xref: /netbsd-src/sys/kern/kern_softint.c (revision 5f2f42719cd62ff11fd913b40b7ce19f07c4fd25)
1 /*	$NetBSD: kern_softint.c,v 1.71 2022/09/03 02:48:00 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Generic software interrupt framework.
34  *
35  * Overview
36  *
37  *	The soft interrupt framework provides a mechanism to schedule a
38  *	low priority callback that runs with thread context.  It allows
39  *	for dynamic registration of software interrupts, and for fair
40  *	queueing and prioritization of those interrupts.  The callbacks
41  *	can be scheduled to run from nearly any point in the kernel: by
42  *	code running with thread context, by code running from a
43  *	hardware interrupt handler, and at any interrupt priority
44  *	level.
45  *
46  * Priority levels
47  *
48  *	Since soft interrupt dispatch can be tied to the underlying
49  *	architecture's interrupt dispatch code, it can be limited
50  *	both by the capabilities of the hardware and the capabilities
51  *	of the interrupt dispatch code itself.  The number of priority
52  *	levels is restricted to four.  In order of priority (lowest to
53  *	highest) the levels are: clock, bio, net, serial.
54  *
55  *	The names are symbolic and in isolation do not have any direct
56  *	connection with a particular kind of device activity: they are
57  *	only meant as a guide.
58  *
59  *	The four priority levels map directly to scheduler priority
60  *	levels, and where the architecture implements 'fast' software
61  *	interrupts, they also map onto interrupt priorities.  The
62  *	interrupt priorities are intended to be hidden from machine
63  *	independent code, which should use thread-safe mechanisms to
64  *	synchronize with software interrupts (for example: mutexes).
65  *
66  * Capabilities
67  *
68  *	Software interrupts run with limited machine context.  In
69  *	particular, they do not posess any address space context.  They
70  *	should not try to operate on user space addresses, or to use
71  *	virtual memory facilities other than those noted as interrupt
72  *	safe.
73  *
74  *	Unlike hardware interrupts, software interrupts do have thread
75  *	context.  They may block on synchronization objects, sleep, and
76  *	resume execution at a later time.
77  *
78  *	Since software interrupts are a limited resource and run with
79  *	higher priority than most other LWPs in the system, all
80  *	block-and-resume activity by a software interrupt must be kept
81  *	short to allow further processing at that level to continue.  By
82  *	extension, code running with process context must take care to
83  *	ensure that any lock that may be taken from a software interrupt
84  *	can not be held for more than a short period of time.
85  *
86  *	The kernel does not allow software interrupts to use facilities
87  *	or perform actions that may block for a significant amount of
88  *	time.  This means that it's not valid for a software interrupt
89  *	to sleep on condition variables	or wait for resources to become
90  *	available (for example,	memory).
91  *
92  * Per-CPU operation
93  *
94  *	If a soft interrupt is triggered on a CPU, it can only be
95  *	dispatched on the same CPU.  Each LWP dedicated to handling a
96  *	soft interrupt is bound to its home CPU, so if the LWP blocks
97  *	and needs to run again, it can only run there.  Nearly all data
98  *	structures used to manage software interrupts are per-CPU.
99  *
100  *	The per-CPU requirement is intended to reduce "ping-pong" of
101  *	cache lines between CPUs: lines occupied by data structures
102  *	used to manage the soft interrupts, and lines occupied by data
103  *	items being passed down to the soft interrupt.  As a positive
104  *	side effect, this also means that the soft interrupt dispatch
105  *	code does not need to to use spinlocks to synchronize.
106  *
107  * Generic implementation
108  *
109  *	A generic, low performance implementation is provided that
110  *	works across all architectures, with no machine-dependent
111  *	modifications needed.  This implementation uses the scheduler,
112  *	and so has a number of restrictions:
113  *
114  *	1) The software interrupts are not currently preemptive, so
115  *	must wait for the currently executing LWP to yield the CPU.
116  *	This can introduce latency.
117  *
118  *	2) An expensive context switch is required for a software
119  *	interrupt to be handled.
