == 6 && strcmp(buf, "reboot") == 0)
943 				cpu_reboot(0, NULL);
944 #if defined(DDB)
945 			else if (len == 3 && strcmp(buf, "ddb") == 0) {
946 				console_debugger();
947 			}
948 #endif
949 			else if (len == 7 && strcmp(buf, "generic") == 0) {
950 				mountroot = NULL;
951 				break;
952 			}
953 			vops = vfs_getopsbyname(buf);
954 			if (vops == NULL || vops->vfs_mountroot == NULL) {
955 				printf("use one of: generic");
956 				for (vops = LIST_FIRST(&vfs_list);
957 				     vops != NULL;
958 				     vops = LIST_NEXT(vops, vfs_list)) {
959 					if (vops->vfs_mountroot != NULL)
960 						printf(" %s", vops->vfs_name);
961 				}
962 #if defined(DDB)
963 				printf(" ddb");
964 #endif
965 				printf(" halt reboot\n");
966 			} else {
967 				mountroot = vops->vfs_mountroot;
968 				vfs_delref(vops);
969 				break;
970 			}
971 		}
972 
973 	} else if (rootspec == NULL) {
974 		/*
975 		 * Wildcarded root; use the boot device.
976 		 */
977 		rootdv = bootdv;
978 
979 		majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
980 		if (majdev >= 0) {
981 			/*
982 			 * Root is on a disk.  `bootpartition' is root,
983 			 * unless the device does not use partitions.
984 			 */
985 			if (DEV_USES_PARTITIONS(bootdv))
986 				rootdev = MAKEDISKDEV(majdev,
987 						      device_unit(bootdv),
988 						      bootpartition);
989 			else
990 				rootdev = makedev(majdev, device_unit(bootdv));
991 		}
992 	} else {
993 
994 		/*
995 		 * `root on <dev> ...'
996 		 */
997 
998 		/*
999 		 * If it's a network interface, we can bail out
1000 		 * early.
1001 		 */
1002 		dv = finddevice(rootspec);
1003 		if (dv != NULL && device_class(dv) == DV_IFNET) {
1004 			rootdv = dv;
1005 			goto haveroot;
1006 		}
1007 
1008 		if (rootdev == NODEV &&
1009 		    device_class(dv) == DV_DISK && device_is_a(dv, "dk") &&
1010 		    (majdev = devsw_name2blk(dv->dv_xname, NULL, 0)) >= 0)
1011 			rootdev = makedev(majdev, device_unit(dv));
1012 
1013 		rootdevname = devsw_blk2name(major(rootdev));
1014 		if (rootdevname == NULL) {
1015 			printf("unknown device major 0x%x\n", rootdev);
1016 			boothowto |= RB_ASKNAME;
1017 			goto top;
1018 		}
1019 		memset(buf, 0, sizeof(buf));
1020 		snprintf(buf, sizeof(buf), "%s%d", rootdevname,
1021 		    DISKUNIT(rootdev));
1022 
1023 		rootdv = finddevice(buf);
1024 		if (rootdv == NULL) {
1025 			printf("device %s (0x%x) not configured\n",
1026 			    buf, rootdev);
1027 			boothowto |= RB_ASKNAME;
1028 			goto top;
1029 		}
1030 	}
1031 
1032  haveroot:
1033 
1034 	root_device = rootdv;
1035 
1036 	switch (device_class(rootdv)) {
1037 	case DV_IFNET:
1038 	case DV_DISK:
1039 		aprint_normal("root on %s", rootdv->dv_xname);
1040 		if (DEV_USES_PARTITIONS(rootdv))
1041 			aprint_normal("%c", DISKPART(rootdev) + 'a');
1042 		break;
1043 
1044 	default:
1045 		printf("can't determine root device\n");
1046 		boothowto |= RB_ASKNAME;
1047 		goto top;
1048 	}
1049 
1050 	/*
1051 	 * Now configure the dump device.
1052 	 *
1053 	 * If we haven't figured out the dump device, do so, with
1054 	 * the following rules:
1055 	 *
1056 	 *	(a) We already know dumpdv in the RB_ASKNAME case.
1057 	 *
1058 	 *	(b) If dumpspec is set, try to use it.  If the device
1059 	 *	    is not available, punt.
