1 /* $NetBSD: kern_softint.c,v 1.35 2011/04/24 18:46:22 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Generic software interrupt framework. 34 * 35 * Overview 36 * 37 * The soft interrupt framework provides a mechanism to schedule a 38 * low priority callback that runs with thread context. It allows 39 * for dynamic registration of software interrupts, and for fair 40 * queueing and prioritization of those interrupts. The callbacks 41 * can be scheduled to run from nearly any point in the kernel: by 42 * code running with thread context, by code running from a 43 * hardware interrupt handler, and at any interrupt priority 44 * level. 45 * 46 * Priority levels 47 * 48 * Since soft interrupt dispatch can be tied to the underlying 49 * architecture's interrupt dispatch code, it can be limited 50 * both by the capabilities of the hardware and the capabilities 51 * of the interrupt dispatch code itself. The number of priority 52 * levels is restricted to four. In order of priority (lowest to 53 * highest) the levels are: clock, bio, net, serial. 54 * 55 * The names are symbolic and in isolation do not have any direct 56 * connection with a particular kind of device activity: they are 57 * only meant as a guide. 58 * 59 * The four priority levels map directly to scheduler priority 60 * levels, and where the architecture implements 'fast' software 61 * interrupts, they also map onto interrupt priorities. The 62 * interrupt priorities are intended to be hidden from machine 63 * independent code, which should use thread-safe mechanisms to 64 * synchronize with software interrupts (for example: mutexes). 65 * 66 * Capabilities 67 * 68 * Software interrupts run with limited machine context. In 69 * particular, they do not posess any address space context. They 70 * should not try to operate on user space addresses, or to use 71 * virtual memory facilities other than those noted as interrupt 72 * safe. 73 * 74 * Unlike hardware interrupts, software interrupts do have thread 75 * context. They may block on synchronization objects, sleep, and 76 * resume execution at a later time. 77 * 78 * Since software interrupts are a limited resource and run with 79 * higher priority than most other LWPs in the system, all 80 * block-and-resume activity by a software interrupt must be kept 81 * short to allow futher processing at that level to continue. By 82 * extension, code running with process context must take care to 83 * ensure that any lock that may be taken from a software interrupt 84 * can not be held for more than a short period of time. 85 * 86 * The kernel does not allow software interrupts to use facilities 87 * or perform actions that may block for a significant amount of 88 * time. This means that it's not valid for a software interrupt 89 * to sleep on condition variables or wait for resources to become 90 * available (for example, memory). 91 * 92 * Per-CPU operation 93 * 94 * If a soft interrupt is triggered on a CPU, it can only be 95 * dispatched on the same CPU. Each LWP dedicated to handling a 96 * soft interrupt is bound to its home CPU, so if the LWP blocks 97 * and needs to run again, it can only run there. Nearly all data 98 * structures used to manage software interrupts are per-CPU. 99 * 100 * The per-CPU requirement is intended to reduce "ping-pong" of 101 * cache lines between CPUs: lines occupied by data structures 102 * used to manage the soft interrupts, and lines occupied by data 103 * items being passed down to the soft interrupt. As a positive 104 * side effect, this also means that the soft interrupt dispatch 105 * code does not need to to use spinlocks to synchronize. 106 * 107 * Generic implementation 108 * 109 * A generic, low performance implementation is provided that 110 * works across all architectures, with no machine-dependent 111 * modifications needed. This implementation uses the scheduler, 112 * and so has a number of restrictions: 113 * 114 * 1) The software interrupts are not currently preemptive, so 115 * must wait for the currently executing LWP to yield the CPU. 116 * This can introduce latency. 