xref: /netbsd-src/sys/kern/kern_sig.c (revision f81322cf185a4db50f71fcf7701f20198272620e)
1 /*	$NetBSD: kern_sig.c,v 1.218 2006/03/12 18:36:58 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.218 2006/03/12 18:36:58 christos Exp $");
41 
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46 
47 #define	SIGPROP		/* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73 #include <sys/sysctl.h>
74 
75 #include <sys/mount.h>
76 #include <sys/syscallargs.h>
77 
78 #include <machine/cpu.h>
79 
80 #include <sys/user.h>		/* for coredump */
81 
82 #include <uvm/uvm.h>
83 #include <uvm/uvm_extern.h>
84 
85 static int	build_corename(struct proc *, char *, const char *, size_t);
86 static void	ksiginfo_exithook(struct proc *, void *);
87 static void	ksiginfo_put(struct proc *, const ksiginfo_t *);
88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
89 static void	kpsignal2(struct proc *, const ksiginfo_t *, int);
90 
91 sigset_t	contsigmask, stopsigmask, sigcantmask;
92 
93 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
94 
95 /*
96  * struct sigacts memory pool allocator.
97  */
98 
99 static void *
100 sigacts_poolpage_alloc(struct pool *pp, int flags)
101 {
102 
103 	return (void *)uvm_km_alloc(kernel_map,
104 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
105 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
106 	    | UVM_KMF_WIRED);
107 }
108 
109 static void
110 sigacts_poolpage_free(struct pool *pp, void *v)
111 {
112         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
113 }
114 
115 static struct pool_allocator sigactspool_allocator = {
116         sigacts_poolpage_alloc, sigacts_poolpage_free,
117 };
118 
119 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
120     &pool_allocator_nointr);
121 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
122 
123 /*
124  * Can process p, with pcred pc, send the signal signum to process q?
125  */
126 #define	CANSIGNAL(p, pc, q, signum) \
127 	((pc)->pc_ucred->cr_uid == 0 || \
128 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
129 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
130 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
131 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
132 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
133 
134 /*
135  * Remove and return the first ksiginfo element that matches our requested
136  * signal, or return NULL if one not found.
137  */
138 static ksiginfo_t *
139 ksiginfo_get(struct proc *p, int signo)
140 {
141 	ksiginfo_t *ksi;
142 	int s;
143 
144 	s = splsoftclock();
145 	simple_lock(&p->p_sigctx.ps_silock);
146 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
147 		if (ksi->ksi_signo == signo) {
148 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
149 			goto out;
150 		}
151 	}
152 	ksi = NULL;
153 out:
154 	simple_unlock(&p->p_sigctx.ps_silock);
155 	splx(s);
156 	return ksi;
157 }
158 
159 /*
160  * Append a new ksiginfo element to the list of pending ksiginfo's, if
161  * we need to (SA_SIGINFO was requested). We replace non RT signals if
162  * they already existed in the queue and we add new entries for RT signals,
163  * or for non RT signals with non-existing entries.
164  */
165 static void
166 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
167 {
168 	ksiginfo_t *kp;
169 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
170 	int s;
171 
172 	if ((sa->sa_flags & SA_SIGINFO) == 0)
173 		return;
174 	/*
175 	 * If there's no info, don't save it.
176 	 */
177 	if (KSI_EMPTY_P(ksi))
178 		return;
179 
180 	s = splsoftclock();
181 	simple_lock(&p->p_sigctx.ps_silock);
182 #ifdef notyet	/* XXX: QUEUING */
183 	if (ksi->ksi_signo < SIGRTMIN)
184 #endif
185 	{
186 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
187 			if (kp->ksi_signo == ksi->ksi_signo) {
188 				KSI_COPY(ksi, kp);
189 				goto out;
190 			}
191 		}
192 	}
193 	kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
194 	if (kp == NULL) {
195 #ifdef DIAGNOSTIC
196 		printf("Out of memory allocating siginfo for pid %d\n",
197 		    p->p_pid);
198 #endif
199 		goto out;
200 	}
201 	*kp = *ksi;
202 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
203 out:
204 	simple_unlock(&p->p_sigctx.ps_silock);
205 	splx(s);
206 }
207 
208 /*
209  * free all pending ksiginfo on exit
210  */
211 static void
212 ksiginfo_exithook(struct proc *p, void *v)
213 {
214 	int s;
215 
216 	s = splsoftclock();
217 	simple_lock(&p->p_sigctx.ps_silock);
218 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
219 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
220 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
221 		pool_put(&ksiginfo_pool, ksi);
222 	}
223 	simple_unlock(&p->p_sigctx.ps_silock);
224 	splx(s);
225 }
226 
227 /*
228  * Initialize signal-related data structures.
