1 /* $NetBSD: kern_softint.c,v 1.39 2013/01/07 23:21:31 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Generic software interrupt framework. 34 * 35 * Overview 36 * 37 * The soft interrupt framework provides a mechanism to schedule a 38 * low priority callback that runs with thread context. It allows 39 * for dynamic registration of software interrupts, and for fair 40 * queueing and prioritization of those interrupts. The callbacks 41 * can be scheduled to run from nearly any point in the kernel: by 42 * code running with thread context, by code running from a 43 * hardware interrupt handler, and at any interrupt priority 44 * level. 45 * 46 * Priority levels 47 * 48 * Since soft interrupt dispatch can be tied to the underlying 49 * architecture's interrupt dispatch code, it can be limited 50 * both by the capabilities of the hardware and the capabilities 51 * of the interrupt dispatch code itself. The number of priority 52 * levels is restricted to four. In order of priority (lowest to 53 * highest) the levels are: clock, bio, net, serial. 54 * 55 * The names are symbolic and in isolation do not have any direct 56 * connection with a particular kind of device activity: they are 57 * only meant as a guide. 58 * 59 * The four priority levels map directly to scheduler priority 60 * levels, and where the architecture implements 'fast' software 61 * interrupts, they also map onto interrupt priorities. The 62 * interrupt priorities are intended to be hidden from machine 63 * independent code, which should use thread-safe mechanisms to 64 * synchronize with software interrupts (for example: mutexes). 65 * 66 * Capabilities 67 * 68 * Software interrupts run with limited machine context. In 69 * particular, they do not posess any address space context. They 70 * should not try to operate on user space addresses, or to use 71 * virtual memory facilities other than those noted as interrupt 72 * safe. 73 * 74 * Unlike hardware interrupts, software interrupts do have thread 75 * context. They may block on synchronization objects, sleep, and 76 * resume execution at a later time. 77 * 78 * Since software interrupts are a limited resource and run with 79 * higher priority than most other LWPs in the system, all 80 * block-and-resume activity by a software interrupt must be kept 81 * short to allow futher processing at that level to continue. By 82 * extension, code running with process context must take care to 83 * ensure that any lock that may be taken from a software interrupt 84 * can not be held for more than a short period of time. 85 * 86 * The kernel does not allow software interrupts to use facilities 87 * or perform actions that may block for a significant amount of 88 * time. This means that it's not valid for a software interrupt 89 * to sleep on condition variables or wait for resources to become 90 * available (for example, memory). 91 * 92 * Per-CPU operation 93 * 94 * If a soft interrupt is triggered on a CPU, it can only be 95 * dispatched on the same CPU. Each LWP dedicated to handling a 96 * soft interrupt is bound to its home CPU, so if the LWP blocks 97 * and needs to run again, it can only run there. Nearly all data 98 * structures used to manage software interrupts are per-CPU. 99 * 100 * The per-CPU requirement is intended to reduce "ping-pong" of 101 * cache lines between CPUs: lines occupied by data structures 102 * used to manage the soft interrupts, and lines occupied by data 103 * items being passed down to the soft interrupt. As a positive 104 * side effect, this also means that the soft interrupt dispatch 105 * code does not need to to use spinlocks to synchronize. 