117 * 118 * 2) An expensive context switch is required for a software 119 * interrupt to be handled. 120 * 121 * 'Fast' software interrupts 122 * 123 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements 124 * the fast mechanism. Threads running either in the kernel or in 125 * userspace will be interrupted, but will not be preempted. When 126 * the soft interrupt completes execution, the interrupted LWP 127 * is resumed. Interrupt dispatch code must provide the minimum 128 * level of context necessary for the soft interrupt to block and 129 * be resumed at a later time. The machine-dependent dispatch 130 * path looks something like the following: 131 * 132 * softintr() 133 * { 134 * go to IPL_HIGH if necessary for switch; 135 * save any necessary registers in a format that can be 136 * restored by cpu_switchto if the softint blocks; 137 * arrange for cpu_switchto() to restore into the 138 * trampoline function; 139 * identify LWP to handle this interrupt; 140 * switch to the LWP's stack; 141 * switch register stacks, if necessary; 142 * assign new value of curlwp; 143 * call MI softint_dispatch, passing old curlwp and IPL 144 * to execute interrupt at; 145 * switch back to old stack; 146 * switch back to old register stack, if necessary; 147 * restore curlwp; 148 * return to interrupted LWP; 149 * } 150 * 151 * If the soft interrupt blocks, a trampoline function is returned 152 * to in the context of the interrupted LWP, as arranged for by 153 * softint(): 154 * 155 * softint_ret() 156 * { 157 * unlock soft interrupt LWP; 158 * resume interrupt processing, likely returning to 159 * interrupted LWP or dispatching another, different 160 * interrupt; 161 * } 162 * 163 * Once the soft interrupt has fired (and even if it has blocked), 164 * no further soft interrupts at that level will be triggered by 165 * MI code until the soft interrupt handler has ceased execution. 166 * If a soft interrupt handler blocks and is resumed, it resumes 167 * execution as a normal LWP (kthread) and gains VM context. Only 168 * when it has completed and is ready to fire again will it 169 * interrupt other threads. 170 * 171 * Future directions 172 * 173 * Provide a cheap way to direct software interrupts to remote 174 * CPUs. Provide a way to enqueue work items into the handler 175 * record, removing additional spl calls (see subr_workqueue.c). 176 */ 177 178 #include <sys/cdefs.h> 179 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.35 2011/04/24 18:46:22 rmind Exp $"); 180 181 #include <sys/param.h> 182 #include <sys/proc.h> 183 #include <sys/intr.h> 184 #include <sys/mutex.h> 185 #include <sys/kthread.h> 186 #include <sys/evcnt.h> 187 #include <sys/cpu.h> 188 #include <sys/xcall.h> 189 190 #include <net/netisr.h> 191 192 #include <uvm/uvm_extern.h> 193 194 /* This could overlap with signal info in struct lwp. */ 195 typedef struct softint { 196 SIMPLEQ_HEAD(, softhand) si_q; 197 struct lwp *si_lwp; 198 struct cpu_info *si_cpu; 199 uintptr_t si_machdep; 200 struct evcnt si_evcnt; 201 struct evcnt si_evcnt_block; 202 int si_active; 203 char si_name[8]; 204 char si_name_block[8+6]; 205 } softint_t; 206 207 typedef struct softhand { 208 SIMPLEQ_ENTRY(softhand) sh_q; 209 void (*sh_func)(void *); 210 void *sh_arg; 211 softint_t *sh_isr; 212 u_int sh_flags; 213 } softhand_t; 214 215 typedef struct softcpu { 216 struct cpu_info *sc_cpu; 217 softint_t sc_int[SOFTINT_COUNT]; 218 softhand_t sc_hand[1]; 219 } softcpu_t; 220 221 static void softint_thread(void *); 222 223 u_int softint_bytes = 8192; 224 u_int softint_timing; 225 static u_int softint_max; 226 static kmutex_t softint_lock; 227 static void *softint_netisrs[NETISR_MAX]; 228 229 /* 230 * softint_init_isr: 231 * 232 * Initialize a single interrupt level for a single CPU. 233 */ 234 static void 235 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level) 236 { 237 struct cpu_info *ci; 238 softint_t *si; 239 int error; 240 241 si = &sc->sc_int[level]; 242 ci = sc->sc_cpu; 