120  *
121  * 'Fast' software interrupts
122  *
123  *	If an architectures defines __HAVE_FAST_SOFTINTS, it implements
124  *	the fast mechanism.  Threads running either in the kernel or in
125  *	userspace will be interrupted, but will not be preempted.  When
126  *	the soft interrupt completes execution, the interrupted LWP
127  *	is resumed.  Interrupt dispatch code must provide the minimum
128  *	level of context necessary for the soft interrupt to block and
129  *	be resumed at a later time.  The machine-dependent dispatch
130  *	path looks something like the following:
131  *
132  *	softintr()
133  *	{
134  *		go to IPL_HIGH if necessary for switch;
135  *		save any necessary registers in a format that can be
136  *		    restored by cpu_switchto if the softint blocks;
137  *		arrange for cpu_switchto() to restore into the
138  *		    trampoline function;
139  *		identify LWP to handle this interrupt;
140  *		switch to the LWP's stack;
141  *		switch register stacks, if necessary;
142  *		assign new value of curlwp;
143  *		call MI softint_dispatch, passing old curlwp and IPL
144  *		    to execute interrupt at;
145  *		switch back to old stack;
146  *		switch back to old register stack, if necessary;
147  *		restore curlwp;
148  *		return to interrupted LWP;
149  *	}
150  *
151  *	If the soft interrupt blocks, a trampoline function is returned
152  *	to in the context of the interrupted LWP, as arranged for by
153  *	softint():
154  *
155  *	softint_ret()
156  *	{
157  *		unlock soft interrupt LWP;
158  *		resume interrupt processing, likely returning to
159  *		    interrupted LWP or dispatching another, different
160  *		    interrupt;
161  *	}
162  *
163  *	Once the soft interrupt has fired (and even if it has blocked),
164  *	no further soft interrupts at that level will be triggered by
165  *	MI code until the soft interrupt handler has ceased execution.
166  *	If a soft interrupt handler blocks and is resumed, it resumes
167  *	execution as a normal LWP (kthread) and gains VM context.  Only
168  *	when it has completed and is ready to fire again will it
169  *	interrupt other threads.
170  */
171 
172 #include <sys/cdefs.h>
173 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.71 2022/09/03 02:48:00 thorpej Exp $");
174 
175 #include <sys/param.h>
176 #include <sys/proc.h>
177 #include <sys/intr.h>
178 #include <sys/ipi.h>
179 #include <sys/lock.h>
180 #include <sys/mutex.h>
181 #include <sys/kernel.h>
182 #include <sys/kthread.h>
183 #include <sys/evcnt.h>
184 #include <sys/cpu.h>
185 #include <sys/xcall.h>
186 #include <sys/psref.h>
187 
188 #include <uvm/uvm_extern.h>
189 
190 /* This could overlap with signal info in struct lwp. */
191 typedef struct softint {
192 	SIMPLEQ_HEAD(, softhand) si_q;
193 	struct lwp		*si_lwp;
194 	struct cpu_info		*si_cpu;
195 	uintptr_t		si_machdep;
196 	struct evcnt		si_evcnt;
197 	struct evcnt		si_evcnt_block;
198 	volatile int		si_active;
199 	int			si_ipl;
200 	char			si_name[8];
201 	char			si_name_block[8+6];
202 } softint_t;
203 
204 typedef struct softhand {
205 	SIMPLEQ_ENTRY(softhand)	sh_q;
206 	void			(*sh_func)(void *);
207 	void			*sh_arg;
208 	softint_t		*sh_isr;
209 	u_int			sh_flags;
210 	u_int			sh_ipi_id;
211 } softhand_t;
212 
213 typedef struct softcpu {
214 	struct cpu_info		*sc_cpu;
215 	softint_t		sc_int[SOFTINT_COUNT];
216 	softhand_t		sc_hand[1];
217 } softcpu_t;
218 
219 static void	softint_thread(void *);
220 
221 u_int		softint_bytes = 32768;
222 u_int		softint_timing;
223 static u_int	softint_max;
224 static kmutex_t	softint_lock;
225 
226 /*
227  * softint_init_isr:
228  *
229  *	Initialize a single interrupt level for a single CPU.
