1 /* $NetBSD: kern_sleepq.c,v 1.63 2020/03/26 19:46:42 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Sleep queue implementation, used by turnstiles and general sleep/wakeup 34 * interfaces. 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.63 2020/03/26 19:46:42 ad Exp $"); 39 40 #include <sys/param.h> 41 #include <sys/kernel.h> 42 #include <sys/cpu.h> 43 #include <sys/intr.h> 44 #include <sys/pool.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/sched.h> 48 #include <sys/systm.h> 49 #include <sys/sleepq.h> 50 #include <sys/ktrace.h> 51 52 /* 53 * for sleepq_abort: 54 * During autoconfiguration or after a panic, a sleep will simply lower the 55 * priority briefly to allow interrupts, then return. The priority to be 56 * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and 57 * maintained in the machine-dependent layers. This priority will typically 58 * be 0, or the lowest priority that is safe for use on the interrupt stack; 59 * it can be made higher to block network software interrupts after panics. 60 */ 61 #ifndef IPL_SAFEPRI 62 #define IPL_SAFEPRI 0 63 #endif 64 65 static int sleepq_sigtoerror(lwp_t *, int); 66 67 /* General purpose sleep table, used by mtsleep() and condition variables. */ 68 sleeptab_t sleeptab __cacheline_aligned; 69 sleepqlock_t sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned; 70 71 /* 72 * sleeptab_init: 73 * 74 * Initialize a sleep table. 75 */ 76 void 77 sleeptab_init(sleeptab_t *st) 78 { 79 static bool again; 80 int i; 81 82 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) { 83 if (!again) { 84 mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT, 85 IPL_SCHED); 86 } 87 sleepq_init(&st->st_queue[i]); 88 } 89 again = true; 90 } 91 92 /* 93 * sleepq_init: 94 * 95 * Prepare a sleep queue for use. 96 */ 97 void 98 sleepq_init(sleepq_t *sq) 99 { 100 101 LIST_INIT(sq); 102 } 103 104 /* 105 * sleepq_remove: 106 * 107 * Remove an LWP from a sleep queue and wake it up. 108 */ 109 void 110 sleepq_remove(sleepq_t *sq, lwp_t *l) 111 { 112 struct schedstate_percpu *spc; 113 struct cpu_info *ci; 114 115 KASSERT(lwp_locked(l, NULL)); 116 117 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) { 118 KASSERT(sq != NULL); 119 LIST_REMOVE(l, l_sleepchain); 120 } else { 121 KASSERT(sq == NULL); 122 } 123 124 l->l_syncobj = &sched_syncobj; 125 l->l_wchan = NULL; 126 l->l_sleepq = NULL; 127 l->l_flag &= ~LW_SINTR; 128 129 ci = l->l_cpu; 130 spc = &ci->ci_schedstate; 131 132 /* 133 * If not sleeping, the LWP must have been suspended. Let whoever 134 * holds it stopped set it running again. 135 */ 136 if (l->l_stat != LSSLEEP) { 137 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED); 138 lwp_setlock(l, spc->spc_lwplock); 139 return; 140 } 141 142 /* 143 * If the LWP is still on the CPU, mark it as LSONPROC. It may be 144 * about to call mi_switch(), in which case it will yield. 145 */ 146 if ((l->l_pflag & LP_RUNNING) != 0) { 147 l->l_stat = LSONPROC; 148 l->l_slptime = 0; 149 lwp_setlock(l, spc->spc_lwplock); 150 return; 151 } 152 153 /* Update sleep time delta, call the wake-up handler of scheduler */ 154 l->l_slpticksum += (hardclock_ticks - l->l_slpticks); 155 sched_wakeup(l); 156 157 /* Look for a CPU to wake up */ 158 l->l_cpu = sched_takecpu(l); 159 ci = l->l_cpu; 160 spc = &ci->ci_schedstate; 161 162 /* 163 * Set it running. 164 */ 165 spc_lock(ci); 166 lwp_setlock(l, spc->spc_mutex); 167 sched_setrunnable(l); 168 l->l_stat = LSRUN; 169 l->l_slptime = 0; 170 sched_enqueue(l); 171 sched_resched_lwp(l, true); 172 /* LWP & SPC now unlocked, but we still hold sleep queue lock. */ 173 } 174 175 /* 176 * sleepq_insert: 177 * 178 * Insert an LWP into the sleep queue, optionally sorting by priority. 