243 si->si_cpu = ci; 244 245 SIMPLEQ_INIT(&si->si_q); 246 247 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR | 248 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp, 249 "soft%s/%u", desc, ci->ci_index); 250 if (error != 0) 251 panic("softint_init_isr: error %d", error); 252 253 snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc, 254 ci->ci_index); 255 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL, 256 "softint", si->si_name); 257 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u", 258 desc, ci->ci_index); 259 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL, 260 "softint", si->si_name_block); 261 262 si->si_lwp->l_private = si; 263 softint_init_md(si->si_lwp, level, &si->si_machdep); 264 } 265 /* 266 * softint_init: 267 * 268 * Initialize per-CPU data structures. Called from mi_cpu_attach(). 269 */ 270 void 271 softint_init(struct cpu_info *ci) 272 { 273 static struct cpu_info *first; 274 softcpu_t *sc, *scfirst; 275 softhand_t *sh, *shmax; 276 277 if (first == NULL) { 278 /* Boot CPU. */ 279 first = ci; 280 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE); 281 softint_bytes = round_page(softint_bytes); 282 softint_max = (softint_bytes - sizeof(softcpu_t)) / 283 sizeof(softhand_t); 284 } 285 286 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0, 287 UVM_KMF_WIRED | UVM_KMF_ZERO); 288 if (sc == NULL) 289 panic("softint_init_cpu: cannot allocate memory"); 290 291 ci->ci_data.cpu_softcpu = sc; 292 ci->ci_data.cpu_softints = 0; 293 sc->sc_cpu = ci; 294 295 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET); 296 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO); 297 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK); 298 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL); 299 300 if (first != ci) { 301 mutex_enter(&softint_lock); 302 scfirst = first->ci_data.cpu_softcpu; 303 sh = sc->sc_hand; 304 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max); 305 /* Update pointers for this CPU. */ 306 for (shmax = sh + softint_max; sh < shmax; sh++) { 307 if (sh->sh_func == NULL) 308 continue; 309 sh->sh_isr = 310 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK]; 311 } 312 mutex_exit(&softint_lock); 313 } else { 314 /* 315 * Establish handlers for legacy net interrupts. 316 * XXX Needs to go away. 317 */ 318 #define DONETISR(n, f) \ 319 softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\ 320 (void (*)(void *))(f), NULL) 321 #include <net/netisr_dispatch.h> 322 } 323 } 324 325 /* 326 * softint_establish: 327 * 328 * Register a software interrupt handler. 329 */ 330 void * 331 softint_establish(u_int flags, void (*func)(void *), void *arg) 332 { 333 CPU_INFO_ITERATOR cii; 334 struct cpu_info *ci; 335 softcpu_t *sc; 336 softhand_t *sh; 337 u_int level, index; 338 339 level = (flags & SOFTINT_LVLMASK); 340 KASSERT(level < SOFTINT_COUNT); 341 KASSERT((flags & SOFTINT_IMPMASK) == 0); 342 343 mutex_enter(&softint_lock); 344 345 /* Find a free slot. */ 346 sc = curcpu()->ci_data.cpu_softcpu; 347 for (index = 1; index < softint_max; index++) { 348 if (sc->sc_hand[index].sh_func == NULL) 349 break; 350 } 351 if (index == softint_max) { 352 mutex_exit(&softint_lock); 353 printf("WARNING: softint_establish: table full, " 354 "increase softint_bytes\n"); 355 return NULL; 356 } 357 358 /* Set up the handler on each CPU. */ 359 if (ncpu < 2) { 360 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */ 361 sc = curcpu()->ci_data.cpu_softcpu; 362 sh = &sc->sc_hand[index]; 363 sh->sh_isr = &sc->sc_int[level]; 364 sh->sh_func = func; 365 sh->sh_arg = arg; 366 sh->sh_flags = flags; 367 } else for (CPU_INFO_FOREACH(cii, ci)) { 368 sc = ci->ci_data.cpu_softcpu; 369 sh = &sc->sc_hand[index]; 370 sh->sh_isr = &sc->sc_int[level]; 371 sh->sh_func = func; 372 sh->sh_arg = arg; 373 sh->sh_flags = flags; 374 } 375 376 mutex_exit(&softint_lock); 377 378 return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc); 379 } 380 381 /* 382 * softint_disestablish: 383 * 384 * Unregister a software interrupt handler. The soft interrupt could 385 * still be active at this point, but the caller commits not to try 386 * and trigger it again once this call is made. The caller must not 387 * hold any locks that could be taken from soft interrupt context, 388 * because we will wait for the softint to complete if it's still 389 * running. 