1 /* $NetBSD: kern_sleepq.c,v 1.36 2009/03/21 13:11:14 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Sleep queue implementation, used by turnstiles and general sleep/wakeup 34 * interfaces. 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.36 2009/03/21 13:11:14 ad Exp $"); 39 40 #include <sys/param.h> 41 #include <sys/kernel.h> 42 #include <sys/cpu.h> 43 #include <sys/pool.h> 44 #include <sys/proc.h> 45 #include <sys/resourcevar.h> 46 #include <sys/sa.h> 47 #include <sys/savar.h> 48 #include <sys/sched.h> 49 #include <sys/systm.h> 50 #include <sys/sleepq.h> 51 #include <sys/ktrace.h> 52 53 #include <uvm/uvm_extern.h> 54 55 #include "opt_sa.h" 56 57 int sleepq_sigtoerror(lwp_t *, int); 58 59 /* General purpose sleep table, used by ltsleep() and condition variables. */ 60 sleeptab_t sleeptab; 61 62 /* 63 * sleeptab_init: 64 * 65 * Initialize a sleep table. 66 */ 67 void 68 sleeptab_init(sleeptab_t *st) 69 { 70 sleepq_t *sq; 71 int i; 72 73 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) { 74 sq = &st->st_queues[i].st_queue; 75 st->st_queues[i].st_mutex = 76 mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED); 77 sleepq_init(sq); 78 } 79 } 80 81 /* 82 * sleepq_init: 83 * 84 * Prepare a sleep queue for use. 85 */ 86 void 87 sleepq_init(sleepq_t *sq) 88 { 89 90 TAILQ_INIT(sq); 91 } 92 93 /* 94 * sleepq_remove: 95 * 96 * Remove an LWP from a sleep queue and wake it up. Return non-zero if 97 * the LWP is swapped out; if so the caller needs to awaken the swapper 98 * to bring the LWP into memory. 99 */ 100 int 101 sleepq_remove(sleepq_t *sq, lwp_t *l) 102 { 103 struct schedstate_percpu *spc; 104 struct cpu_info *ci; 105 106 KASSERT(lwp_locked(l, NULL)); 107 108 TAILQ_REMOVE(sq, l, l_sleepchain); 109 l->l_syncobj = &sched_syncobj; 110 l->l_wchan = NULL; 111 l->l_sleepq = NULL; 112 l->l_flag &= ~LW_SINTR; 113 114 ci = l->l_cpu; 115 spc = &ci->ci_schedstate; 116 117 /* 118 * If not sleeping, the LWP must have been suspended. Let whoever 119 * holds it stopped set it running again. 120 */ 121 if (l->l_stat != LSSLEEP) { 122 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED); 123 lwp_setlock(l, spc->spc_lwplock); 124 return 0; 125 } 126 127 /* 128 * If the LWP is still on the CPU, mark it as LSONPROC. It may be 129 * about to call mi_switch(), in which case it will yield. 130 */ 131 if ((l->l_pflag & LP_RUNNING) != 0) { 132 l->l_stat = LSONPROC; 133 l->l_slptime = 0; 134 lwp_setlock(l, spc->spc_lwplock); 135 return 0; 136 } 137 138 /* Update sleep time delta, call the wake-up handler of scheduler */ 139 l->l_slpticksum += (hardclock_ticks - l->l_slpticks); 140 sched_wakeup(l); 141 142 /* Look for a CPU to wake up */ 143 l->l_cpu = sched_takecpu(l); 144 ci = l->l_cpu; 145 spc = &ci->ci_schedstate; 146 147 /* 148 * Set it running. 149 */ 150 spc_lock(ci); 151 lwp_setlock(l, spc->spc_mutex); 152 #ifdef KERN_SA 153 if (l->l_proc->p_sa != NULL) 154 sa_awaken(l); 155 #endif /* KERN_SA */ 156 sched_setrunnable(l); 157 l->l_stat = LSRUN; 158 l->l_slptime = 0; 159 if ((l->l_flag & LW_INMEM) != 0) { 160 sched_enqueue(l, false); 161 spc_unlock(ci); 162 return 0; 163 } 164 spc_unlock(ci); 165 return 1; 166 } 167 168 /* 169 * sleepq_insert: 170 * 171 * Insert an LWP into the sleep queue, optionally sorting by priority. 172 */ 173 inline void 174 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj) 175 { 176 lwp_t *l2; 177 const int pri = lwp_eprio(l); 178 179 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) { 180 TAILQ_FOREACH(l2, sq, l_sleepchain) { 181 if (lwp_eprio(l2) < pri) { 182 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain); 183 return; 184 } 185 } 186 } 187 188 if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0) 189 TAILQ_INSERT_HEAD(sq, l, l_sleepchain); 190 else 191 TAILQ_INSERT_TAIL(sq, l, l_sleepchain); 192 } 193 194 /* 195 * sleepq_enqueue: 196 * 197 * Enter an LWP into the sleep queue and prepare for sleep. The sleep 198 * queue must already be locked, and any interlock (such as the kernel 199 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()). 