1 /* $NetBSD: kern_sleepq.c,v 1.74 2023/04/09 09:18:09 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Sleep queue implementation, used by turnstiles and general sleep/wakeup 34 * interfaces. 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.74 2023/04/09 09:18:09 riastradh Exp $"); 39 40 #include <sys/param.h> 41 #include <sys/kernel.h> 42 #include <sys/cpu.h> 43 #include <sys/intr.h> 44 #include <sys/pool.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/sched.h> 48 #include <sys/systm.h> 49 #include <sys/sleepq.h> 50 #include <sys/ktrace.h> 51 52 /* 53 * for sleepq_abort: 54 * During autoconfiguration or after a panic, a sleep will simply lower the 55 * priority briefly to allow interrupts, then return. The priority to be 56 * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and 57 * maintained in the machine-dependent layers. This priority will typically 58 * be 0, or the lowest priority that is safe for use on the interrupt stack; 59 * it can be made higher to block network software interrupts after panics. 60 */ 61 #ifndef IPL_SAFEPRI 62 #define IPL_SAFEPRI 0 63 #endif 64 65 static int sleepq_sigtoerror(lwp_t *, int); 66 67 /* General purpose sleep table, used by mtsleep() and condition variables. */ 68 sleeptab_t sleeptab __cacheline_aligned; 69 sleepqlock_t sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned; 70 71 /* 72 * sleeptab_init: 73 * 74 * Initialize a sleep table. 75 */ 76 void 77 sleeptab_init(sleeptab_t *st) 78 { 79 static bool again; 80 int i; 81 82 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) { 83 if (!again) { 84 mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT, 85 IPL_SCHED); 86 } 87 sleepq_init(&st->st_queue[i]); 88 } 89 again = true; 90 } 91 92 /* 93 * sleepq_init: 94 * 95 * Prepare a sleep queue for use. 96 */ 97 void 98 sleepq_init(sleepq_t *sq) 99 { 100 101 LIST_INIT(sq); 102 } 103 104 /* 105 * sleepq_remove: 106 * 107 * Remove an LWP from a sleep queue and wake it up. 108 */ 109 void 110 sleepq_remove(sleepq_t *sq, lwp_t *l) 111 { 112 struct schedstate_percpu *spc; 113 struct cpu_info *ci; 114 115 KASSERT(lwp_locked(l, NULL)); 116 117 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) { 118 KASSERT(sq != NULL); 119 LIST_REMOVE(l, l_sleepchain); 120 } else { 121 KASSERT(sq == NULL); 122 } 123 124 l->l_syncobj = &sched_syncobj; 125 l->l_wchan = NULL; 126 l->l_sleepq = NULL; 127 l->l_flag &= ~LW_SINTR; 128 129 ci = l->l_cpu; 130 spc = &ci->ci_schedstate; 131 132 /* 133 * If not sleeping, the LWP must have been suspended. Let whoever 134 * holds it stopped set it running again. 135 */ 136 if (l->l_stat != LSSLEEP) { 137 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED); 138 lwp_setlock(l, spc->spc_lwplock); 139 return; 140 } 141 142 /* 143 * If the LWP is still on the CPU, mark it as LSONPROC. It may be 144 * about to call mi_switch(), in which case it will yield. 145 */ 146 if ((l->l_pflag & LP_RUNNING) != 0) { 147 l->l_stat = LSONPROC; 148 l->l_slptime = 0; 149 lwp_setlock(l, spc->spc_lwplock); 150 return; 151 } 152 153 /* Update sleep time delta, call the wake-up handler of scheduler */ 154 l->l_slpticksum += (getticks() - l->l_slpticks); 155 sched_wakeup(l); 156 157 /* Look for a CPU to wake up */ 158 l->l_cpu = sched_takecpu(l); 159 ci = l->l_cpu; 160 spc = &ci->ci_schedstate; 161 162 /* 163 * Set it running. 