1060 	 *
1061 	 *	(c) If dumpspec is not set, the dump device is
1062 	 *	    wildcarded or unspecified.  If the root device
1063 	 *	    is DV_IFNET, punt.  Otherwise, use partition b
1064 	 *	    of the root device.
1065 	 */
1066 
1067 	if (boothowto & RB_ASKNAME) {		/* (a) */
1068 		if (dumpdv == NULL)
1069 			goto nodumpdev;
1070 	} else if (dumpspec != NULL) {		/* (b) */
1071 		if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
1072 			/*
1073 			 * Operator doesn't want a dump device.
1074 			 * Or looks like they tried to pick a network
1075 			 * device.  Oops.
1076 			 */
1077 			goto nodumpdev;
1078 		}
1079 
1080 		dumpdevname = devsw_blk2name(major(dumpdev));
1081 		if (dumpdevname == NULL)
1082 			goto nodumpdev;
1083 		memset(buf, 0, sizeof(buf));
1084 		snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
1085 		    DISKUNIT(dumpdev));
1086 
1087 		dumpdv = finddevice(buf);
1088 		if (dumpdv == NULL) {
1089 			/*
1090 			 * Device not configured.
1091 			 */
1092 			goto nodumpdev;
1093 		}
1094 	} else {				/* (c) */
1095 		if (DEV_USES_PARTITIONS(rootdv) == 0) {
1096 			for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
1097 			    dv = TAILQ_NEXT(dv, dv_list))
1098 				if (isswap(dv))
1099 					break;
1100 			if (dv == NULL)
1101 				goto nodumpdev;
1102 
1103 			majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
1104 			if (majdev < 0)
1105 				goto nodumpdev;
1106 			dumpdv = dv;
1107 			dumpdev = makedev(majdev, device_unit(dumpdv));
1108 		} else {
1109 			dumpdv = rootdv;
1110 			dumpdev = MAKEDISKDEV(major(rootdev),
1111 			    device_unit(dumpdv), 1);
1112 		}
1113 	}
1114 
1115 	aprint_normal(" dumps on %s", dumpdv->dv_xname);
1116 	if (DEV_USES_PARTITIONS(dumpdv))
1117 		aprint_normal("%c", DISKPART(dumpdev) + 'a');
1118 	aprint_normal("\n");
1119 	return;
1120 
1121  nodumpdev:
1122 	dumpdev = NODEV;
1123 	aprint_normal("\n");
1124 }
1125 
1126 static struct device *
1127 finddevice(const char *name)
1128 {
1129 	const char *wname;
1130 	struct device *dv;
1131 #if defined(BOOT_FROM_MEMORY_HOOKS)
1132 	int j;
1133 #endif /* BOOT_FROM_MEMORY_HOOKS */
1134 
1135 	if ((wname = getwedgename(name, strlen(name))) != NULL)
1136 		return dkwedge_find_by_wname(wname);
1137 
1138 #ifdef BOOT_FROM_MEMORY_HOOKS
1139 	for (j = 0; j < NMD; j++) {
1140 		if (strcmp(name, fakemdrootdev[j].dv_xname) == 0)
1141 			return &fakemdrootdev[j];
1142 	}
1143 #endif /* BOOT_FROM_MEMORY_HOOKS */
1144 
1145 	TAILQ_FOREACH(dv, &alldevs, dv_list) {
1146 		if (strcmp(dv->dv_xname, name) == 0)
1147 			break;
1148 	}
1149 	return dv;
1150 }
1151 
1152 static struct device *
1153 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
1154 {
1155 	struct device	*dv;
1156 #ifdef MEMORY_DISK_HOOKS
1157 	int		i;
1158 #endif
1159 
1160 	if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
1161 		printf("use one of:");
1162 #ifdef MEMORY_DISK_HOOKS
1163 		if (isdump == 0)
1164 			for (i = 0; i < NMD; i++)
1165 				printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
1166 				    'a' + MAXPARTITIONS - 1);
1167 #endif
1168 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
1169 			if (DEV_USES_PARTITIONS(dv))
1170 				printf(" %s[a-%c]", dv->dv_xname,
1171 				    'a' + MAXPARTITIONS - 1);
1172 			else if (device_class(dv) == DV_DISK)
1173 				printf(" %s", dv->dv_xname);
1174 			if (isdump == 0 && device_class(dv) == DV_IFNET)
1175 				printf(" %s", dv->dv_xname);
1176 		}
1177 		dkwedge_print_wnames();
1178 		if (isdump)
1179 			printf(" none");
1180 #if defined(DDB)
1181 		printf(" ddb");
1182 #endif
1183 		printf(" halt reboot\n");
1184 	}
1185 	return dv;
1186 }
1187 
1188 static const char *
1189 getwedgename(const char *name, int namelen)
1190 {
1191 	const char *wpfx = "wedge:";
1192 	const int wpfxlen = strlen(wpfx);
1193 