106 * 107 * Generic implementation 108 * 109 * A generic, low performance implementation is provided that 110 * works across all architectures, with no machine-dependent 111 * modifications needed. This implementation uses the scheduler, 112 * and so has a number of restrictions: 113 * 114 * 1) The software interrupts are not currently preemptive, so 115 * must wait for the currently executing LWP to yield the CPU. 116 * This can introduce latency. 117 * 118 * 2) An expensive context switch is required for a software 119 * interrupt to be handled. 120 * 121 * 'Fast' software interrupts 122 * 123 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements 124 * the fast mechanism. Threads running either in the kernel or in 125 * userspace will be interrupted, but will not be preempted. When 126 * the soft interrupt completes execution, the interrupted LWP 127 * is resumed. Interrupt dispatch code must provide the minimum 128 * level of context necessary for the soft interrupt to block and 129 * be resumed at a later time. The machine-dependent dispatch 130 * path looks something like the following: 131 * 132 * softintr() 133 * { 134 * go to IPL_HIGH if necessary for switch; 135 * save any necessary registers in a format that can be 136 * restored by cpu_switchto if the softint blocks; 137 * arrange for cpu_switchto() to restore into the 138 * trampoline function; 139 * identify LWP to handle this interrupt; 140 * switch to the LWP's stack; 141 * switch register stacks, if necessary; 142 * assign new value of curlwp; 143 * call MI softint_dispatch, passing old curlwp and IPL 144 * to execute interrupt at; 145 * switch back to old stack; 146 * switch back to old register stack, if necessary; 147 * restore curlwp; 148 * return to interrupted LWP; 149 * } 150 * 151 * If the soft interrupt blocks, a trampoline function is returned 152 * to in the context of the interrupted LWP, as arranged for by 153 * softint(): 154 * 155 * softint_ret() 156 * { 157 * unlock soft interrupt LWP; 158 * resume interrupt processing, likely returning to 159 * interrupted LWP or dispatching another, different 160 * interrupt; 161 * } 162 * 163 * Once the soft interrupt has fired (and even if it has blocked), 164 * no further soft interrupts at that level will be triggered by 165 * MI code until the soft interrupt handler has ceased execution. 166 * If a soft interrupt handler blocks and is resumed, it resumes 167 * execution as a normal LWP (kthread) and gains VM context. Only 168 * when it has completed and is ready to fire again will it 169 * interrupt other threads. 170 * 171 * Future directions 172 * 173 * Provide a cheap way to direct software interrupts to remote 174 * CPUs. Provide a way to enqueue work items into the handler 175 * record, removing additional spl calls (see subr_workqueue.c). 