164 */ 165 spc_lock(ci); 166 lwp_setlock(l, spc->spc_mutex); 167 sched_setrunnable(l); 168 l->l_stat = LSRUN; 169 l->l_slptime = 0; 170 sched_enqueue(l); 171 sched_resched_lwp(l, true); 172 /* LWP & SPC now unlocked, but we still hold sleep queue lock. */ 173 } 174 175 /* 176 * sleepq_insert: 177 * 178 * Insert an LWP into the sleep queue, optionally sorting by priority. 179 */ 180 static void 181 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj) 182 { 183 184 if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) { 185 KASSERT(sq == NULL); 186 return; 187 } 188 KASSERT(sq != NULL); 189 190 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) { 191 lwp_t *l2, *l_last = NULL; 192 const pri_t pri = lwp_eprio(l); 193 194 LIST_FOREACH(l2, sq, l_sleepchain) { 195 l_last = l2; 196 if (lwp_eprio(l2) < pri) { 197 LIST_INSERT_BEFORE(l2, l, l_sleepchain); 198 return; 199 } 200 } 201 /* 202 * Ensure FIFO ordering if no waiters are of lower priority. 203 */ 204 if (l_last != NULL) { 205 LIST_INSERT_AFTER(l_last, l, l_sleepchain); 206 return; 207 } 208 } 209 210 LIST_INSERT_HEAD(sq, l, l_sleepchain); 211 } 212 213 /* 214 * sleepq_enqueue: 215 * 216 * Enter an LWP into the sleep queue and prepare for sleep. The sleep 217 * queue must already be locked, and any interlock (such as the kernel 218 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()). 219 */ 220 void 221 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj, 222 bool catch_p) 223 { 224 lwp_t *l = curlwp; 225 226 KASSERT(lwp_locked(l, NULL)); 227 KASSERT(l->l_stat == LSONPROC); 228 KASSERT(l->l_wchan == NULL); 229 KASSERT(l->l_sleepq == NULL); 230 KASSERT((l->l_flag & LW_SINTR) == 0); 231 232 l->l_syncobj = sobj; 233 l->l_wchan = wchan; 234 l->l_sleepq = sq; 235 l->l_wmesg = wmesg; 236 l->l_slptime = 0; 237 l->l_stat = LSSLEEP; 238 if (catch_p) 239 l->l_flag |= LW_SINTR; 240 241 sleepq_insert(sq, l, sobj); 242 243 /* Save the time when thread has slept */ 244 l->l_slpticks = getticks(); 245 sched_slept(l); 246 } 247 248 /* 249 * sleepq_transfer: 250 * 251 * Move an LWP from one sleep queue to another. Both sleep queues 252 * must already be locked. 253 * 254 * The LWP will be updated with the new sleepq, wchan, wmesg, 255 * sobj, and mutex. The interruptible flag will also be updated. 256 */ 257 void 258 sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan, 259 const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p) 260 { 261 262 KASSERT(l->l_sleepq == from_sq); 263 264 LIST_REMOVE(l, l_sleepchain); 265 l->l_syncobj = sobj; 266 l->l_wchan = wchan; 267 l->l_sleepq = sq; 268 l->l_wmesg = wmesg; 269 270 if (catch_p) 271 l->l_flag = LW_SINTR | LW_CATCHINTR; 272 else 273 l->l_flag = ~(LW_SINTR | LW_CATCHINTR); 274 275 /* 276 * This allows the transfer from one sleepq to another where 277 * it is known that they're both protected by the same lock. 278 */ 279 if (mp != NULL) 280 lwp_setlock(l, mp); 281 282 sleepq_insert(sq, l, sobj); 283 } 284 285 /* 286 * sleepq_uncatch: 287 * 288 * Mark the LWP as no longer sleeping interruptibly. 289 */ 290 void 291 sleepq_uncatch(lwp_t *l) 292 { 293 l->l_flag = ~(LW_SINTR | LW_CATCHINTR); 294 } 295 296 /* 297 * sleepq_block: 298 * 299 * After any intermediate step such as releasing an interlock, switch. 300 * sleepq_block() may return early under exceptional conditions, for 301 * example if the LWP's containing process is exiting. 302 * 303 * timo is a timeout in ticks. timo = 0 specifies an infinite timeout. 304 */ 305 int 306 sleepq_block(int timo, bool catch_p, struct syncobj *syncobj) 307 { 308 int error = 0, sig; 309 struct proc *p; 310 lwp_t *l = curlwp; 311 bool early = false; 312 int biglocks = l->l_biglocks; 313 314 ktrcsw(1, 0, syncobj); 315 316 /* 317 * If sleeping interruptably, check for pending signals, exits or 318 * core dump events. 