xref: /netbsd-src/sys/kern/kern_sleepq.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: kern_sleepq.c,v 1.68 2020/05/21 00:39:04 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34  * interfaces.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.68 2020/05/21 00:39:04 thorpej Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/cpu.h>
43 #include <sys/intr.h>
44 #include <sys/pool.h>
45 #include <sys/proc.h>
46 #include <sys/resourcevar.h>
47 #include <sys/sched.h>
48 #include <sys/systm.h>
49 #include <sys/sleepq.h>
50 #include <sys/ktrace.h>
51 
52 /*
53  * for sleepq_abort:
54  * During autoconfiguration or after a panic, a sleep will simply lower the
55  * priority briefly to allow interrupts, then return.  The priority to be
56  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
57  * maintained in the machine-dependent layers.  This priority will typically
58  * be 0, or the lowest priority that is safe for use on the interrupt stack;
59  * it can be made higher to block network software interrupts after panics.
60  */
61 #ifndef	IPL_SAFEPRI
62 #define	IPL_SAFEPRI	0
63 #endif
64 
65 static int	sleepq_sigtoerror(lwp_t *, int);
66 
67 /* General purpose sleep table, used by mtsleep() and condition variables. */
68 sleeptab_t	sleeptab __cacheline_aligned;
69 sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
70 
71 /*
72  * sleeptab_init:
73  *
74  *	Initialize a sleep table.
75  */
76 void
77 sleeptab_init(sleeptab_t *st)
78 {
79 	static bool again;
80 	int i;
81 
82 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
83 		if (!again) {
84 			mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
85 			    IPL_SCHED);
86 		}
87 		sleepq_init(&st->st_queue[i]);
88 	}
89 	again = true;
90 }
91 
92 /*
93  * sleepq_init:
94  *
95  *	Prepare a sleep queue for use.
96  */
97 void
98 sleepq_init(sleepq_t *sq)
99 {
100 
101 	LIST_INIT(sq);
102 }
103 
104 /*
105  * sleepq_remove:
106  *
107  *	Remove an LWP from a sleep queue and wake it up.
108  */
109 void
110 sleepq_remove(sleepq_t *sq, lwp_t *l)
111 {
112 	struct schedstate_percpu *spc;
113 	struct cpu_info *ci;
114 
115 	KASSERT(lwp_locked(l, NULL));
116 
117 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
118 		KASSERT(sq != NULL);
119 		LIST_REMOVE(l, l_sleepchain);
120 	} else {
121 		KASSERT(sq == NULL);
122 	}
123 
124 	l->l_syncobj = &sched_syncobj;
125 	l->l_wchan = NULL;
126 	l->l_sleepq = NULL;
127 	l->l_flag &= ~LW_SINTR;
128 
129 	ci = l->l_cpu;
130 	spc = &ci->ci_schedstate;
131 
132 	/*
133 	 * If not sleeping, the LWP must have been suspended.  Let whoever
134 	 * holds it stopped set it running again.
135 	 */
136 	if (l->l_stat != LSSLEEP) {
137 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
138 		lwp_setlock(l, spc->spc_lwplock);
139 		return;
140 	}
141 
142 	/*
143 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
144 	 * about to call mi_switch(), in which case it will yield.
145 	 */
146 	if ((l->l_pflag & LP_RUNNING) != 0) {
147 		l->l_stat = LSONPROC;
148 		l->l_slptime = 0;
149 		lwp_setlock(l, spc->spc_lwplock);
150 		return;
151 	}
152 
153 	/* Update sleep time delta, call the wake-up handler of scheduler */
154 	l->l_slpticksum += (getticks() - l->l_slpticks);
155 	sched_wakeup(l);
156 
157 	/* Look for a CPU to wake up */
158 	l->l_cpu = sched_takecpu(l);
159 	ci = l->l_cpu;
160 	spc = &ci->ci_schedstate;
161 
162 	/*
163 	 * Set it running.
164 	 */
165 	spc_lock(ci);
166 	lwp_setlock(l, spc->spc_mutex);
167 	sched_setrunnable(l);
168 	l->l_stat = LSRUN;
169 	l->l_slptime = 0;
170 	sched_enqueue(l);
171 	sched_resched_lwp(l, true);
172 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
173 }
174 
175 /*
176  * sleepq_insert:
177  *
178  *	Insert an LWP into the sleep queue, optionally sorting by priority.
179  */
180 static void
181 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
182 {
183 
184 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
185 		KASSERT(sq == NULL);
186 		return;
187 	}
188 	KASSERT(sq != NULL);
189 
190 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
191 		lwp_t *l2, *l_last = NULL;
192 		const pri_t pri = lwp_eprio(l);
193 
194 		LIST_FOREACH(l2, sq, l_sleepchain) {
195 			l_last = l2;
196 			if (lwp_eprio(l2) < pri) {
197 				LIST_INSERT_BEFORE(l2, l, l_sleepchain);
198 				return;
199 			}
200 		}
201 		/*
202 		 * Ensure FIFO ordering if no waiters are of lower priority.