200 */ 201 void 202 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj) 203 { 204 lwp_t *l = curlwp; 205 206 KASSERT(lwp_locked(l, NULL)); 207 KASSERT(l->l_stat == LSONPROC); 208 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL); 209 210 l->l_syncobj = sobj; 211 l->l_wchan = wchan; 212 l->l_sleepq = sq; 213 l->l_wmesg = wmesg; 214 l->l_slptime = 0; 215 l->l_stat = LSSLEEP; 216 l->l_sleeperr = 0; 217 218 sleepq_insert(sq, l, sobj); 219 220 /* Save the time when thread has slept */ 221 l->l_slpticks = hardclock_ticks; 222 sched_slept(l); 223 } 224 225 /* 226 * sleepq_block: 227 * 228 * After any intermediate step such as releasing an interlock, switch. 229 * sleepq_block() may return early under exceptional conditions, for 230 * example if the LWP's containing process is exiting. 231 */ 232 int 233 sleepq_block(int timo, bool catch) 234 { 235 int error = 0, sig; 236 struct proc *p; 237 lwp_t *l = curlwp; 238 bool early = false; 239 int biglocks = l->l_biglocks; 240 241 ktrcsw(1, 0); 242 243 /* 244 * If sleeping interruptably, check for pending signals, exits or 245 * core dump events. 246 */ 247 if (catch) { 248 l->l_flag |= LW_SINTR; 249 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) { 250 l->l_flag &= ~LW_CANCELLED; 251 error = EINTR; 252 early = true; 253 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) 254 early = true; 255 } 256 257 if (early) { 258 /* lwp_unsleep() will release the lock */ 259 lwp_unsleep(l, true); 260 } else { 261 if (timo) 262 callout_schedule(&l->l_timeout_ch, timo); 263 264 #ifdef KERN_SA 265 if (((l->l_flag & LW_SA) != 0) && (~l->l_pflag & LP_SA_NOBLOCK)) 266 sa_switch(l); 267 else 268 #endif 269 mi_switch(l); 270 271 /* The LWP and sleep queue are now unlocked. */ 272 if (timo) { 273 /* 274 * Even if the callout appears to have fired, we need to 275 * stop it in order to synchronise with other CPUs. 276 */ 277 if (callout_halt(&l->l_timeout_ch, NULL)) 278 error = EWOULDBLOCK; 279 } 280 } 281 282 if (catch && error == 0) { 283 p = l->l_proc; 284 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0) 285 error = EINTR; 286 else if ((l->l_flag & LW_PENDSIG) != 0) { 287 /* 288 * Acquiring p_lock may cause us to recurse 289 * through the sleep path and back into this 290 * routine, but is safe because LWPs sleeping 291 * on locks are non-interruptable. We will 292 * not recurse again. 293 */ 294 mutex_enter(p->p_lock); 295 if ((sig = issignal(l)) != 0) 296 error = sleepq_sigtoerror(l, sig); 297 mutex_exit(p->p_lock); 298 } 299 } 300 301 ktrcsw(0, 0); 302 if (__predict_false(biglocks != 0)) { 303 KERNEL_LOCK(biglocks, NULL); 304 } 305 return error; 306 } 307 308 /* 309 * sleepq_wake: 310 * 311 * Wake zero or more LWPs blocked on a single wait channel. 312 */ 313 lwp_t * 314 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp) 315 { 316 lwp_t *l, *next; 317 int swapin = 0; 318 319 KASSERT(mutex_owned(mp)); 320 321 for (l = TAILQ_FIRST(sq); l != NULL; l = next) { 322 KASSERT(l->l_sleepq == sq); 323 KASSERT(l->l_mutex == mp); 324 next = TAILQ_NEXT(l, l_sleepchain); 325 if (l->l_wchan != wchan) 326 continue; 327 swapin |= sleepq_remove(sq, l); 328 if (--expected == 0) 329 break; 330 } 331 332 mutex_spin_exit(mp); 333 334 /* 335 * If there are newly awakend threads that need to be swapped in, 336 * then kick the swapper into action. 337 */ 338 if (swapin) 339 uvm_kick_scheduler(); 340 341 return l; 342 } 343 344 /* 345 * sleepq_unsleep: 346 * 347 * Remove an LWP from its sleep queue and set it runnable again. 