230  */
231 static void
232 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level,
233     int ipl)
234 {
235 	struct cpu_info *ci;
236 	softint_t *si;
237 	int error;
238 
239 	si = &sc->sc_int[level];
240 	ci = sc->sc_cpu;
241 	si->si_cpu = ci;
242 
243 	SIMPLEQ_INIT(&si->si_q);
244 
245 	error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
246 	    KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
247 	    "soft%s/%u", desc, ci->ci_index);
248 	if (error != 0)
249 		panic("softint_init_isr: error %d", error);
250 
251 	snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
252 	    ci->ci_index);
253 	evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
254 	   "softint", si->si_name);
255 	snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
256 	    desc, ci->ci_index);
257 	evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
258 	   "softint", si->si_name_block);
259 
260 	si->si_ipl = ipl;
261 	si->si_lwp->l_private = si;
262 	softint_init_md(si->si_lwp, level, &si->si_machdep);
263 }
264 
265 /*
266  * softint_init:
267  *
268  *	Initialize per-CPU data structures.  Called from mi_cpu_attach().
269  */
270 void
271 softint_init(struct cpu_info *ci)
272 {
273 	static struct cpu_info *first;
274 	softcpu_t *sc, *scfirst;
275 	softhand_t *sh, *shmax;
276 
277 	if (first == NULL) {
278 		/* Boot CPU. */
279 		first = ci;
280 		mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
281 		softint_bytes = round_page(softint_bytes);
282 		softint_max = (softint_bytes - sizeof(softcpu_t)) /
283 		    sizeof(softhand_t);
284 	}
285 
286 	/* Use uvm_km(9) for persistent, page-aligned allocation. */
287 	sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
288 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
289 	if (sc == NULL)
290 		panic("softint_init_cpu: cannot allocate memory");
291 
292 	ci->ci_data.cpu_softcpu = sc;
293 	ci->ci_data.cpu_softints = 0;
294 	sc->sc_cpu = ci;
295 
296 	softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET,
297 	    IPL_SOFTNET);
298 	softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO,
299 	    IPL_SOFTBIO);
300 	softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK,
301 	    IPL_SOFTCLOCK);
302 	softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL,
303 	    IPL_SOFTSERIAL);
304 
305 	if (first != ci) {
306 		mutex_enter(&softint_lock);
307 		scfirst = first->ci_data.cpu_softcpu;
308 		sh = sc->sc_hand;
309 		memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
310 		/* Update pointers for this CPU. */
311 		for (shmax = sh + softint_max; sh < shmax; sh++) {
312 			if (sh->sh_func == NULL)
313 				continue;
314 			sh->sh_isr =
315 			    &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
316 		}
317 		mutex_exit(&softint_lock);
318 	}
319 }
320 
321 /*
322  * softint_establish:
323  *
324  *	Register a software interrupt handler.