229  */
230 void
231 signal_init(void)
232 {
233 
234 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
235 
236 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
237 	    sizeof(struct sigacts) > PAGE_SIZE ?
238 	    &sigactspool_allocator : &pool_allocator_nointr);
239 
240 	exithook_establish(ksiginfo_exithook, NULL);
241 	exechook_establish(ksiginfo_exithook, NULL);
242 }
243 
244 /*
245  * Create an initial sigctx structure, using the same signal state
246  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
247  * copy it from parent.
248  */
249 void
250 sigactsinit(struct proc *np, struct proc *pp, int share)
251 {
252 	struct sigacts *ps;
253 
254 	if (share) {
255 		np->p_sigacts = pp->p_sigacts;
256 		pp->p_sigacts->sa_refcnt++;
257 	} else {
258 		ps = pool_get(&sigacts_pool, PR_WAITOK);
259 		if (pp)
260 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
261 		else
262 			memset(ps, '\0', sizeof(struct sigacts));
263 		ps->sa_refcnt = 1;
264 		np->p_sigacts = ps;
265 	}
266 }
267 
268 /*
269  * Make this process not share its sigctx, maintaining all
270  * signal state.
271  */
272 void
273 sigactsunshare(struct proc *p)
274 {
275 	struct sigacts *oldps;
276 
277 	if (p->p_sigacts->sa_refcnt == 1)
278 		return;
279 
280 	oldps = p->p_sigacts;
281 	sigactsinit(p, NULL, 0);
282 
283 	if (--oldps->sa_refcnt == 0)
284 		pool_put(&sigacts_pool, oldps);
285 }
286 
287 /*
288  * Release a sigctx structure.
289  */
290 void
291 sigactsfree(struct sigacts *ps)
292 {
293 
294 	if (--ps->sa_refcnt > 0)
295 		return;
296 
297 	pool_put(&sigacts_pool, ps);
298 }
299 
300 int
301 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
302 	struct sigaction *osa, const void *tramp, int vers)
303 {
304 	struct sigacts	*ps;
305 	int		prop;
306 
307 	ps = p->p_sigacts;
308 	if (signum <= 0 || signum >= NSIG)
309 		return (EINVAL);
310 
311 	/*
312 	 * Trampoline ABI version 0 is reserved for the legacy
313 	 * kernel-provided on-stack trampoline.  Conversely, if we are
314 	 * using a non-0 ABI version, we must have a trampoline.  Only
315 	 * validate the vers if a new sigaction was supplied. Emulations
316 	 * use legacy kernel trampolines with version 0, alternatively
317 	 * check for that too.
318 	 */
319 	if ((vers != 0 && tramp == NULL) ||
320 #ifdef SIGTRAMP_VALID
321 	    (nsa != NULL &&
322 	    ((vers == 0) ?
323 		(p->p_emul->e_sigcode == NULL) :
324 		!SIGTRAMP_VALID(vers))) ||
325 #endif
326 	    (vers == 0 && tramp != NULL))
327 		return (EINVAL);
328 
329 	if (osa)
330 		*osa = SIGACTION_PS(ps, signum);
331 
332 	if (nsa) {
333 		if (nsa->sa_flags & ~SA_ALLBITS)
334 			return (EINVAL);
335 
336 		prop = sigprop[signum];
337 		if (prop & SA_CANTMASK)
338 			return (EINVAL);
339 
340 		(void) splsched();	/* XXXSMP */
341 		SIGACTION_PS(ps, signum) = *nsa;
342 		ps->sa_sigdesc[signum].sd_tramp = tramp;
343 		ps->sa_sigdesc[signum].sd_vers = vers;
344 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
345 		if ((prop & SA_NORESET) != 0)
346 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
347 		if (signum == SIGCHLD) {
348 			if (nsa->sa_flags & SA_NOCLDSTOP)
349 				p->p_flag |= P_NOCLDSTOP;
350 			else
351 				p->p_flag &= ~P_NOCLDSTOP;
352 			if (nsa->sa_flags & SA_NOCLDWAIT) {
353 				/*
354 				 * Paranoia: since SA_NOCLDWAIT is implemented
355 				 * by reparenting the dying child to PID 1 (and
356 				 * trust it to reap the zombie), PID 1 itself
357 				 * is forbidden to set SA_NOCLDWAIT.