390 */ 391 void 392 softint_disestablish(void *arg) 393 { 394 CPU_INFO_ITERATOR cii; 395 struct cpu_info *ci; 396 softcpu_t *sc; 397 softhand_t *sh; 398 uintptr_t offset; 399 uint64_t where; 400 u_int flags; 401 402 offset = (uintptr_t)arg; 403 KASSERT(offset != 0 && offset < softint_bytes); 404 405 /* 406 * Run a cross call so we see up to date values of sh_flags from 407 * all CPUs. Once softint_disestablish() is called, the caller 408 * commits to not trigger the interrupt and set SOFTINT_ACTIVE on 409 * it again. So, we are only looking for handler records with 410 * SOFTINT_ACTIVE already set. 411 */ 412 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 413 xc_wait(where); 414 415 for (;;) { 416 /* Collect flag values from each CPU. */ 417 flags = 0; 418 for (CPU_INFO_FOREACH(cii, ci)) { 419 sc = ci->ci_data.cpu_softcpu; 420 sh = (softhand_t *)((uint8_t *)sc + offset); 421 KASSERT(sh->sh_func != NULL); 422 flags |= sh->sh_flags; 423 } 424 /* Inactive on all CPUs? */ 425 if ((flags & SOFTINT_ACTIVE) == 0) { 426 break; 427 } 428 /* Oops, still active. Wait for it to clear. */ 429 (void)kpause("softdis", false, 1, NULL); 430 } 431 432 /* Clear the handler on each CPU. */ 433 mutex_enter(&softint_lock); 434 for (CPU_INFO_FOREACH(cii, ci)) { 435 sc = ci->ci_data.cpu_softcpu; 436 sh = (softhand_t *)((uint8_t *)sc + offset); 437 KASSERT(sh->sh_func != NULL); 438 sh->sh_func = NULL; 439 } 440 mutex_exit(&softint_lock); 441 } 442 443 /* 444 * softint_schedule: 445 * 446 * Trigger a software interrupt. Must be called from a hardware 447 * interrupt handler, or with preemption disabled (since we are 448 * using the value of curcpu()). 449 */ 450 void 451 softint_schedule(void *arg) 452 { 453 softhand_t *sh; 454 softint_t *si; 455 uintptr_t offset; 456 int s; 457 458 KASSERT(kpreempt_disabled()); 459 460 /* Find the handler record for this CPU. */ 461 offset = (uintptr_t)arg; 462 KASSERT(offset != 0 && offset < softint_bytes); 463 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset); 464 465 /* If it's already pending there's nothing to do. */ 466 if ((sh->sh_flags & SOFTINT_PENDING) != 0) { 467 return; 468 } 469 470 /* 471 * Enqueue the handler into the LWP's pending list. 472 * If the LWP is completely idle, then make it run. 473 */ 474 s = splhigh(); 475 if ((sh->sh_flags & SOFTINT_PENDING) == 0) { 476 si = sh->sh_isr; 477 sh->sh_flags |= SOFTINT_PENDING; 478 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q); 479 if (si->si_active == 0) { 480 si->si_active = 1; 481 softint_trigger(si->si_machdep); 482 } 483 } 484 splx(s); 485 } 486 487 /* 488 * softint_execute: 489 * 490 * Invoke handlers for the specified soft interrupt. 491 * Must be entered at splhigh. Will drop the priority 492 * to the level specified, but returns back at splhigh. 493 */ 494 static inline void 495 softint_execute(softint_t *si, lwp_t *l, int s) 496 { 497 softhand_t *sh; 498 bool havelock; 499 500 #ifdef __HAVE_FAST_SOFTINTS 501 KASSERT(si->si_lwp == curlwp); 502 #else 503 /* May be running in user context. */ 504 #endif 505 KASSERT(si->si_cpu == curcpu()); 506 KASSERT(si->si_lwp->l_wchan == NULL); 507 KASSERT(si->si_active); 508 509 havelock = false; 510 511 /* 512 * Note: due to priority inheritance we may have interrupted a 513 * higher priority LWP. Since the soft interrupt must be quick 514 * and is non-preemptable, we don't bother yielding. 