319 * 320 * Note the usage of LW_CATCHINTR. This expresses our intent 321 * to catch or not catch sleep interruptions, which might change 322 * while we are sleeping. It is independent from LW_SINTR because 323 * we don't want to leave LW_SINTR set when the LWP is not asleep. 324 */ 325 if (catch_p) { 326 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) { 327 l->l_flag &= ~LW_CANCELLED; 328 error = EINTR; 329 early = true; 330 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) 331 early = true; 332 l->l_flag |= LW_CATCHINTR; 333 } else 334 l->l_flag &= ~LW_CATCHINTR; 335 336 if (early) { 337 /* lwp_unsleep() will release the lock */ 338 lwp_unsleep(l, true); 339 } else { 340 /* 341 * The LWP may have already been awoken if the caller 342 * dropped the sleep queue lock between sleepq_enqueue() and 343 * sleepq_block(). If that happens l_stat will be LSONPROC 344 * and mi_switch() will treat this as a preemption. No need 345 * to do anything special here. 346 */ 347 if (timo) { 348 l->l_flag &= ~LW_STIMO; 349 callout_schedule(&l->l_timeout_ch, timo); 350 } 351 spc_lock(l->l_cpu); 352 mi_switch(l); 353 354 /* The LWP and sleep queue are now unlocked. */ 355 if (timo) { 356 /* 357 * Even if the callout appears to have fired, we 358 * need to stop it in order to synchronise with 359 * other CPUs. It's important that we do this in 360 * this LWP's context, and not during wakeup, in 361 * order to keep the callout & its cache lines 362 * co-located on the CPU with the LWP. 363 */ 364 (void)callout_halt(&l->l_timeout_ch, NULL); 365 error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0; 366 } 367 } 368 369 /* 370 * LW_CATCHINTR is only modified in this function OR when we 371 * are asleep (with the sleepq locked). We can therefore safely 372 * test it unlocked here as it is guaranteed to be stable by 373 * virtue of us running. 374 * 375 * We do not bother clearing it if set; that would require us 376 * to take the LWP lock, and it doesn't seem worth the hassle 377 * considering it is only meaningful here inside this function, 378 * and is set to reflect intent upon entry. 379 */ 380 if ((l->l_flag & LW_CATCHINTR) != 0 && error == 0) { 381 p = l->l_proc; 382 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0) 383 error = EINTR; 384 else if ((l->l_flag & LW_PENDSIG) != 0) { 385 /* 386 * Acquiring p_lock may cause us to recurse 387 * through the sleep path and back into this 388 * routine, but is safe because LWPs sleeping 389 * on locks are non-interruptable and we will 390 * not recurse again. 391 */ 392 mutex_enter(p->p_lock); 393 if (((sig = sigispending(l, 0)) != 0 && 394 (sigprop[sig] & SA_STOP) == 0) || 395 (sig = issignal(l)) != 0) 396 error = sleepq_sigtoerror(l, sig); 397 mutex_exit(p->p_lock); 398 } 399 } 400 401 ktrcsw(0, 0, syncobj); 402 if (__predict_false(biglocks != 0)) { 403 KERNEL_LOCK(biglocks, NULL); 404 } 405 return error; 406 } 407 408 /* 409 * sleepq_wake: 410 * 411 * Wake zero or more LWPs blocked on a single wait channel. 412 */ 413 void 414 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp) 415 { 416 lwp_t *l, *next; 417 418 KASSERT(mutex_owned(mp)); 419 420 for (l = LIST_FIRST(sq); l != NULL; l = next) { 421 KASSERT(l->l_sleepq == sq); 422 KASSERT(l->l_mutex == mp); 423 next = LIST_NEXT(l, l_sleepchain); 424 if (l->l_wchan != wchan) 425 continue; 426 sleepq_remove(sq, l); 427 if (--expected == 0) 428 break; 429 } 430 431 mutex_spin_exit(mp); 432 } 433 434 /* 435 * sleepq_unsleep: 436 * 437 * Remove an LWP from its sleep queue and set it runnable again. 