179 */ 180 static void 181 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj) 182 { 183 184 if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) { 185 KASSERT(sq == NULL); 186 return; 187 } 188 KASSERT(sq != NULL); 189 190 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) { 191 lwp_t *l2; 192 const pri_t pri = lwp_eprio(l); 193 194 LIST_FOREACH(l2, sq, l_sleepchain) { 195 if (lwp_eprio(l2) < pri) { 196 LIST_INSERT_BEFORE(l2, l, l_sleepchain); 197 return; 198 } 199 } 200 } 201 202 LIST_INSERT_HEAD(sq, l, l_sleepchain); 203 } 204 205 /* 206 * sleepq_enqueue: 207 * 208 * Enter an LWP into the sleep queue and prepare for sleep. The sleep 209 * queue must already be locked, and any interlock (such as the kernel 210 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()). 211 */ 212 void 213 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj) 214 { 215 lwp_t *l = curlwp; 216 217 KASSERT(lwp_locked(l, NULL)); 218 KASSERT(l->l_stat == LSONPROC); 219 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL); 220 221 l->l_syncobj = sobj; 222 l->l_wchan = wchan; 223 l->l_sleepq = sq; 224 l->l_wmesg = wmesg; 225 l->l_slptime = 0; 226 l->l_stat = LSSLEEP; 227 228 sleepq_insert(sq, l, sobj); 229 230 /* Save the time when thread has slept */ 231 l->l_slpticks = hardclock_ticks; 232 sched_slept(l); 233 } 234 235 /* 236 * sleepq_block: 237 * 238 * After any intermediate step such as releasing an interlock, switch. 239 * sleepq_block() may return early under exceptional conditions, for 240 * example if the LWP's containing process is exiting. 241 * 242 * timo is a timeout in ticks. timo = 0 specifies an infinite timeout. 243 */ 244 int 245 sleepq_block(int timo, bool catch_p) 246 { 247 int error = 0, sig; 248 struct proc *p; 249 lwp_t *l = curlwp; 250 bool early = false; 251 int biglocks = l->l_biglocks; 252 253 ktrcsw(1, 0); 254 255 /* 256 * If sleeping interruptably, check for pending signals, exits or 257 * core dump events. 258 */ 259 if (catch_p) { 260 l->l_flag |= LW_SINTR; 261 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) { 262 l->l_flag &= ~LW_CANCELLED; 263 error = EINTR; 264 early = true; 265 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) 266 early = true; 267 } 268 269 if (early) { 270 /* lwp_unsleep() will release the lock */ 271 lwp_unsleep(l, true); 272 } else { 273 if (timo) { 274 callout_schedule(&l->l_timeout_ch, timo); 275 } 276 spc_lock(l->l_cpu); 277 mi_switch(l); 278 279 /* The LWP and sleep queue are now unlocked. */ 280 if (timo) { 281 /* 282 * Even if the callout appears to have fired, we 283 * need to stop it in order to synchronise with 284 * other CPUs. It's important that we do this in 285 * this LWP's context, and not during wakeup, in 286 * order to keep the callout & its cache lines 287 * co-located on the CPU with the LWP. 288 */ 289 if (callout_halt(&l->l_timeout_ch, NULL)) 290 error = EWOULDBLOCK; 291 } 292 } 293 294 if (catch_p && error == 0) { 295 p = l->l_proc; 296 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0) 297 error = EINTR; 298 else if ((l->l_flag & LW_PENDSIG) != 0) { 299 /* 300 * Acquiring p_lock may cause us to recurse 301 * through the sleep path and back into this 302 * routine, but is safe because LWPs sleeping 303 * on locks are non-interruptable and we will 304 * not recurse again. 305 */ 306 mutex_enter(p->p_lock); 307 if (((sig = sigispending(l, 0)) != 0 && 308 (sigprop[sig] & SA_STOP) == 0) || 309 (sig = issignal(l)) != 0) 310 error = sleepq_sigtoerror(l, sig); 311 mutex_exit(p->p_lock); 312 } 313 } 314 315 ktrcsw(0, 0); 316 if (__predict_false(biglocks != 0)) { 317 KERNEL_LOCK(biglocks, NULL); 318 } 319 return error; 320 } 321 322 /* 323 * sleepq_wake: 324 * 325 * Wake zero or more LWPs blocked on a single wait channel. 