515 */ 516 517 while (!SIMPLEQ_EMPTY(&si->si_q)) { 518 /* 519 * Pick the longest waiting handler to run. We block 520 * interrupts but do not lock in order to do this, as 521 * we are protecting against the local CPU only. 522 */ 523 sh = SIMPLEQ_FIRST(&si->si_q); 524 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q); 525 KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0); 526 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) == 0); 527 sh->sh_flags ^= (SOFTINT_PENDING | SOFTINT_ACTIVE); 528 splx(s); 529 530 /* Run the handler. */ 531 if (sh->sh_flags & SOFTINT_MPSAFE) { 532 if (havelock) { 533 KERNEL_UNLOCK_ONE(l); 534 havelock = false; 535 } 536 } else if (!havelock) { 537 KERNEL_LOCK(1, l); 538 havelock = true; 539 } 540 (*sh->sh_func)(sh->sh_arg); 541 542 /* Diagnostic: check that spin-locks have not leaked. */ 543 KASSERTMSG(curcpu()->ci_mtx_count == 0, 544 ("%s: ci_mtx_count (%d) != 0, sh_func %p\n", 545 __func__, curcpu()->ci_mtx_count, sh->sh_func)); 546 547 (void)splhigh(); 548 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) != 0); 549 sh->sh_flags ^= SOFTINT_ACTIVE; 550 } 551 552 if (havelock) { 553 KERNEL_UNLOCK_ONE(l); 554 } 555 556 /* 557 * Unlocked, but only for statistics. 558 * Should be per-CPU to prevent cache ping-pong. 559 */ 560 curcpu()->ci_data.cpu_nsoft++; 561 562 KASSERT(si->si_cpu == curcpu()); 563 KASSERT(si->si_lwp->l_wchan == NULL); 564 KASSERT(si->si_active); 565 si->si_evcnt.ev_count++; 566 si->si_active = 0; 567 } 568 569 /* 570 * softint_block: 571 * 572 * Update statistics when the soft interrupt blocks. 573 */ 574 void 575 softint_block(lwp_t *l) 576 { 577 softint_t *si = l->l_private; 578 579 KASSERT((l->l_pflag & LP_INTR) != 0); 580 si->si_evcnt_block.ev_count++; 581 } 582 583 /* 584 * schednetisr: 585 * 586 * Trigger a legacy network interrupt. XXX Needs to go away. 587 */ 588 void 589 schednetisr(int isr) 590 { 591 592 softint_schedule(softint_netisrs[isr]); 593 } 594 595 #ifndef __HAVE_FAST_SOFTINTS 596 597 #ifdef __HAVE_PREEMPTION 598 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS 599 #endif 600 601 /* 602 * softint_init_md: 603 * 604 * Slow path: perform machine-dependent initialization. 605 */ 606 void 607 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep) 608 { 609 softint_t *si; 610 611 *machdep = (1 << level); 612 si = l->l_private; 613 614 lwp_lock(l); 615 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex); 616 lwp_lock(l); 617 /* Cheat and make the KASSERT in softint_thread() happy. */ 618 si->si_active = 1; 619 l->l_stat = LSRUN; 620 sched_enqueue(l, false); 621 lwp_unlock(l); 622 } 623 624 /* 625 * softint_trigger: 626 * 627 * Slow path: cause a soft interrupt handler to begin executing. 628 * Called at IPL_HIGH. 629 */ 630 void 631 softint_trigger(uintptr_t machdep) 632 { 633 struct cpu_info *ci; 634 lwp_t *l; 635 636 l = curlwp; 637 ci = l->l_cpu; 638 ci->ci_data.cpu_softints |= machdep; 639 if (l == ci->ci_data.cpu_idlelwp) { 640 cpu_need_resched(ci, 0); 641 } else { 642 /* MI equivalent of aston() */ 643 cpu_signotify(l); 644 } 645 } 646 647 /* 648 * softint_thread: 649 * 650 * Slow path: MI software interrupt dispatch. 651 */ 652 void 653 softint_thread(void *cookie) 654 { 655 softint_t *si; 656 lwp_t *l; 657 int s; 658 659 l = curlwp; 660 si = l->l_private; 661 662 for (;;) { 663 /* 664 * Clear pending status and run it. We must drop the 665 * spl before mi_switch(), since IPL_HIGH may be higher 666 * than IPL_SCHED (and it is not safe to switch at a 667 * higher level). 668 */ 669 s = splhigh(); 670 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep; 671 softint_execute(si, l, s); 672 splx(s); 673 674 lwp_lock(l); 675 l->l_stat = LSIDL; 676 mi_switch(l); 677 } 678 } 679 680 /* 681 * softint_picklwp: 682 * 683 * Slow path: called from mi_switch() to pick the highest priority 684 * soft interrupt LWP that needs to run. 685 */ 686 lwp_t * 687 softint_picklwp(void) 688 { 689 struct cpu_info *ci; 690 u_int mask; 691 softint_t *si; 692 lwp_t *l; 693 694 ci = curcpu(); 695 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int; 696 mask = ci->ci_data.cpu_softints; 697 698 if ((mask & (1 << SOFTINT_SERIAL)) != 0) { 699 l = si[SOFTINT_SERIAL].si_lwp; 700 } else if ((mask & (1 << SOFTINT_NET)) != 0) { 701 l = si[SOFTINT_NET].si_lwp; 702 } else if ((mask & (1 << SOFTINT_BIO)) != 0) { 703 l = si[SOFTINT_BIO].si_lwp; 704 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) { 705 l = si[SOFTINT_CLOCK].si_lwp; 706 } else { 707 panic("softint_picklwp"); 708 } 709 710 return l; 711 } 712 713 /* 714 * softint_overlay: 715 * 716 * Slow path: called from lwp_userret() to run a soft interrupt 717 * within the context of a user thread. 