438 * sleepq_unsleep() is called with the LWP's mutex held, and will 439 * release it if "unlock" is true. 440 */ 441 void 442 sleepq_unsleep(lwp_t *l, bool unlock) 443 { 444 sleepq_t *sq = l->l_sleepq; 445 kmutex_t *mp = l->l_mutex; 446 447 KASSERT(lwp_locked(l, mp)); 448 KASSERT(l->l_wchan != NULL); 449 450 sleepq_remove(sq, l); 451 if (unlock) { 452 mutex_spin_exit(mp); 453 } 454 } 455 456 /* 457 * sleepq_timeout: 458 * 459 * Entered via the callout(9) subsystem to time out an LWP that is on a 460 * sleep queue. 461 */ 462 void 463 sleepq_timeout(void *arg) 464 { 465 lwp_t *l = arg; 466 467 /* 468 * Lock the LWP. Assuming it's still on the sleep queue, its 469 * current mutex will also be the sleep queue mutex. 470 */ 471 lwp_lock(l); 472 473 if (l->l_wchan == NULL) { 474 /* Somebody beat us to it. */ 475 lwp_unlock(l); 476 return; 477 } 478 479 l->l_flag |= LW_STIMO; 480 lwp_unsleep(l, true); 481 } 482 483 /* 484 * sleepq_sigtoerror: 485 * 486 * Given a signal number, interpret and return an error code. 487 */ 488 static int 489 sleepq_sigtoerror(lwp_t *l, int sig) 490 { 491 struct proc *p = l->l_proc; 492 int error; 493 494 KASSERT(mutex_owned(p->p_lock)); 495 496 /* 497 * If this sleep was canceled, don't let the syscall restart. 498 */ 499 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0) 500 error = EINTR; 501 else 502 error = ERESTART; 503 504 return error; 505 } 506 507 /* 508 * sleepq_abort: 509 * 510 * After a panic or during autoconfiguration, lower the interrupt 511 * priority level to give pending interrupts a chance to run, and 512 * then return. Called if sleepq_dontsleep() returns non-zero, and 513 * always returns zero. 514 */ 515 int 516 sleepq_abort(kmutex_t *mtx, int unlock) 517 { 518 int s; 519 520 s = splhigh(); 521 splx(IPL_SAFEPRI); 522 splx(s); 523 if (mtx != NULL && unlock != 0) 524 mutex_exit(mtx); 525 526 return 0; 527 } 528 529 /* 530 * sleepq_reinsert: 531 * 532 * Move the position of the lwp in the sleep queue after a possible 533 * change of the lwp's effective priority. 534 */ 535 static void 536 sleepq_reinsert(sleepq_t *sq, lwp_t *l) 537 { 538 539 KASSERT(l->l_sleepq == sq); 540 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) { 541 return; 542 } 543 544 /* 545 * Don't let the sleep queue become empty, even briefly. 546 * cv_signal() and cv_broadcast() inspect it without the 547 * sleep queue lock held and need to see a non-empty queue 548 * head if there are waiters. 549 */ 550 if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) { 551 return; 552 } 553 LIST_REMOVE(l, l_sleepchain); 554 sleepq_insert(sq, l, l->l_syncobj); 555 } 556 557 /* 558 * sleepq_changepri: 559 * 560 * Adjust the priority of an LWP residing on a sleepq. 561 */ 562 void 563 sleepq_changepri(lwp_t *l, pri_t pri) 564 { 565 sleepq_t *sq = l->l_sleepq; 566 567 KASSERT(lwp_locked(l, NULL)); 568 569 l->l_priority = pri; 570 sleepq_reinsert(sq, l); 571 } 572 573 /* 574 * sleepq_changepri: 575 * 576 * Adjust the lended priority of an LWP residing on a sleepq. 577 */ 578 void 579 sleepq_lendpri(lwp_t *l, pri_t pri) 580 { 581 sleepq_t *sq = l->l_sleepq; 582 583 KASSERT(lwp_locked(l, NULL)); 584 585 l->l_inheritedprio = pri; 586 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 587 sleepq_reinsert(sq, l); 588 } 589