176 */ 177 178 #include <sys/cdefs.h> 179 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.39 2013/01/07 23:21:31 rmind Exp $"); 180 181 #include <sys/param.h> 182 #include <sys/proc.h> 183 #include <sys/intr.h> 184 #include <sys/mutex.h> 185 #include <sys/kthread.h> 186 #include <sys/evcnt.h> 187 #include <sys/cpu.h> 188 #include <sys/xcall.h> 189 #include <sys/pserialize.h> 190 191 #include <net/netisr.h> 192 193 #include <uvm/uvm_extern.h> 194 195 /* This could overlap with signal info in struct lwp. */ 196 typedef struct softint { 197 SIMPLEQ_HEAD(, softhand) si_q; 198 struct lwp *si_lwp; 199 struct cpu_info *si_cpu; 200 uintptr_t si_machdep; 201 struct evcnt si_evcnt; 202 struct evcnt si_evcnt_block; 203 int si_active; 204 char si_name[8]; 205 char si_name_block[8+6]; 206 } softint_t; 207 208 typedef struct softhand { 209 SIMPLEQ_ENTRY(softhand) sh_q; 210 void (*sh_func)(void *); 211 void *sh_arg; 212 softint_t *sh_isr; 213 u_int sh_flags; 214 } softhand_t; 215 216 typedef struct softcpu { 217 struct cpu_info *sc_cpu; 218 softint_t sc_int[SOFTINT_COUNT]; 219 softhand_t sc_hand[1]; 220 } softcpu_t; 221 222 static void softint_thread(void *); 223 224 u_int softint_bytes = 8192; 225 u_int softint_timing; 226 static u_int softint_max; 227 static kmutex_t softint_lock; 228 static void *softint_netisrs[NETISR_MAX]; 229 230 /* 231 * softint_init_isr: 232 * 233 * Initialize a single interrupt level for a single CPU. 234 */ 235 static void 236 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level) 237 { 238 struct cpu_info *ci; 239 softint_t *si; 240 int error; 241 242 si = &sc->sc_int[level]; 243 ci = sc->sc_cpu; 244 si->si_cpu = ci; 245 246 SIMPLEQ_INIT(&si->si_q); 247 248 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR | 249 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp, 250 "soft%s/%u", desc, ci->ci_index); 251 if (error != 0) 252 panic("softint_init_isr: error %d", error); 253 254 snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc, 255 ci->ci_index); 256 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL, 257 "softint", si->si_name); 258 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u", 259 desc, ci->ci_index); 260 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL, 261 "softint", si->si_name_block); 262 263 si->si_lwp->l_private = si; 264 softint_init_md(si->si_lwp, level, &si->si_machdep); 265 } 266 267 /* 268 * softint_init: 269 * 270 * Initialize per-CPU data structures. Called from mi_cpu_attach(). 271 */ 272 void 273 softint_init(struct cpu_info *ci) 274 { 275 static struct cpu_info *first; 276 softcpu_t *sc, *scfirst; 277 softhand_t *sh, *shmax; 278 279 if (first == NULL) { 280 /* Boot CPU. */ 281 first = ci; 282 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE); 283 softint_bytes = round_page(softint_bytes); 284 softint_max = (softint_bytes - sizeof(softcpu_t)) / 285 sizeof(softhand_t); 286 } 287 288 /* Use uvm_km(9) for persistent, page-aligned allocation. */ 289 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0, 290 UVM_KMF_WIRED | UVM_KMF_ZERO); 291 if (sc == NULL) 292 panic("softint_init_cpu: cannot allocate memory"); 293 294 ci->ci_data.cpu_softcpu = sc; 295 ci->ci_data.cpu_softints = 0; 296 sc->sc_cpu = ci; 297 298 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET); 299 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO); 300 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK); 301 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL); 302 303 if (first != ci) { 304 mutex_enter(&softint_lock); 305 scfirst = first->ci_data.cpu_softcpu; 306 sh = sc->sc_hand; 307 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max); 308 /* Update pointers for this CPU. */ 309 for (shmax = sh + softint_max; sh < shmax; sh++) { 310 if (sh->sh_func == NULL) 311 continue; 312 sh->sh_isr = 313 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK]; 314 } 315 mutex_exit(&softint_lock); 316 } else { 317 /* 318 * Establish handlers for legacy net interrupts. 