xref: /netbsd-src/sys/kern/kern_sleepq.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /*	$NetBSD: kern_sleepq.c,v 1.63 2020/03/26 19:46:42 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34  * interfaces.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.63 2020/03/26 19:46:42 ad Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/cpu.h>
43 #include <sys/intr.h>
44 #include <sys/pool.h>
45 #include <sys/proc.h>
46 #include <sys/resourcevar.h>
47 #include <sys/sched.h>
48 #include <sys/systm.h>
49 #include <sys/sleepq.h>
50 #include <sys/ktrace.h>
51 
52 /*
53  * for sleepq_abort:
54  * During autoconfiguration or after a panic, a sleep will simply lower the
55  * priority briefly to allow interrupts, then return.  The priority to be
56  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
57  * maintained in the machine-dependent layers.  This priority will typically
58  * be 0, or the lowest priority that is safe for use on the interrupt stack;
59  * it can be made higher to block network software interrupts after panics.
60  */
61 #ifndef	IPL_SAFEPRI
62 #define	IPL_SAFEPRI	0
63 #endif
64 
65 static int	sleepq_sigtoerror(lwp_t *, int);
66 
67 /* General purpose sleep table, used by mtsleep() and condition variables. */
68 sleeptab_t	sleeptab __cacheline_aligned;
69 sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
70 
71 /*
72  * sleeptab_init:
73  *
74  *	Initialize a sleep table.
75  */
76 void
77 sleeptab_init(sleeptab_t *st)
78 {
79 	static bool again;
80 	int i;
81 
82 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
83 		if (!again) {
84 			mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
85 			    IPL_SCHED);
86 		}
87 		sleepq_init(&st->st_queue[i]);
88 	}
89 	again = true;
90 }
91 
92 /*
93  * sleepq_init:
94  *
95  *	Prepare a sleep queue for use.
96  */
97 void
98 sleepq_init(sleepq_t *sq)
99 {
100 
101 	LIST_INIT(sq);
102 }
103 
104 /*
105  * sleepq_remove:
106  *
107  *	Remove an LWP from a sleep queue and wake it up.
108  */
109 void
110 sleepq_remove(sleepq_t *sq, lwp_t *l)
111 {
112 	struct schedstate_percpu *spc;
113 	struct cpu_info *ci;
114 
115 	KASSERT(lwp_locked(l, NULL));
116 
117 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
118 		KASSERT(sq != NULL);
119 		LIST_REMOVE(l, l_sleepchain);
120 	} else {
121 		KASSERT(sq == NULL);
122 	}
123 
124 	l->l_syncobj = &sched_syncobj;
125 	l->l_wchan = NULL;
126 	l->l_sleepq = NULL;
127 	l->l_flag &= ~LW_SINTR;
128 
129 	ci = l->l_cpu;
130 	spc = &ci->ci_schedstate;
131 
132 	/*
133 	 * If not sleeping, the LWP must have been suspended.  Let whoever
134 	 * holds it stopped set it running again.
135 	 */
136 	if (l->l_stat != LSSLEEP) {
137 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
138 		lwp_setlock(l, spc->spc_lwplock);
139 		return;
140 	}
141 
142 	/*
143 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
144 	 * about to call mi_switch(), in which case it will yield.
145 	 */
146 	if ((l->l_pflag & LP_RUNNING) != 0) {
147 		l->l_stat = LSONPROC;
148 		l->l_slptime = 0;
149 		lwp_setlock(l, spc->spc_lwplock);
150 		return;
151 	}
152 
153 	/* Update sleep time delta, call the wake-up handler of scheduler */
154 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
155 	sched_wakeup(l);
156 
157 	/* Look for a CPU to wake up */
158 	l->l_cpu = sched_takecpu(l);
159 	ci = l->l_cpu;
160 	spc = &ci->ci_schedstate;
161 
162 	/*
163 	 * Set it running.
164 	 */
165 	spc_lock(ci);
166 	lwp_setlock(l, spc->spc_mutex);
167 	sched_setrunnable(l);
168 	l->l_stat = LSRUN;
169 	l->l_slptime = 0;
170 	sched_enqueue(l);
171 	sched_resched_lwp(l, true);
172 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
173 }
174 
175 /*
176  * sleepq_insert:
177  *
178  *	Insert an LWP into the sleep queue, optionally sorting by priority.