1194 	if (namelen < wpfxlen || strncmp(name, wpfx, wpfxlen) != 0)
1195 		return NULL;
1196 
1197 	return name + wpfxlen;
1198 }
1199 
1200 static struct device *
1201 parsedisk(char *str, int len, int defpart, dev_t *devp)
1202 {
1203 	struct device *dv;
1204 	const char *wname;
1205 	char *cp, c;
1206 	int majdev, part;
1207 #ifdef MEMORY_DISK_HOOKS
1208 	int i;
1209 #endif
1210 	if (len == 0)
1211 		return (NULL);
1212 
1213 	if (len == 4 && strcmp(str, "halt") == 0)
1214 		cpu_reboot(RB_HALT, NULL);
1215 	else if (len == 6 && strcmp(str, "reboot") == 0)
1216 		cpu_reboot(0, NULL);
1217 #if defined(DDB)
1218 	else if (len == 3 && strcmp(str, "ddb") == 0)
1219 		console_debugger();
1220 #endif
1221 
1222 	cp = str + len - 1;
1223 	c = *cp;
1224 
1225 	if ((wname = getwedgename(str, len)) != NULL) {
1226 		if ((dv = dkwedge_find_by_wname(wname)) == NULL)
1227 			return NULL;
1228 		part = defpart;
1229 		goto gotdisk;
1230 	} else if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
1231 		part = c - 'a';
1232 		*cp = '\0';
1233 	} else
1234 		part = defpart;
1235 
1236 #ifdef MEMORY_DISK_HOOKS
1237 	for (i = 0; i < NMD; i++)
1238 		if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
1239 			dv = &fakemdrootdev[i];
1240 			goto gotdisk;
1241 		}
1242 #endif
1243 
1244 	dv = finddevice(str);
1245 	if (dv != NULL) {
1246 		if (device_class(dv) == DV_DISK) {
1247  gotdisk:
1248 			majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
1249 			if (majdev < 0)
1250 				panic("parsedisk");
1251 			if (DEV_USES_PARTITIONS(dv))
1252 				*devp = MAKEDISKDEV(majdev, device_unit(dv),
1253 						    part);
1254 			else
1255 				*devp = makedev(majdev, device_unit(dv));
1256 		}
1257 
1258 		if (device_class(dv) == DV_IFNET)
1259 			*devp = NODEV;
1260 	}
1261 
1262 	*cp = c;
1263 	return (dv);
1264 }
1265 
1266 /*
1267  * snprintf() `bytes' into `buf', reformatting it so that the number,
1268  * plus a possible `x' + suffix extension) fits into len bytes (including
1269  * the terminating NUL).
1270  * Returns the number of bytes stored in buf, or -1 if there was a problem.
1271  * E.g, given a len of 9 and a suffix of `B':
1272  *	bytes		result
1273  *	-----		------
1274  *	99999		`99999 B'
1275  *	100000		`97 kB'
1276  *	66715648	`65152 kB'
1277  *	252215296	`240 MB'
1278  */
1279 int
1280 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
1281     int divisor)
1282 {
1283        	/* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
1284 	const char *prefixes;
1285 	int		r;
1286 	uint64_t	umax;
1287 	size_t		i, suffixlen;
1288 
1289 	if (buf == NULL || suffix == NULL)
1290 		return (-1);
1291 	if (len > 0)
1292 		buf[0] = '\0';
1293 	suffixlen = strlen(suffix);
1294 	/* check if enough room for `x y' + suffix + `\0' */
1295 	if (len < 4 + suffixlen)
1296 		return (-1);
1297 
1298 	if (divisor == 1024) {
1299 		/*
1300 		 * binary multiplies
1301 		 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
1302 		 */
1303 		prefixes = " KMGTPE";
1304 	} else
1305 		prefixes = " kMGTPE"; /* SI for decimal multiplies */
1306 
1307 	umax = 1;
1308 	for (i = 0; i < len - suffixlen - 3; i++)
1309 		umax *= 10;
1310 	for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
1311 		bytes /= divisor;
1312 
1313 	r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
1314 	    i == 0 ? "" : " ", prefixes[i], suffix);
1315 
1316 	return (r);
1317 }
1318 
1319 int
1320 format_bytes(char *buf, size_t len, uint64_t bytes)
1321 {
1322 	int	rv;
1323 	size_t	nlen;
1324 
1325 	rv = humanize_number(buf, len, bytes, "B", 1024);
1326 	if (rv != -1) {
1327 			/* nuke the trailing ` B' if it exists */
1328 		nlen = strlen(buf) - 2;
1329 		if (strcmp(&buf[nlen], " B") == 0)
1330 			buf[nlen] = '\0';
1331 	}
1332 	return (rv);
1333 }
1334 
1335 /*
1336  * Return true if system call tracing is enabled for the specified process.