326 */ 327 void 328 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp) 329 { 330 lwp_t *l, *next; 331 332 KASSERT(mutex_owned(mp)); 333 334 for (l = LIST_FIRST(sq); l != NULL; l = next) { 335 KASSERT(l->l_sleepq == sq); 336 KASSERT(l->l_mutex == mp); 337 next = LIST_NEXT(l, l_sleepchain); 338 if (l->l_wchan != wchan) 339 continue; 340 sleepq_remove(sq, l); 341 if (--expected == 0) 342 break; 343 } 344 345 mutex_spin_exit(mp); 346 } 347 348 /* 349 * sleepq_unsleep: 350 * 351 * Remove an LWP from its sleep queue and set it runnable again. 352 * sleepq_unsleep() is called with the LWP's mutex held, and will 353 * release it if "unlock" is true. 354 */ 355 void 356 sleepq_unsleep(lwp_t *l, bool unlock) 357 { 358 sleepq_t *sq = l->l_sleepq; 359 kmutex_t *mp = l->l_mutex; 360 361 KASSERT(lwp_locked(l, mp)); 362 KASSERT(l->l_wchan != NULL); 363 364 sleepq_remove(sq, l); 365 if (unlock) { 366 mutex_spin_exit(mp); 367 } 368 } 369 370 /* 371 * sleepq_timeout: 372 * 373 * Entered via the callout(9) subsystem to time out an LWP that is on a 374 * sleep queue. 375 */ 376 void 377 sleepq_timeout(void *arg) 378 { 379 lwp_t *l = arg; 380 381 /* 382 * Lock the LWP. Assuming it's still on the sleep queue, its 383 * current mutex will also be the sleep queue mutex. 384 */ 385 lwp_lock(l); 386 387 if (l->l_wchan == NULL) { 388 /* Somebody beat us to it. */ 389 lwp_unlock(l); 390 return; 391 } 392 393 lwp_unsleep(l, true); 394 } 395 396 /* 397 * sleepq_sigtoerror: 398 * 399 * Given a signal number, interpret and return an error code. 400 */ 401 static int 402 sleepq_sigtoerror(lwp_t *l, int sig) 403 { 404 struct proc *p = l->l_proc; 405 int error; 406 407 KASSERT(mutex_owned(p->p_lock)); 408 409 /* 410 * If this sleep was canceled, don't let the syscall restart. 411 */ 412 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0) 413 error = EINTR; 414 else 415 error = ERESTART; 416 417 return error; 418 } 419 420 /* 421 * sleepq_abort: 422 * 423 * After a panic or during autoconfiguration, lower the interrupt 424 * priority level to give pending interrupts a chance to run, and 425 * then return. Called if sleepq_dontsleep() returns non-zero, and 426 * always returns zero. 427 */ 428 int 429 sleepq_abort(kmutex_t *mtx, int unlock) 430 { 431 int s; 432 433 s = splhigh(); 434 splx(IPL_SAFEPRI); 435 splx(s); 436 if (mtx != NULL && unlock != 0) 437 mutex_exit(mtx); 438 439 return 0; 440 } 441 442 /* 443 * sleepq_reinsert: 444 * 445 * Move the possition of the lwp in the sleep queue after a possible 446 * change of the lwp's effective priority. 447 */ 448 static void 449 sleepq_reinsert(sleepq_t *sq, lwp_t *l) 450 { 451 452 KASSERT(l->l_sleepq == sq); 453 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) { 454 return; 455 } 456 457 /* 458 * Don't let the sleep queue become empty, even briefly. 459 * cv_signal() and cv_broadcast() inspect it without the 460 * sleep queue lock held and need to see a non-empty queue 461 * head if there are waiters. 462 */ 463 if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) { 464 return; 465 } 466 LIST_REMOVE(l, l_sleepchain); 467 sleepq_insert(sq, l, l->l_syncobj); 468 } 469 470 /* 471 * sleepq_changepri: 472 * 473 * Adjust the priority of an LWP residing on a sleepq. 474 */ 475 void 476 sleepq_changepri(lwp_t *l, pri_t pri) 477 { 478 sleepq_t *sq = l->l_sleepq; 479 480 KASSERT(lwp_locked(l, NULL)); 481 482 l->l_priority = pri; 483 sleepq_reinsert(sq, l); 484 } 485 486 /* 487 * sleepq_changepri: 488 * 489 * Adjust the lended priority of an LWP residing on a sleepq. 490 */ 491 void 492 sleepq_lendpri(lwp_t *l, pri_t pri) 493 { 494 sleepq_t *sq = l->l_sleepq; 495 496 KASSERT(lwp_locked(l, NULL)); 497 498 l->l_inheritedprio = pri; 499 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 500 sleepq_reinsert(sq, l); 501 } 502