319 * XXX Needs to go away. 320 */ 321 #define DONETISR(n, f) \ 322 softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\ 323 (void (*)(void *))(f), NULL) 324 #include <net/netisr_dispatch.h> 325 } 326 } 327 328 /* 329 * softint_establish: 330 * 331 * Register a software interrupt handler. 332 */ 333 void * 334 softint_establish(u_int flags, void (*func)(void *), void *arg) 335 { 336 CPU_INFO_ITERATOR cii; 337 struct cpu_info *ci; 338 softcpu_t *sc; 339 softhand_t *sh; 340 u_int level, index; 341 342 level = (flags & SOFTINT_LVLMASK); 343 KASSERT(level < SOFTINT_COUNT); 344 KASSERT((flags & SOFTINT_IMPMASK) == 0); 345 346 mutex_enter(&softint_lock); 347 348 /* Find a free slot. */ 349 sc = curcpu()->ci_data.cpu_softcpu; 350 for (index = 1; index < softint_max; index++) { 351 if (sc->sc_hand[index].sh_func == NULL) 352 break; 353 } 354 if (index == softint_max) { 355 mutex_exit(&softint_lock); 356 printf("WARNING: softint_establish: table full, " 357 "increase softint_bytes\n"); 358 return NULL; 359 } 360 361 /* Set up the handler on each CPU. */ 362 if (ncpu < 2) { 363 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */ 364 sc = curcpu()->ci_data.cpu_softcpu; 365 sh = &sc->sc_hand[index]; 366 sh->sh_isr = &sc->sc_int[level]; 367 sh->sh_func = func; 368 sh->sh_arg = arg; 369 sh->sh_flags = flags; 370 } else for (CPU_INFO_FOREACH(cii, ci)) { 371 sc = ci->ci_data.cpu_softcpu; 372 sh = &sc->sc_hand[index]; 373 sh->sh_isr = &sc->sc_int[level]; 374 sh->sh_func = func; 375 sh->sh_arg = arg; 376 sh->sh_flags = flags; 377 } 378 379 mutex_exit(&softint_lock); 380 381 return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc); 382 } 383 384 /* 385 * softint_disestablish: 386 * 387 * Unregister a software interrupt handler. The soft interrupt could 388 * still be active at this point, but the caller commits not to try 389 * and trigger it again once this call is made. The caller must not 390 * hold any locks that could be taken from soft interrupt context, 391 * because we will wait for the softint to complete if it's still 392 * running. 393 */ 394 void 395 softint_disestablish(void *arg) 396 { 397 CPU_INFO_ITERATOR cii; 398 struct cpu_info *ci; 399 softcpu_t *sc; 400 softhand_t *sh; 401 uintptr_t offset; 402 uint64_t where; 403 u_int flags; 404 405 offset = (uintptr_t)arg; 406 KASSERT(offset != 0 && offset < softint_bytes); 407 408 /* 409 * Run a cross call so we see up to date values of sh_flags from 410 * all CPUs. Once softint_disestablish() is called, the caller 411 * commits to not trigger the interrupt and set SOFTINT_ACTIVE on 412 * it again. So, we are only looking for handler records with 413 * SOFTINT_ACTIVE already set. 414 */ 415 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 416 xc_wait(where); 417 418 for (;;) { 419 /* Collect flag values from each CPU. */ 420 flags = 0; 421 for (CPU_INFO_FOREACH(cii, ci)) { 422 sc = ci->ci_data.cpu_softcpu; 423 sh = (softhand_t *)((uint8_t *)sc + offset); 424 KASSERT(sh->sh_func != NULL); 425 flags |= sh->sh_flags; 426 } 427 /* Inactive on all CPUs? */ 428 if ((flags & SOFTINT_ACTIVE) == 0) { 429 break; 430 } 431 /* Oops, still active. Wait for it to clear. */ 432 (void)kpause("softdis", false, 1, NULL); 433 } 434 435 /* Clear the handler on each CPU. */ 436 mutex_enter(&softint_lock); 437 for (CPU_INFO_FOREACH(cii, ci)) { 438 sc = ci->ci_data.cpu_softcpu; 439 sh = (softhand_t *)((uint8_t *)sc + offset); 440 KASSERT(sh->sh_func != NULL); 441 sh->sh_func = NULL; 442 } 443 mutex_exit(&softint_lock); 444 } 445 446 /* 447 * softint_schedule: 448 * 449 * Trigger a software interrupt. Must be called from a hardware 450 * interrupt handler, or with preemption disabled (since we are 451 * using the value of curcpu()). 