325  */
326 void *
327 softint_establish(u_int flags, void (*func)(void *), void *arg)
328 {
329 	CPU_INFO_ITERATOR cii;
330 	struct cpu_info *ci;
331 	softcpu_t *sc;
332 	softhand_t *sh;
333 	u_int level, index;
334 	u_int ipi_id = 0;
335 	void *sih;
336 
337 	level = (flags & SOFTINT_LVLMASK);
338 	KASSERT(level < SOFTINT_COUNT);
339 	KASSERT((flags & SOFTINT_IMPMASK) == 0);
340 
341 	mutex_enter(&softint_lock);
342 
343 	/* Find a free slot. */
344 	sc = curcpu()->ci_data.cpu_softcpu;
345 	for (index = 1; index < softint_max; index++) {
346 		if (sc->sc_hand[index].sh_func == NULL)
347 			break;
348 	}
349 	if (index == softint_max) {
350 		mutex_exit(&softint_lock);
351 		printf("WARNING: softint_establish: table full, "
352 		    "increase softint_bytes\n");
353 		return NULL;
354 	}
355 	sih = (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
356 
357 	if (flags & SOFTINT_RCPU) {
358 		if ((ipi_id = ipi_register(softint_schedule, sih)) == 0) {
359 			mutex_exit(&softint_lock);
360 			return NULL;
361 		}
362 	}
363 
364 	/* Set up the handler on each CPU. */
365 	if (ncpu < 2) {
366 		/* XXX hack for machines with no CPU_INFO_FOREACH() early on */
367 		sc = curcpu()->ci_data.cpu_softcpu;
368 		sh = &sc->sc_hand[index];
369 		sh->sh_isr = &sc->sc_int[level];
370 		sh->sh_func = func;
371 		sh->sh_arg = arg;
372 		sh->sh_flags = flags;
373 		sh->sh_ipi_id = ipi_id;
374 	} else for (CPU_INFO_FOREACH(cii, ci)) {
375 		sc = ci->ci_data.cpu_softcpu;
376 		sh = &sc->sc_hand[index];
377 		sh->sh_isr = &sc->sc_int[level];
378 		sh->sh_func = func;
379 		sh->sh_arg = arg;
380 		sh->sh_flags = flags;
381 		sh->sh_ipi_id = ipi_id;
382 	}
383 	mutex_exit(&softint_lock);
384 
385 	return sih;
386 }
387 
388 /*
389  * softint_disestablish:
390  *
391  *	Unregister a software interrupt handler.  The soft interrupt could
392  *	still be active at this point, but the caller commits not to try
393  *	and trigger it again once this call is made.  The caller must not
394  *	hold any locks that could be taken from soft interrupt context,
395  *	because we will wait for the softint to complete if it's still
396  *	running.
397  */
398 void
399 softint_disestablish(void *arg)
400 {
401 	CPU_INFO_ITERATOR cii;
402 	struct cpu_info *ci;
403 	softcpu_t *sc;
404 	softhand_t *sh;
405 	uintptr_t offset;
406 
407 	offset = (uintptr_t)arg;
408 	KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
409 	    offset, softint_bytes);
410 
411 	/*
412 	 * Unregister IPI handler if there is any.  Note: there is no need
413 	 * to disable preemption here - ID is stable.
414 	 */
415 	sc = curcpu()->ci_data.cpu_softcpu;
416 	sh = (softhand_t *)((uint8_t *)sc + offset);
417 	if (sh->sh_ipi_id) {
418 		ipi_unregister(sh->sh_ipi_id);
419 	}
420 
421 	/*
422 	 * Run a dummy softint at the same level on all CPUs and wait for
423 	 * completion, to make sure this softint is no longer running
424 	 * anywhere.
425 	 */
426 	xc_barrier(XC_HIGHPRI_IPL(sh->sh_isr->si_ipl));
427 
428 	/* Clear the handler on each CPU. */
429 	mutex_enter(&softint_lock);
430 	for (CPU_INFO_FOREACH(cii, ci)) {
431 		sc = ci->ci_data.cpu_softcpu;
432 		sh = (softhand_t *)((uint8_t *)sc + offset);
433 		KASSERT(sh->sh_func != NULL);
434 		sh->sh_func = NULL;
435 	}
436 	mutex_exit(&softint_lock);
437 }
438 
439 /*
440  * softint_schedule:
441  *
442  *	Trigger a software interrupt.  Must be called from a hardware
443  *	interrupt handler, or with preemption disabled (since we are
444  *	using the value of curcpu()).
445  */
446 void
447 softint_schedule(void *arg)
448 {
449 	softhand_t *sh;
450 	softint_t *si;
451 	uintptr_t offset;
452 	int s;
453 
454 	/*
455 	 * If this assert fires, rather than disabling preemption explicitly
456 	 * to make it stop, consider that you are probably using a softint
457 	 * when you don't need to.
458 	 */
459 	KASSERT(kpreempt_disabled());
460 
461 	/* Find the handler record for this CPU. */
462 	offset = (uintptr_t)arg;
463 	KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
464 	    offset, softint_bytes);
465 	sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
466 
467 	/* If it's already pending there's nothing to do. */
468 	if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
469 		return;
470 	}
471 
472 	/*
473 	 * Enqueue the handler into the LWP's pending list.