358 				 */
359 				if (p->p_pid == 1)
360 					p->p_flag &= ~P_NOCLDWAIT;
361 				else
362 					p->p_flag |= P_NOCLDWAIT;
363 			} else
364 				p->p_flag &= ~P_NOCLDWAIT;
365 
366 			if (nsa->sa_handler == SIG_IGN) {
367 				/*
368 				 * Paranoia: same as above.
369 				 */
370 				if (p->p_pid == 1)
371 					p->p_flag &= ~P_CLDSIGIGN;
372 				else
373 					p->p_flag |= P_CLDSIGIGN;
374 			} else
375 				p->p_flag &= ~P_CLDSIGIGN;
376 
377 		}
378 		if ((nsa->sa_flags & SA_NODEFER) == 0)
379 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
380 		else
381 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
382 		/*
383 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
384 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
385 		 * to ignore. However, don't put SIGCONT in
386 		 * p_sigctx.ps_sigignore, as we have to restart the process.
387 	 	 */
388 		if (nsa->sa_handler == SIG_IGN ||
389 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
390 						/* never to be seen again */
391 			sigdelset(&p->p_sigctx.ps_siglist, signum);
392 			if (signum != SIGCONT) {
393 						/* easier in psignal */
394 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
395 			}
396 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
397 		} else {
398 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
399 			if (nsa->sa_handler == SIG_DFL)
400 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
401 			else
402 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
403 		}
404 		(void) spl0();
405 	}
406 
407 	return (0);
408 }
409 
410 #ifdef COMPAT_16
411 /* ARGSUSED */
412 int
413 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
414 {
415 	struct compat_16_sys___sigaction14_args /* {
416 		syscallarg(int)				signum;
417 		syscallarg(const struct sigaction *)	nsa;
418 		syscallarg(struct sigaction *)		osa;
419 	} */ *uap = v;
420 	struct proc		*p;
421 	struct sigaction	nsa, osa;
422 	int			error;
423 
424 	if (SCARG(uap, nsa)) {
425 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
426 		if (error)
427 			return (error);
428 	}
429 	p = l->l_proc;
430 	error = sigaction1(p, SCARG(uap, signum),
431 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
432 	    NULL, 0);
433 	if (error)
434 		return (error);
435 	if (SCARG(uap, osa)) {
436 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
437 		if (error)
438 			return (error);
439 	}
440 	return (0);
441 }
442 #endif
443 
444 /* ARGSUSED */
445 int
446 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
447 {
448 	struct sys___sigaction_sigtramp_args /* {
449 		syscallarg(int)				signum;
450 		syscallarg(const struct sigaction *)	nsa;
451 		syscallarg(struct sigaction *)		osa;
452 		syscallarg(void *)			tramp;
453 		syscallarg(int)				vers;
454 	} */ *uap = v;
455 	struct proc *p = l->l_proc;
456 	struct sigaction nsa, osa;
457 	int error;
458 
459 	if (SCARG(uap, nsa)) {
460 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
461 		if (error)
462 			return (error);
463 	}
464 	error = sigaction1(p, SCARG(uap, signum),
465 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
466 	    SCARG(uap, tramp), SCARG(uap, vers));
467 	if (error)
468 		return (error);
469 	if (SCARG(uap, osa)) {
470 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
471 		if (error)
472 			return (error);
473 	}
474 	return (0);
475 }
476 
477 /*
478  * Initialize signal state for process 0;
479  * set to ignore signals that are ignored by default and disable the signal
480  * stack.
481  */
482 void
483 siginit(struct proc *p)
484 {
485 	struct sigacts	*ps;
486 	int		signum, prop;
487 
488 	ps = p->p_sigacts;
489 	sigemptyset(&contsigmask);
490 	sigemptyset(&stopsigmask);
491 	sigemptyset(&sigcantmask);
492 	for (signum = 1; signum < NSIG; signum++) {
493 		prop = sigprop[signum];
494 		if (prop & SA_CONT)
495 			sigaddset(&contsigmask, signum);
496 		if (prop & SA_STOP)
497 			sigaddset(&stopsigmask, signum);
498 		if (prop & SA_CANTMASK)
499 			sigaddset(&sigcantmask, signum);
500 		if (prop & SA_IGNORE && signum != SIGCONT)
501 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
502 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
503 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
504 	}
505 	sigemptyset(&p->p_sigctx.ps_sigcatch);
506 	p->p_sigctx.ps_sigwaited = NULL;
507 	p->p_flag &= ~P_NOCLDSTOP;
508 
509 	/*
510 	 * Reset stack state to the user stack.