179  */
180 static void
181 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
182 {
183 
184 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
185 		KASSERT(sq == NULL);
186 		return;
187 	}
188 	KASSERT(sq != NULL);
189 
190 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
191 		lwp_t *l2;
192 		const pri_t pri = lwp_eprio(l);
193 
194 		LIST_FOREACH(l2, sq, l_sleepchain) {
195 			if (lwp_eprio(l2) < pri) {
196 				LIST_INSERT_BEFORE(l2, l, l_sleepchain);
197 				return;
198 			}
199 		}
200 	}
201 
202 	LIST_INSERT_HEAD(sq, l, l_sleepchain);
203 }
204 
205 /*
206  * sleepq_enqueue:
207  *
208  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
209  *	queue must already be locked, and any interlock (such as the kernel
210  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
211  */
212 void
213 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
214 {
215 	lwp_t *l = curlwp;
216 
217 	KASSERT(lwp_locked(l, NULL));
218 	KASSERT(l->l_stat == LSONPROC);
219 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
220 
221 	l->l_syncobj = sobj;
222 	l->l_wchan = wchan;
223 	l->l_sleepq = sq;
224 	l->l_wmesg = wmesg;
225 	l->l_slptime = 0;
226 	l->l_stat = LSSLEEP;
227 
228 	sleepq_insert(sq, l, sobj);
229 
230 	/* Save the time when thread has slept */
231 	l->l_slpticks = hardclock_ticks;
232 	sched_slept(l);
233 }
234 
235 /*
236  * sleepq_block:
237  *
238  *	After any intermediate step such as releasing an interlock, switch.
239  * 	sleepq_block() may return early under exceptional conditions, for
240  * 	example if the LWP's containing process is exiting.
241  *
242  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
243  */
244 int
245 sleepq_block(int timo, bool catch_p)
246 {
247 	int error = 0, sig;
248 	struct proc *p;
249 	lwp_t *l = curlwp;
250 	bool early = false;
251 	int biglocks = l->l_biglocks;
252 
253 	ktrcsw(1, 0);
254 
255 	/*
256 	 * If sleeping interruptably, check for pending signals, exits or
257 	 * core dump events.
258 	 */
259 	if (catch_p) {
260 		l->l_flag |= LW_SINTR;
261 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
262 			l->l_flag &= ~LW_CANCELLED;
263 			error = EINTR;
264 			early = true;
265 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
266 			early = true;
267 	}
268 
269 	if (early) {
270 		/* lwp_unsleep() will release the lock */
271 		lwp_unsleep(l, true);
272 	} else {
273 		if (timo) {
274 			callout_schedule(&l->l_timeout_ch, timo);
275 		}
276 		spc_lock(l->l_cpu);
277 		mi_switch(l);
278 
279 		/* The LWP and sleep queue are now unlocked. */
280 		if (timo) {
281 			/*
282 			 * Even if the callout appears to have fired, we
283 			 * need to stop it in order to synchronise with
284 			 * other CPUs.  It's important that we do this in
285 			 * this LWP's context, and not during wakeup, in
286 			 * order to keep the callout & its cache lines
287 			 * co-located on the CPU with the LWP.
288 			 */
289 			if (callout_halt(&l->l_timeout_ch, NULL))
290 				error = EWOULDBLOCK;
291 		}
292 	}
293 
294 	if (catch_p && error == 0) {
295 		p = l->l_proc;
296 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
297 			error = EINTR;
298 		else if ((l->l_flag & LW_PENDSIG) != 0) {
299 			/*
300 			 * Acquiring p_lock may cause us to recurse
301 			 * through the sleep path and back into this
302 			 * routine, but is safe because LWPs sleeping
303 			 * on locks are non-interruptable and we will
304 			 * not recurse again.
305 			 */
306 			mutex_enter(p->p_lock);
307 			if (((sig = sigispending(l, 0)) != 0 &&
308 			    (sigprop[sig] & SA_STOP) == 0) ||
309 			    (sig = issignal(l)) != 0)
310 				error = sleepq_sigtoerror(l, sig);
311 			mutex_exit(p->p_lock);
312 		}
313 	}
314 
315 	ktrcsw(0, 0);
316 	if (__predict_false(biglocks != 0)) {
317 		KERNEL_LOCK(biglocks, NULL);
318 	}
319 	return error;
320 }
321 
322 /*
323  * sleepq_wake:
324  *
325  *	Wake zero or more LWPs blocked on a single wait channel.