474 	 * If the LWP is completely idle, then make it run.
475 	 */
476 	s = splhigh();
477 	if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
478 		si = sh->sh_isr;
479 		sh->sh_flags |= SOFTINT_PENDING;
480 		SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
481 		if (si->si_active == 0) {
482 			si->si_active = 1;
483 			softint_trigger(si->si_machdep);
484 		}
485 	}
486 	splx(s);
487 }
488 
489 /*
490  * softint_schedule_cpu:
491  *
492  *	Trigger a software interrupt on a target CPU.  This invokes
493  *	softint_schedule() for the local CPU or send an IPI to invoke
494  *	this routine on the remote CPU.  Preemption must be disabled.
495  */
496 void
497 softint_schedule_cpu(void *arg, struct cpu_info *ci)
498 {
499 	KASSERT(kpreempt_disabled());
500 
501 	if (curcpu() != ci) {
502 		const softcpu_t *sc = ci->ci_data.cpu_softcpu;
503 		const uintptr_t offset = (uintptr_t)arg;
504 		const softhand_t *sh;
505 
506 		sh = (const softhand_t *)((const uint8_t *)sc + offset);
507 		KASSERT((sh->sh_flags & SOFTINT_RCPU) != 0);
508 		ipi_trigger(sh->sh_ipi_id, ci);
509 		return;
510 	}
511 
512 	/* Just a local CPU. */
513 	softint_schedule(arg);
514 }
515 
516 /*
517  * softint_execute:
518  *
519  *	Invoke handlers for the specified soft interrupt.
520  *	Must be entered at splhigh.  Will drop the priority
521  *	to the level specified, but returns back at splhigh.
522  */
523 static inline void
524 softint_execute(lwp_t *l, int s)
525 {
526 	softint_t *si = l->l_private;
527 	softhand_t *sh;
528 
529 	KASSERT(si->si_lwp == curlwp);
530 	KASSERT(si->si_cpu == curcpu());
531 	KASSERT(si->si_lwp->l_wchan == NULL);
532 	KASSERT(si->si_active);
533 
534 	/*
535 	 * Note: due to priority inheritance we may have interrupted a
536 	 * higher priority LWP.  Since the soft interrupt must be quick
537 	 * and is non-preemptable, we don't bother yielding.
538 	 */
539 
540 	while (!SIMPLEQ_EMPTY(&si->si_q)) {
541 		/*
542 		 * Pick the longest waiting handler to run.  We block
543 		 * interrupts but do not lock in order to do this, as
544 		 * we are protecting against the local CPU only.
545 		 */
546 		sh = SIMPLEQ_FIRST(&si->si_q);
547 		SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
548 		KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
549 		sh->sh_flags ^= SOFTINT_PENDING;
550 		splx(s);
551 
552 		/* Run the handler. */
553 		if (__predict_true((sh->sh_flags & SOFTINT_MPSAFE) != 0)) {
554 			(*sh->sh_func)(sh->sh_arg);
555 		} else {
556 			KERNEL_LOCK(1, l);
557 			(*sh->sh_func)(sh->sh_arg);
558 			KERNEL_UNLOCK_ONE(l);
559 		}
560 
561 		/* Diagnostic: check that spin-locks have not leaked. */
562 		KASSERTMSG(curcpu()->ci_mtx_count == 0,
563 		    "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
564 		    __func__, curcpu()->ci_mtx_count, sh->sh_func);
565 		/* Diagnostic: check that psrefs have not leaked. */
566 		KASSERTMSG(l->l_psrefs == 0, "%s: l_psrefs=%d, sh_func=%p\n",
567 		    __func__, l->l_psrefs, sh->sh_func);
568 		/* Diagnostic: check that biglocks have not leaked. */
569 		KASSERTMSG(l->l_blcnt == 0,
570 		    "%s: sh_func=%p leaked %d biglocks",
571 		    __func__, sh->sh_func, curlwp->l_blcnt);
572 
573 		(void)splhigh();
574 	}
575 
576 	PSREF_DEBUG_BARRIER();
577 
578 	CPU_COUNT(CPU_COUNT_NSOFT, 1);
579 
580 	KASSERT(si->si_cpu == curcpu());
581 	KASSERT(si->si_lwp->l_wchan == NULL);
582 	KASSERT(si->si_active);
583 	si->si_evcnt.ev_count++;
584 	si->si_active = 0;
585 }
586 
587 /*
588  * softint_block:
589  *
590  *	Update statistics when the soft interrupt blocks.