452 */ 453 void 454 softint_schedule(void *arg) 455 { 456 softhand_t *sh; 457 softint_t *si; 458 uintptr_t offset; 459 int s; 460 461 KASSERT(kpreempt_disabled()); 462 463 /* Find the handler record for this CPU. */ 464 offset = (uintptr_t)arg; 465 KASSERT(offset != 0 && offset < softint_bytes); 466 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset); 467 468 /* If it's already pending there's nothing to do. */ 469 if ((sh->sh_flags & SOFTINT_PENDING) != 0) { 470 return; 471 } 472 473 /* 474 * Enqueue the handler into the LWP's pending list. 475 * If the LWP is completely idle, then make it run. 476 */ 477 s = splhigh(); 478 if ((sh->sh_flags & SOFTINT_PENDING) == 0) { 479 si = sh->sh_isr; 480 sh->sh_flags |= SOFTINT_PENDING; 481 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q); 482 if (si->si_active == 0) { 483 si->si_active = 1; 484 softint_trigger(si->si_machdep); 485 } 486 } 487 splx(s); 488 } 489 490 /* 491 * softint_execute: 492 * 493 * Invoke handlers for the specified soft interrupt. 494 * Must be entered at splhigh. Will drop the priority 495 * to the level specified, but returns back at splhigh. 496 */ 497 static inline void 498 softint_execute(softint_t *si, lwp_t *l, int s) 499 { 500 softhand_t *sh; 501 bool havelock; 502 503 #ifdef __HAVE_FAST_SOFTINTS 504 KASSERT(si->si_lwp == curlwp); 505 #else 506 /* May be running in user context. */ 507 #endif 508 KASSERT(si->si_cpu == curcpu()); 509 KASSERT(si->si_lwp->l_wchan == NULL); 510 KASSERT(si->si_active); 511 512 havelock = false; 513 514 /* 515 * Note: due to priority inheritance we may have interrupted a 516 * higher priority LWP. Since the soft interrupt must be quick 517 * and is non-preemptable, we don't bother yielding. 518 */ 519 520 while (!SIMPLEQ_EMPTY(&si->si_q)) { 521 /* 522 * Pick the longest waiting handler to run. We block 523 * interrupts but do not lock in order to do this, as 524 * we are protecting against the local CPU only. 525 */ 526 sh = SIMPLEQ_FIRST(&si->si_q); 527 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q); 528 KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0); 529 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) == 0); 530 sh->sh_flags ^= (SOFTINT_PENDING | SOFTINT_ACTIVE); 531 splx(s); 532 533 /* Run the handler. */ 534 if (sh->sh_flags & SOFTINT_MPSAFE) { 535 if (havelock) { 536 KERNEL_UNLOCK_ONE(l); 537 havelock = false; 538 } 539 } else if (!havelock) { 540 KERNEL_LOCK(1, l); 541 havelock = true; 542 } 543 (*sh->sh_func)(sh->sh_arg); 544 545 /* Diagnostic: check that spin-locks have not leaked. */ 546 KASSERTMSG(curcpu()->ci_mtx_count == 0, 547 "%s: ci_mtx_count (%d) != 0, sh_func %p\n", 548 __func__, curcpu()->ci_mtx_count, sh->sh_func); 549 550 (void)splhigh(); 551 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) != 0); 552 sh->sh_flags ^= SOFTINT_ACTIVE; 553 } 554 555 if (havelock) { 556 KERNEL_UNLOCK_ONE(l); 557 } 558 559 /* 560 * Unlocked, but only for statistics. 561 * Should be per-CPU to prevent cache ping-pong. 562 */ 563 curcpu()->ci_data.cpu_nsoft++; 564 565 KASSERT(si->si_cpu == curcpu()); 566 KASSERT(si->si_lwp->l_wchan == NULL); 567 KASSERT(si->si_active); 568 si->si_evcnt.ev_count++; 569 si->si_active = 0; 570 } 571 572 /* 573 * softint_block: 574 * 575 * Update statistics when the soft interrupt blocks. 