326  */
327 void
328 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
329 {
330 	lwp_t *l, *next;
331 
332 	KASSERT(mutex_owned(mp));
333 
334 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
335 		KASSERT(l->l_sleepq == sq);
336 		KASSERT(l->l_mutex == mp);
337 		next = LIST_NEXT(l, l_sleepchain);
338 		if (l->l_wchan != wchan)
339 			continue;
340 		sleepq_remove(sq, l);
341 		if (--expected == 0)
342 			break;
343 	}
344 
345 	mutex_spin_exit(mp);
346 }
347 
348 /*
349  * sleepq_unsleep:
350  *
351  *	Remove an LWP from its sleep queue and set it runnable again.
352  *	sleepq_unsleep() is called with the LWP's mutex held, and will
353  *	release it if "unlock" is true.
354  */
355 void
356 sleepq_unsleep(lwp_t *l, bool unlock)
357 {
358 	sleepq_t *sq = l->l_sleepq;
359 	kmutex_t *mp = l->l_mutex;
360 
361 	KASSERT(lwp_locked(l, mp));
362 	KASSERT(l->l_wchan != NULL);
363 
364 	sleepq_remove(sq, l);
365 	if (unlock) {
366 		mutex_spin_exit(mp);
367 	}
368 }
369 
370 /*
371  * sleepq_timeout:
372  *
373  *	Entered via the callout(9) subsystem to time out an LWP that is on a
374  *	sleep queue.
375  */
376 void
377 sleepq_timeout(void *arg)
378 {
379 	lwp_t *l = arg;
380 
381 	/*
382 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
383 	 * current mutex will also be the sleep queue mutex.
384 	 */
385 	lwp_lock(l);
386 
387 	if (l->l_wchan == NULL) {
388 		/* Somebody beat us to it. */
389 		lwp_unlock(l);
390 		return;
391 	}
392 
393 	lwp_unsleep(l, true);
394 }
395 
396 /*
397  * sleepq_sigtoerror:
398  *
399  *	Given a signal number, interpret and return an error code.
400  */
401 static int
402 sleepq_sigtoerror(lwp_t *l, int sig)
403 {
404 	struct proc *p = l->l_proc;
405 	int error;
406 
407 	KASSERT(mutex_owned(p->p_lock));
408 
409 	/*
410 	 * If this sleep was canceled, don't let the syscall restart.
411 	 */
412 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
413 		error = EINTR;
414 	else
415 		error = ERESTART;
416 
417 	return error;
418 }
419 
420 /*
421  * sleepq_abort:
422  *
423  *	After a panic or during autoconfiguration, lower the interrupt
424  *	priority level to give pending interrupts a chance to run, and
425  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
426  *	always returns zero.
427  */
428 int
429 sleepq_abort(kmutex_t *mtx, int unlock)
430 {
431 	int s;
432 
433 	s = splhigh();
434 	splx(IPL_SAFEPRI);
435 	splx(s);
436 	if (mtx != NULL && unlock != 0)
437 		mutex_exit(mtx);
438 
439 	return 0;
440 }
441 
442 /*
443  * sleepq_reinsert:
444  *
445  *	Move the possition of the lwp in the sleep queue after a possible
446  *	change of the lwp's effective priority.
447  */
448 static void
449 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
450 {
451 
452 	KASSERT(l->l_sleepq == sq);
453 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
454 		return;
455 	}
456 
457 	/*
458 	 * Don't let the sleep queue become empty, even briefly.
459 	 * cv_signal() and cv_broadcast() inspect it without the
460 	 * sleep queue lock held and need to see a non-empty queue
461 	 * head if there are waiters.
462 	 */
463 	if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
464 		return;
465 	}
466 	LIST_REMOVE(l, l_sleepchain);
467 	sleepq_insert(sq, l, l->l_syncobj);
468 }
469 
470 /*
471  * sleepq_changepri:
472  *
473  *	Adjust the priority of an LWP residing on a sleepq.
474  */
475 void
476 sleepq_changepri(lwp_t *l, pri_t pri)
477 {
478 	sleepq_t *sq = l->l_sleepq;
479 
480 	KASSERT(lwp_locked(l, NULL));
481 
482 	l->l_priority = pri;
483 	sleepq_reinsert(sq, l);
484 }
485 
486 /*
487  * sleepq_changepri:
488  *
489  *	Adjust the lended priority of an LWP residing on a sleepq.
490  */
491 void
492 sleepq_lendpri(lwp_t *l, pri_t pri)
493 {
494 	sleepq_t *sq = l->l_sleepq;
495 
496 	KASSERT(lwp_locked(l, NULL));
497 
498 	l->l_inheritedprio = pri;
499 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
500 	sleepq_reinsert(sq, l);
501 }
502