591  */
592 void
593 softint_block(lwp_t *l)
594 {
595 	softint_t *si = l->l_private;
596 
597 	KASSERT((l->l_pflag & LP_INTR) != 0);
598 	si->si_evcnt_block.ev_count++;
599 }
600 
601 #ifndef __HAVE_FAST_SOFTINTS
602 
603 #ifdef __HAVE_PREEMPTION
604 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
605 #endif
606 
607 /*
608  * softint_init_md:
609  *
610  *	Slow path: perform machine-dependent initialization.
611  */
612 void
613 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
614 {
615 	struct proc *p;
616 	softint_t *si;
617 
618 	*machdep = (1 << level);
619 	si = l->l_private;
620 	p = l->l_proc;
621 
622 	mutex_enter(p->p_lock);
623 	lwp_lock(l);
624 	/* Cheat and make the KASSERT in softint_thread() happy. */
625 	si->si_active = 1;
626 	setrunnable(l);
627 	/* LWP now unlocked */
628 	mutex_exit(p->p_lock);
629 }
630 
631 /*
632  * softint_trigger:
633  *
634  *	Slow path: cause a soft interrupt handler to begin executing.
635  *	Called at IPL_HIGH.
636  */
637 void
638 softint_trigger(uintptr_t machdep)
639 {
640 	struct cpu_info *ci;
641 	lwp_t *l;
642 
643 	ci = curcpu();
644 	ci->ci_data.cpu_softints |= machdep;
645 	l = ci->ci_onproc;
646 
647 	/*
648 	 * Arrange for mi_switch() to be called.  If called from interrupt
649 	 * mode, we don't know if curlwp is executing in kernel or user, so
650 	 * post an AST and have it take a trip through userret().  If not in
651 	 * interrupt mode, curlwp is running in kernel and will notice the
652 	 * resched soon enough; avoid the AST.
653 	 */
654 	if (l == ci->ci_data.cpu_idlelwp) {
655 		atomic_or_uint(&ci->ci_want_resched,
656 		    RESCHED_IDLE | RESCHED_UPREEMPT);
657 	} else {
658 		atomic_or_uint(&ci->ci_want_resched, RESCHED_UPREEMPT);
659 		if (cpu_intr_p()) {
660 			cpu_signotify(l);
661 		}
662 	}
663 }
664 
665 /*
666  * softint_thread:
667  *
668  *	Slow path: MI software interrupt dispatch.
669  */
670 void
671 softint_thread(void *cookie)
672 {
673 	softint_t *si;
674 	lwp_t *l;
675 	int s;
676 
677 	l = curlwp;
678 	si = l->l_private;
679 
680 	for (;;) {
681 		/* Clear pending status and run it. */
682 		s = splhigh();
683 		l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
684 		softint_execute(l, s);
685 		splx(s);
686 
687 		/* Interrupts allowed to run again before switching. */
688 		lwp_lock(l);
689 		l->l_stat = LSIDL;
690 		spc_lock(l->l_cpu);
691 		mi_switch(l);
692 	}
693 }
694 
695 /*
696  * softint_picklwp:
697  *
698  *	Slow path: called from mi_switch() to pick the highest priority
699  *	soft interrupt LWP that needs to run.