203 		 */
204 		if (l_last != NULL) {
205 			LIST_INSERT_AFTER(l_last, l, l_sleepchain);
206 			return;
207 		}
208 	}
209 
210 	LIST_INSERT_HEAD(sq, l, l_sleepchain);
211 }
212 
213 /*
214  * sleepq_enqueue:
215  *
216  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
217  *	queue must already be locked, and any interlock (such as the kernel
218  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
219  */
220 void
221 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
222     bool catch_p)
223 {
224 	lwp_t *l = curlwp;
225 
226 	KASSERT(lwp_locked(l, NULL));
227 	KASSERT(l->l_stat == LSONPROC);
228 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
229 	KASSERT((l->l_flag & LW_SINTR) == 0);
230 
231 	l->l_syncobj = sobj;
232 	l->l_wchan = wchan;
233 	l->l_sleepq = sq;
234 	l->l_wmesg = wmesg;
235 	l->l_slptime = 0;
236 	l->l_stat = LSSLEEP;
237 	if (catch_p)
238 		l->l_flag |= LW_SINTR;
239 
240 	sleepq_insert(sq, l, sobj);
241 
242 	/* Save the time when thread has slept */
243 	l->l_slpticks = getticks();
244 	sched_slept(l);
245 }
246 
247 /*
248  * sleepq_transfer:
249  *
250  *	Move an LWP from one sleep queue to another.  Both sleep queues
251  *	must already be locked.
252  *
253  *	The LWP will be updated with the new sleepq, wchan, wmesg,
254  *	sobj, and mutex.  The interruptible flag will also be updated.
255  */
256 void
257 sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan,
258     const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p)
259 {
260 
261 	KASSERT(l->l_sleepq == from_sq);
262 
263 	LIST_REMOVE(l, l_sleepchain);
264 	l->l_syncobj = sobj;
265 	l->l_wchan = wchan;
266 	l->l_sleepq = sq;
267 	l->l_wmesg = wmesg;
268 
269 	if (catch_p)
270 		l->l_flag |= LW_SINTR;
271 	else
272 		l->l_flag &= ~LW_SINTR;
273 
274 	lwp_setlock(l, mp);
275 
276 	sleepq_insert(sq, l, sobj);
277 }
278 
279 /*
280  * sleepq_block:
281  *
282  *	After any intermediate step such as releasing an interlock, switch.
283  * 	sleepq_block() may return early under exceptional conditions, for
284  * 	example if the LWP's containing process is exiting.
285  *
286  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
287  */
288 int
289 sleepq_block(int timo, bool catch_p)
290 {
291 	int error = 0, sig;
292 	struct proc *p;
293 	lwp_t *l = curlwp;
294 	bool early = false;
295 	int biglocks = l->l_biglocks;
296 
297 	ktrcsw(1, 0);
298 
299 	/*
300 	 * If sleeping interruptably, check for pending signals, exits or
301 	 * core dump events.
302 	 */
303 	if (catch_p) {
304 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
305 			l->l_flag &= ~LW_CANCELLED;
306 			error = EINTR;
307 			early = true;
308 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
309 			early = true;
310 	}
311 
312 	if (early) {
313 		/* lwp_unsleep() will release the lock */
314 		lwp_unsleep(l, true);
315 	} else {
316 		/*
317 		 * The LWP may have already been awoken if the caller
318 		 * dropped the sleep queue lock between sleepq_enqueue() and
319 		 * sleepq_block().  If that happends l_stat will be LSONPROC
320 		 * and mi_switch() will treat this as a preemption.  No need
321 		 * to do anything special here.
322 		 */
323 		if (timo) {
324 			l->l_flag &= ~LW_STIMO;
325 			callout_schedule(&l->l_timeout_ch, timo);
326 		}
327 		spc_lock(l->l_cpu);
328 		mi_switch(l);
329 
330 		/* The LWP and sleep queue are now unlocked. */
331 		if (timo) {
332 			/*
333 			 * Even if the callout appears to have fired, we
334 			 * need to stop it in order to synchronise with
335 			 * other CPUs.  It's important that we do this in
336 			 * this LWP's context, and not during wakeup, in
337 			 * order to keep the callout & its cache lines
338 			 * co-located on the CPU with the LWP.
339 			 */
340 			(void)callout_halt(&l->l_timeout_ch, NULL);
341 			error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
342 		}
343 	}
344 
345 	if (catch_p && error == 0) {
346 		p = l->l_proc;
347 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
348 			error = EINTR;
349 		else if ((l->l_flag & LW_PENDSIG) != 0) {
350 			/*
351 			 * Acquiring p_lock may cause us to recurse
352 			 * through the sleep path and back into this
353 			 * routine, but is safe because LWPs sleeping
354 			 * on locks are non-interruptable and we will
355 			 * not recurse again.
356 			 */
357 			mutex_enter(p->p_lock);
358 			if (((sig = sigispending(l, 0)) != 0 &&
359 			    (sigprop[sig] & SA_STOP) == 0) ||
360 			    (sig = issignal(l)) != 0)
361 				error = sleepq_sigtoerror(l, sig);
362 			mutex_exit(p->p_lock);
363 		}
364 	}
365 
366 	ktrcsw(0, 0);
367 	if (__predict_false(biglocks != 0)) {
368 		KERNEL_LOCK(biglocks, NULL);
369 	}
370 	return error;
371 }
372 
373 /*
374  * sleepq_wake:
375  *
376  *	Wake zero or more LWPs blocked on a single wait channel.