348 * sleepq_unsleep() is called with the LWP's mutex held, and will 349 * always release it. 350 */ 351 u_int 352 sleepq_unsleep(lwp_t *l, bool cleanup) 353 { 354 sleepq_t *sq = l->l_sleepq; 355 kmutex_t *mp = l->l_mutex; 356 int swapin; 357 358 KASSERT(lwp_locked(l, mp)); 359 KASSERT(l->l_wchan != NULL); 360 361 swapin = sleepq_remove(sq, l); 362 363 if (cleanup) { 364 mutex_spin_exit(mp); 365 if (swapin) 366 uvm_kick_scheduler(); 367 } 368 369 return swapin; 370 } 371 372 /* 373 * sleepq_timeout: 374 * 375 * Entered via the callout(9) subsystem to time out an LWP that is on a 376 * sleep queue. 377 */ 378 void 379 sleepq_timeout(void *arg) 380 { 381 lwp_t *l = arg; 382 383 /* 384 * Lock the LWP. Assuming it's still on the sleep queue, its 385 * current mutex will also be the sleep queue mutex. 386 */ 387 lwp_lock(l); 388 389 if (l->l_wchan == NULL) { 390 /* Somebody beat us to it. */ 391 lwp_unlock(l); 392 return; 393 } 394 395 lwp_unsleep(l, true); 396 } 397 398 /* 399 * sleepq_sigtoerror: 400 * 401 * Given a signal number, interpret and return an error code. 402 */ 403 int 404 sleepq_sigtoerror(lwp_t *l, int sig) 405 { 406 struct proc *p = l->l_proc; 407 int error; 408 409 KASSERT(mutex_owned(p->p_lock)); 410 411 /* 412 * If this sleep was canceled, don't let the syscall restart. 413 */ 414 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0) 415 error = EINTR; 416 else 417 error = ERESTART; 418 419 return error; 420 } 421 422 /* 423 * sleepq_abort: 424 * 425 * After a panic or during autoconfiguration, lower the interrupt 426 * priority level to give pending interrupts a chance to run, and 427 * then return. Called if sleepq_dontsleep() returns non-zero, and 428 * always returns zero. 429 */ 430 int 431 sleepq_abort(kmutex_t *mtx, int unlock) 432 { 433 extern int safepri; 434 int s; 435 436 s = splhigh(); 437 splx(safepri); 438 splx(s); 439 if (mtx != NULL && unlock != 0) 440 mutex_exit(mtx); 441 442 return 0; 443 } 444 445 /* 446 * sleepq_changepri: 447 * 448 * Adjust the priority of an LWP residing on a sleepq. This method 449 * will only alter the user priority; the effective priority is 450 * assumed to have been fixed at the time of insertion into the queue. 451 */ 452 void 453 sleepq_changepri(lwp_t *l, pri_t pri) 454 { 455 sleepq_t *sq = l->l_sleepq; 456 pri_t opri; 457 458 KASSERT(lwp_locked(l, NULL)); 459 460 opri = lwp_eprio(l); 461 l->l_priority = pri; 462 463 if (lwp_eprio(l) == opri) { 464 return; 465 } 466 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) { 467 return; 468 } 469 470 /* 471 * Don't let the sleep queue become empty, even briefly. 472 * cv_signal() and cv_broadcast() inspect it without the 473 * sleep queue lock held and need to see a non-empty queue 474 * head if there are waiters. 475 */ 476 if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) { 477 return; 478 } 479 TAILQ_REMOVE(sq, l, l_sleepchain); 480 sleepq_insert(sq, l, l->l_syncobj); 481 } 482 483 void 484 sleepq_lendpri(lwp_t *l, pri_t pri) 485 { 486 sleepq_t *sq = l->l_sleepq; 487 pri_t opri; 488 489 KASSERT(lwp_locked(l, NULL)); 490 491 opri = lwp_eprio(l); 492 l->l_inheritedprio = pri; 493 494 if (lwp_eprio(l) == opri) { 495 return; 496 } 497 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) { 498 return; 499 } 500 501 /* 502 * Don't let the sleep queue become empty, even briefly. 503 * cv_signal() and cv_broadcast() inspect it without the 504 * sleep queue lock held and need to see a non-empty queue 505 * head if there are waiters. 506 */ 507 if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) { 508 return; 509 } 510 TAILQ_REMOVE(sq, l, l_sleepchain); 511 sleepq_insert(sq, l, l->l_syncobj); 512 } 513