718 */ 719 void 720 softint_overlay(void) 721 { 722 struct cpu_info *ci; 723 u_int softints, oflag; 724 softint_t *si; 725 pri_t obase; 726 lwp_t *l; 727 int s; 728 729 l = curlwp; 730 KASSERT((l->l_pflag & LP_INTR) == 0); 731 732 /* 733 * Arrange to elevate priority if the LWP blocks. Also, bind LWP 734 * to the CPU. Note: disable kernel preemption before doing that. 735 */ 736 s = splhigh(); 737 ci = l->l_cpu; 738 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int; 739 740 obase = l->l_kpribase; 741 l->l_kpribase = PRI_KERNEL_RT; 742 oflag = l->l_pflag; 743 l->l_pflag = oflag | LP_INTR | LP_BOUND; 744 745 while ((softints = ci->ci_data.cpu_softints) != 0) { 746 if ((softints & (1 << SOFTINT_SERIAL)) != 0) { 747 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL); 748 softint_execute(&si[SOFTINT_SERIAL], l, s); 749 continue; 750 } 751 if ((softints & (1 << SOFTINT_NET)) != 0) { 752 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET); 753 softint_execute(&si[SOFTINT_NET], l, s); 754 continue; 755 } 756 if ((softints & (1 << SOFTINT_BIO)) != 0) { 757 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO); 758 softint_execute(&si[SOFTINT_BIO], l, s); 759 continue; 760 } 761 if ((softints & (1 << SOFTINT_CLOCK)) != 0) { 762 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK); 763 softint_execute(&si[SOFTINT_CLOCK], l, s); 764 continue; 765 } 766 } 767 l->l_pflag = oflag; 768 l->l_kpribase = obase; 769 splx(s); 770 } 771 772 #else /* !__HAVE_FAST_SOFTINTS */ 773 774 /* 775 * softint_thread: 776 * 777 * Fast path: the LWP is switched to without restoring any state, 778 * so we should not arrive here - there is a direct handoff between 779 * the interrupt stub and softint_dispatch(). 780 */ 781 void 782 softint_thread(void *cookie) 783 { 784 785 panic("softint_thread"); 786 } 787 788 /* 789 * softint_dispatch: 790 * 791 * Fast path: entry point from machine-dependent code. 792 */ 793 void 794 softint_dispatch(lwp_t *pinned, int s) 795 { 796 struct bintime now; 797 softint_t *si; 798 u_int timing; 799 lwp_t *l; 800 801 KASSERT((pinned->l_pflag & LP_RUNNING) != 0); 802 l = curlwp; 803 si = l->l_private; 804 805 /* 806 * Note the interrupted LWP, and mark the current LWP as running 807 * before proceeding. Although this must as a rule be done with 808 * the LWP locked, at this point no external agents will want to 809 * modify the interrupt LWP's state. 810 */ 811 timing = (softint_timing ? LP_TIMEINTR : 0); 812 l->l_switchto = pinned; 813 l->l_stat = LSONPROC; 814 l->l_pflag |= (LP_RUNNING | timing); 815 816 /* 817 * Dispatch the interrupt. If softints are being timed, charge 818 * for it. 819 */ 820 if (timing) 821 binuptime(&l->l_stime); 822 softint_execute(si, l, s); 823 if (timing) { 824 binuptime(&now); 825 updatertime(l, &now); 826 l->l_pflag &= ~LP_TIMEINTR; 827 } 828 829 /* 830 * If we blocked while handling the interrupt, the pinned LWP is 831 * gone so switch to the idle LWP. It will select a new LWP to 832 * run. 833 * 834 * We must drop the priority level as switching at IPL_HIGH could 835 * deadlock the system. We have already set si->si_active = 0, 836 * which means another interrupt at this level can be triggered. 837 * That's not be a problem: we are lowering to level 's' which will 838 * prevent softint_dispatch() from being reentered at level 's', 839 * until the priority is finally dropped to IPL_NONE on entry to 840 * the LWP chosen by lwp_exit_switchaway(). 841 */ 842 l->l_stat = LSIDL; 843 if (l->l_switchto == NULL) { 844 splx(s); 845 pmap_deactivate(l); 846 lwp_exit_switchaway(l); 847 /* NOTREACHED */ 848 } 849 l->l_switchto = NULL; 850 l->l_pflag &= ~LP_RUNNING; 851 } 852 853 #endif /* !__HAVE_FAST_SOFTINTS */ 854