377  */
378 void
379 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
380 {
381 	lwp_t *l, *next;
382 
383 	KASSERT(mutex_owned(mp));
384 
385 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
386 		KASSERT(l->l_sleepq == sq);
387 		KASSERT(l->l_mutex == mp);
388 		next = LIST_NEXT(l, l_sleepchain);
389 		if (l->l_wchan != wchan)
390 			continue;
391 		sleepq_remove(sq, l);
392 		if (--expected == 0)
393 			break;
394 	}
395 
396 	mutex_spin_exit(mp);
397 }
398 
399 /*
400  * sleepq_unsleep:
401  *
402  *	Remove an LWP from its sleep queue and set it runnable again.
403  *	sleepq_unsleep() is called with the LWP's mutex held, and will
404  *	release it if "unlock" is true.
405  */
406 void
407 sleepq_unsleep(lwp_t *l, bool unlock)
408 {
409 	sleepq_t *sq = l->l_sleepq;
410 	kmutex_t *mp = l->l_mutex;
411 
412 	KASSERT(lwp_locked(l, mp));
413 	KASSERT(l->l_wchan != NULL);
414 
415 	sleepq_remove(sq, l);
416 	if (unlock) {
417 		mutex_spin_exit(mp);
418 	}
419 }
420 
421 /*
422  * sleepq_timeout:
423  *
424  *	Entered via the callout(9) subsystem to time out an LWP that is on a
425  *	sleep queue.
426  */
427 void
428 sleepq_timeout(void *arg)
429 {
430 	lwp_t *l = arg;
431 
432 	/*
433 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
434 	 * current mutex will also be the sleep queue mutex.
435 	 */
436 	lwp_lock(l);
437 
438 	if (l->l_wchan == NULL) {
439 		/* Somebody beat us to it. */
440 		lwp_unlock(l);
441 		return;
442 	}
443 
444 	l->l_flag |= LW_STIMO;
445 	lwp_unsleep(l, true);
446 }
447 
448 /*
449  * sleepq_sigtoerror:
450  *
451  *	Given a signal number, interpret and return an error code.
452  */
453 static int
454 sleepq_sigtoerror(lwp_t *l, int sig)
455 {
456 	struct proc *p = l->l_proc;
457 	int error;
458 
459 	KASSERT(mutex_owned(p->p_lock));
460 
461 	/*
462 	 * If this sleep was canceled, don't let the syscall restart.
463 	 */
464 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
465 		error = EINTR;
466 	else
467 		error = ERESTART;
468 
469 	return error;
470 }
471 
472 /*
473  * sleepq_abort:
474  *
475  *	After a panic or during autoconfiguration, lower the interrupt
476  *	priority level to give pending interrupts a chance to run, and
477  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
478  *	always returns zero.
479  */
480 int
481 sleepq_abort(kmutex_t *mtx, int unlock)
482 {
483 	int s;
484 
485 	s = splhigh();
486 	splx(IPL_SAFEPRI);
487 	splx(s);
488 	if (mtx != NULL && unlock != 0)
489 		mutex_exit(mtx);
490 
491 	return 0;
492 }
493 
494 /*
495  * sleepq_reinsert:
496  *
497  *	Move the possition of the lwp in the sleep queue after a possible
498  *	change of the lwp's effective priority.
499  */
500 static void
501 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
502 {
503 
504 	KASSERT(l->l_sleepq == sq);
505 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
506 		return;
507 	}
508 
509 	/*
510 	 * Don't let the sleep queue become empty, even briefly.
511 	 * cv_signal() and cv_broadcast() inspect it without the
512 	 * sleep queue lock held and need to see a non-empty queue
513 	 * head if there are waiters.
514 	 */
515 	if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
516 		return;
517 	}
518 	LIST_REMOVE(l, l_sleepchain);
519 	sleepq_insert(sq, l, l->l_syncobj);
520 }
521 
522 /*
523  * sleepq_changepri:
524  *
525  *	Adjust the priority of an LWP residing on a sleepq.
526  */
527 void
528 sleepq_changepri(lwp_t *l, pri_t pri)
529 {
530 	sleepq_t *sq = l->l_sleepq;
531 
532 	KASSERT(lwp_locked(l, NULL));
533 
534 	l->l_priority = pri;
535 	sleepq_reinsert(sq, l);
536 }
537 
538 /*
539  * sleepq_changepri:
540  *
541  *	Adjust the lended priority of an LWP residing on a sleepq.
542  */
543 void
544 sleepq_lendpri(lwp_t *l, pri_t pri)
545 {
546 	sleepq_t *sq = l->l_sleepq;
547 
548 	KASSERT(lwp_locked(l, NULL));
549 
550 	l->l_inheritedprio = pri;
551 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
552 	sleepq_reinsert(sq, l);
553 }
554