576 */ 577 void 578 softint_block(lwp_t *l) 579 { 580 softint_t *si = l->l_private; 581 582 KASSERT((l->l_pflag & LP_INTR) != 0); 583 si->si_evcnt_block.ev_count++; 584 } 585 586 /* 587 * schednetisr: 588 * 589 * Trigger a legacy network interrupt. XXX Needs to go away. 590 */ 591 void 592 schednetisr(int isr) 593 { 594 595 softint_schedule(softint_netisrs[isr]); 596 } 597 598 #ifndef __HAVE_FAST_SOFTINTS 599 600 #ifdef __HAVE_PREEMPTION 601 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS 602 #endif 603 604 /* 605 * softint_init_md: 606 * 607 * Slow path: perform machine-dependent initialization. 608 */ 609 void 610 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep) 611 { 612 softint_t *si; 613 614 *machdep = (1 << level); 615 si = l->l_private; 616 617 lwp_lock(l); 618 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex); 619 lwp_lock(l); 620 /* Cheat and make the KASSERT in softint_thread() happy. */ 621 si->si_active = 1; 622 l->l_stat = LSRUN; 623 sched_enqueue(l, false); 624 lwp_unlock(l); 625 } 626 627 /* 628 * softint_trigger: 629 * 630 * Slow path: cause a soft interrupt handler to begin executing. 631 * Called at IPL_HIGH. 632 */ 633 void 634 softint_trigger(uintptr_t machdep) 635 { 636 struct cpu_info *ci; 637 lwp_t *l; 638 639 l = curlwp; 640 ci = l->l_cpu; 641 ci->ci_data.cpu_softints |= machdep; 642 if (l == ci->ci_data.cpu_idlelwp) { 643 cpu_need_resched(ci, 0); 644 } else { 645 /* MI equivalent of aston() */ 646 cpu_signotify(l); 647 } 648 } 649 650 /* 651 * softint_thread: 652 * 653 * Slow path: MI software interrupt dispatch. 654 */ 655 void 656 softint_thread(void *cookie) 657 { 658 softint_t *si; 659 lwp_t *l; 660 int s; 661 662 l = curlwp; 663 si = l->l_private; 664 665 for (;;) { 666 /* 667 * Clear pending status and run it. We must drop the 668 * spl before mi_switch(), since IPL_HIGH may be higher 669 * than IPL_SCHED (and it is not safe to switch at a 670 * higher level). 671 */ 672 s = splhigh(); 673 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep; 674 softint_execute(si, l, s); 675 splx(s); 676 677 lwp_lock(l); 678 l->l_stat = LSIDL; 679 mi_switch(l); 680 } 681 } 682 683 /* 684 * softint_picklwp: 685 * 686 * Slow path: called from mi_switch() to pick the highest priority 687 * soft interrupt LWP that needs to run. 688 */ 689 lwp_t * 690 softint_picklwp(void) 691 { 692 struct cpu_info *ci; 693 u_int mask; 694 softint_t *si; 695 lwp_t *l; 696 697 ci = curcpu(); 698 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int; 699 mask = ci->ci_data.cpu_softints; 700 701 if ((mask & (1 << SOFTINT_SERIAL)) != 0) { 702 l = si[SOFTINT_SERIAL].si_lwp; 703 } else if ((mask & (1 << SOFTINT_NET)) != 0) { 704 l = si[SOFTINT_NET].si_lwp; 705 } else if ((mask & (1 << SOFTINT_BIO)) != 0) { 706 l = si[SOFTINT_BIO].si_lwp; 707 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) { 708 l = si[SOFTINT_CLOCK].si_lwp; 709 } else { 710 panic("softint_picklwp"); 711 } 712 713 return l; 714 } 715 716 /* 717 * softint_overlay: 718 * 719 * Slow path: called from lwp_userret() to run a soft interrupt 720 * within the context of a user thread. 