700  */
701 lwp_t *
702 softint_picklwp(void)
703 {
704 	struct cpu_info *ci;
705 	u_int mask;
706 	softint_t *si;
707 	lwp_t *l;
708 
709 	ci = curcpu();
710 	si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
711 	mask = ci->ci_data.cpu_softints;
712 
713 	if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
714 		l = si[SOFTINT_SERIAL].si_lwp;
715 	} else if ((mask & (1 << SOFTINT_NET)) != 0) {
716 		l = si[SOFTINT_NET].si_lwp;
717 	} else if ((mask & (1 << SOFTINT_BIO)) != 0) {
718 		l = si[SOFTINT_BIO].si_lwp;
719 	} else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
720 		l = si[SOFTINT_CLOCK].si_lwp;
721 	} else {
722 		panic("softint_picklwp");
723 	}
724 
725 	return l;
726 }
727 
728 #else	/*  !__HAVE_FAST_SOFTINTS */
729 
730 /*
731  * softint_thread:
732  *
733  *	Fast path: the LWP is switched to without restoring any state,
734  *	so we should not arrive here - there is a direct handoff between
735  *	the interrupt stub and softint_dispatch().
736  */
737 void
738 softint_thread(void *cookie)
739 {
740 
741 	panic("softint_thread");
742 }
743 
744 /*
745  * softint_dispatch:
746  *
747  *	Fast path: entry point from machine-dependent code.
748  */
749 void
750 softint_dispatch(lwp_t *pinned, int s)
751 {
752 	struct bintime now;
753 	u_int timing;
754 	lwp_t *l;
755 
756 #ifdef DIAGNOSTIC
757 	if ((pinned->l_pflag & LP_RUNNING) == 0 || curlwp->l_stat != LSIDL) {
758 		struct lwp *onproc = curcpu()->ci_onproc;
759 		int s2 = splhigh();
760 		printf("curcpu=%d, spl=%d curspl=%d\n"
761 			"onproc=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
762 			"curlwp=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
763 			"pinned=%p => l_stat=%d l_flag=%08x l_cpu=%d\n",
764 			cpu_index(curcpu()), s, s2, onproc, onproc->l_stat,
765 			onproc->l_flag, cpu_index(onproc->l_cpu), curlwp,
766 			curlwp->l_stat, curlwp->l_flag,
767 			cpu_index(curlwp->l_cpu), pinned, pinned->l_stat,
768 			pinned->l_flag, cpu_index(pinned->l_cpu));
769 		splx(s2);
770 		panic("softint screwup");
771 	}
772 #endif
773 
774 	/*
775 	 * Note the interrupted LWP, and mark the current LWP as running
776 	 * before proceeding.  Although this must as a rule be done with
777 	 * the LWP locked, at this point no external agents will want to
778 	 * modify the interrupt LWP's state.
779 	 */
780 	timing = softint_timing;
781 	l = curlwp;
782 	l->l_switchto = pinned;
783 	l->l_stat = LSONPROC;
784 
785 	/*
786 	 * Dispatch the interrupt.  If softints are being timed, charge
787 	 * for it.
788 	 */
789 	if (timing) {
790 		binuptime(&l->l_stime);
791 		membar_producer();	/* for calcru */
792 		l->l_pflag |= LP_TIMEINTR;
793 	}
794 	l->l_pflag |= LP_RUNNING;
795 	softint_execute(l, s);
796 	if (timing) {
797 		binuptime(&now);
798 		updatertime(l, &now);
799 		l->l_pflag &= ~LP_TIMEINTR;
800 	}
801 
802 	/*
803 	 * If we blocked while handling the interrupt, the pinned LWP is
804 	 * gone and we are now running as a kthread, so find another LWP to
805 	 * run.  softint_dispatch() won't be reentered until the priority is
806 	 * finally dropped to IPL_NONE on entry to the next LWP on this CPU.
807 	 */
808 	l->l_stat = LSIDL;
809 	if (l->l_switchto == NULL) {
810 		lwp_lock(l);
811 		spc_lock(l->l_cpu);
812 		mi_switch(l);
813 		/* NOTREACHED */
814 	}
815 	l->l_switchto = NULL;
816 	l->l_pflag &= ~LP_RUNNING;
817 }
818 
819 #endif	/* !__HAVE_FAST_SOFTINTS */
820