1337  */
1338 bool
1339 trace_is_enabled(struct proc *p)
1340 {
1341 #ifdef SYSCALL_DEBUG
1342 	return (true);
1343 #endif
1344 #ifdef KTRACE
1345 	if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
1346 		return (true);
1347 #endif
1348 #ifdef SYSTRACE
1349 	if (ISSET(p->p_flag, PK_SYSTRACE))
1350 		return (true);
1351 #endif
1352 #ifdef PTRACE
1353 	if (ISSET(p->p_slflag, PSL_SYSCALL))
1354 		return (true);
1355 #endif
1356 
1357 	return (false);
1358 }
1359 
1360 /*
1361  * Start trace of particular system call. If process is being traced,
1362  * this routine is called by MD syscall dispatch code just before
1363  * a system call is actually executed.
1364  * MD caller guarantees the passed 'code' is within the supported
1365  * system call number range for emulation the process runs under.
1366  */
1367 int
1368 trace_enter(struct lwp *l, register_t code,
1369     register_t realcode, const struct sysent *callp, void *args)
1370 {
1371 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
1372 	struct proc *p = l->l_proc;
1373 
1374 #ifdef SYSCALL_DEBUG
1375 	scdebug_call(l, code, args);
1376 #endif /* SYSCALL_DEBUG */
1377 
1378 	ktrsyscall(code, realcode, callp, args);
1379 
1380 #ifdef PTRACE
1381 	if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1382 	    (PSL_SYSCALL|PSL_TRACED))
1383 		process_stoptrace(l);
1384 #endif
1385 
1386 #ifdef SYSTRACE
1387 	if (ISSET(p->p_flag, PK_SYSTRACE)) {
1388 		int error;
1389 		KERNEL_LOCK(1, l);
1390 		error = systrace_enter(l, code, args);
1391 		KERNEL_UNLOCK_ONE(l);
1392 		return error;
1393 	}
1394 #endif
1395 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
1396 	return 0;
1397 }
1398 
1399 /*
1400  * End trace of particular system call. If process is being traced,
1401  * this routine is called by MD syscall dispatch code just after
1402  * a system call finishes.
1403  * MD caller guarantees the passed 'code' is within the supported
1404  * system call number range for emulation the process runs under.
1405  */
1406 void
1407 trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
1408     int error)
1409 {
1410 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
1411 	struct proc *p = l->l_proc;
1412 
1413 #ifdef SYSCALL_DEBUG
1414 	scdebug_ret(l, code, error, rval);
1415 #endif /* SYSCALL_DEBUG */
1416 
1417 	ktrsysret(code, error, rval);
1418 
1419 #ifdef PTRACE
1420 	if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1421 	    (PSL_SYSCALL|PSL_TRACED))
1422 		process_stoptrace(l);
1423 #endif
1424 
1425 #ifdef SYSTRACE
1426 	if (ISSET(p->p_flag, PK_SYSTRACE)) {
1427 		KERNEL_LOCK(1, l);
1428 		systrace_exit(l, code, args, rval, error);
1429 		KERNEL_UNLOCK_ONE(l);
1430 	}
1431 #endif
1432 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
1433 }
1434 
1435 /*
1436  * Disable kernel preemption.
1437  */
1438 void
1439 crit_enter(void)
1440 {
1441 	/* nothing */
1442 }
1443 
1444 /*
1445  * Reenable kernel preemption.
1446  */
1447 void
1448 crit_exit(void)
1449 {
1450 	/* nothing */
1451 }
1452