721 */ 722 void 723 softint_overlay(void) 724 { 725 struct cpu_info *ci; 726 u_int softints, oflag; 727 softint_t *si; 728 pri_t obase; 729 lwp_t *l; 730 int s; 731 732 l = curlwp; 733 KASSERT((l->l_pflag & LP_INTR) == 0); 734 735 /* 736 * Arrange to elevate priority if the LWP blocks. Also, bind LWP 737 * to the CPU. Note: disable kernel preemption before doing that. 738 */ 739 s = splhigh(); 740 ci = l->l_cpu; 741 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int; 742 743 obase = l->l_kpribase; 744 l->l_kpribase = PRI_KERNEL_RT; 745 oflag = l->l_pflag; 746 l->l_pflag = oflag | LP_INTR | LP_BOUND; 747 748 while ((softints = ci->ci_data.cpu_softints) != 0) { 749 if ((softints & (1 << SOFTINT_SERIAL)) != 0) { 750 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL); 751 softint_execute(&si[SOFTINT_SERIAL], l, s); 752 continue; 753 } 754 if ((softints & (1 << SOFTINT_NET)) != 0) { 755 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET); 756 softint_execute(&si[SOFTINT_NET], l, s); 757 continue; 758 } 759 if ((softints & (1 << SOFTINT_BIO)) != 0) { 760 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO); 761 softint_execute(&si[SOFTINT_BIO], l, s); 762 continue; 763 } 764 if ((softints & (1 << SOFTINT_CLOCK)) != 0) { 765 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK); 766 softint_execute(&si[SOFTINT_CLOCK], l, s); 767 continue; 768 } 769 } 770 l->l_pflag = oflag; 771 l->l_kpribase = obase; 772 splx(s); 773 } 774 775 #else /* !__HAVE_FAST_SOFTINTS */ 776 777 /* 778 * softint_thread: 779 * 780 * Fast path: the LWP is switched to without restoring any state, 781 * so we should not arrive here - there is a direct handoff between 782 * the interrupt stub and softint_dispatch(). 783 */ 784 void 785 softint_thread(void *cookie) 786 { 787 788 panic("softint_thread"); 789 } 790 791 /* 792 * softint_dispatch: 793 * 794 * Fast path: entry point from machine-dependent code. 795 */ 796 void 797 softint_dispatch(lwp_t *pinned, int s) 798 { 799 struct bintime now; 800 softint_t *si; 801 u_int timing; 802 lwp_t *l; 803 804 KASSERT((pinned->l_pflag & LP_RUNNING) != 0); 805 l = curlwp; 806 si = l->l_private; 807 808 /* 809 * Note the interrupted LWP, and mark the current LWP as running 810 * before proceeding. Although this must as a rule be done with 811 * the LWP locked, at this point no external agents will want to 812 * modify the interrupt LWP's state. 813 */ 814 timing = (softint_timing ? LP_TIMEINTR : 0); 815 l->l_switchto = pinned; 816 l->l_stat = LSONPROC; 817 l->l_pflag |= (LP_RUNNING | timing); 818 819 /* 820 * Dispatch the interrupt. If softints are being timed, charge 821 * for it. 822 */ 823 if (timing) 824 binuptime(&l->l_stime); 825 softint_execute(si, l, s); 826 if (timing) { 827 binuptime(&now); 828 updatertime(l, &now); 829 l->l_pflag &= ~LP_TIMEINTR; 830 } 831 832 /* Indicate a soft-interrupt switch. */ 833 pserialize_switchpoint(); 834 835 /* 836 * If we blocked while handling the interrupt, the pinned LWP is 837 * gone so switch to the idle LWP. It will select a new LWP to 838 * run. 839 * 840 * We must drop the priority level as switching at IPL_HIGH could 841 * deadlock the system. We have already set si->si_active = 0, 842 * which means another interrupt at this level can be triggered. 843 * That's not be a problem: we are lowering to level 's' which will 844 * prevent softint_dispatch() from being reentered at level 's', 845 * until the priority is finally dropped to IPL_NONE on entry to 846 * the LWP chosen by lwp_exit_switchaway(). 847 */ 848 l->l_stat = LSIDL; 849 if (l->l_switchto == NULL) { 850 splx(s); 851 pmap_deactivate(l); 852 lwp_exit_switchaway(l); 853 /* NOTREACHED */ 854 } 855 l->l_switchto = NULL; 856 l->l_pflag &= ~LP_RUNNING; 857 } 858 859 #endif /* !__HAVE_FAST_SOFTINTS */ 860