511 	 */
512 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
513 	p->p_sigctx.ps_sigstk.ss_size = 0;
514 	p->p_sigctx.ps_sigstk.ss_sp = 0;
515 
516 	/* One reference. */
517 	ps->sa_refcnt = 1;
518 }
519 
520 /*
521  * Reset signals for an exec of the specified process.
522  */
523 void
524 execsigs(struct proc *p)
525 {
526 	struct sigacts	*ps;
527 	int		signum, prop;
528 
529 	sigactsunshare(p);
530 
531 	ps = p->p_sigacts;
532 
533 	/*
534 	 * Reset caught signals.  Held signals remain held
535 	 * through p_sigctx.ps_sigmask (unless they were caught,
536 	 * and are now ignored by default).
537 	 */
538 	for (signum = 1; signum < NSIG; signum++) {
539 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
540 			prop = sigprop[signum];
541 			if (prop & SA_IGNORE) {
542 				if ((prop & SA_CONT) == 0)
543 					sigaddset(&p->p_sigctx.ps_sigignore,
544 					    signum);
545 				sigdelset(&p->p_sigctx.ps_siglist, signum);
546 			}
547 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
548 		}
549 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
550 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
551 	}
552 	sigemptyset(&p->p_sigctx.ps_sigcatch);
553 	p->p_sigctx.ps_sigwaited = NULL;
554 
555 	/*
556 	 * Reset no zombies if child dies flag as Solaris does.
557 	 */
558 	p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
559 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
560 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
561 
562 	/*
563 	 * Reset stack state to the user stack.
564 	 */
565 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
566 	p->p_sigctx.ps_sigstk.ss_size = 0;
567 	p->p_sigctx.ps_sigstk.ss_sp = 0;
568 }
569 
570 int
571 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
572 {
573 
574 	if (oss)
575 		*oss = p->p_sigctx.ps_sigmask;
576 
577 	if (nss) {
578 		(void)splsched();	/* XXXSMP */
579 		switch (how) {
580 		case SIG_BLOCK:
581 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
582 			break;
583 		case SIG_UNBLOCK:
584 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
585 			CHECKSIGS(p);
586 			break;
587 		case SIG_SETMASK:
588 			p->p_sigctx.ps_sigmask = *nss;
589 			CHECKSIGS(p);
590 			break;
591 		default:
592 			(void)spl0();	/* XXXSMP */
593 			return (EINVAL);
594 		}
595 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
596 		(void)spl0();		/* XXXSMP */
597 	}
598 
599 	return (0);
600 }
601 
602 /*
603  * Manipulate signal mask.
604  * Note that we receive new mask, not pointer,
605  * and return old mask as return value;
606  * the library stub does the rest.
607  */
608 int
609 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
610 {
611 	struct sys___sigprocmask14_args /* {
612 		syscallarg(int)			how;
613 		syscallarg(const sigset_t *)	set;
614 		syscallarg(sigset_t *)		oset;
615 	} */ *uap = v;
616 	struct proc	*p;
617 	sigset_t	nss, oss;
618 	int		error;
619 
620 	if (SCARG(uap, set)) {
621 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
622 		if (error)
623 			return (error);
624 	}
625 	p = l->l_proc;
626 	error = sigprocmask1(p, SCARG(uap, how),
627 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
628 	if (error)
629 		return (error);
630 	if (SCARG(uap, oset)) {
631 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
632 		if (error)
633 			return (error);
634 	}
635 	return (0);
636 }
637 
638 void
639 sigpending1(struct proc *p, sigset_t *ss)
640 {
641 
642 	*ss = p->p_sigctx.ps_siglist;
643 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
644 }
645 
646 /* ARGSUSED */
647 int
648 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
649 {
650 	struct sys___sigpending14_args /* {
651 		syscallarg(sigset_t *)	set;
652 	} */ *uap = v;
653 	struct proc	*p;
654 	sigset_t	ss;
655 
656 	p = l->l_proc;
657 	sigpending1(p, &ss);
658 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
659 }
660 
661 int
662 sigsuspend1(struct proc *p, const sigset_t *ss)
663 {
664 	struct sigacts *ps;
665 
666 	ps = p->p_sigacts;
667 	if (ss) {
668 		/*
669 		 * When returning from sigpause, we want
670 		 * the old mask to be restored after the
671 		 * signal handler has finished.  Thus, we
672 		 * save it here and mark the sigctx structure
673 		 * to indicate this.
674 		 */
675 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
676 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
677 		(void) splsched();	/* XXXSMP */
678 		p->p_sigctx.ps_sigmask = *ss;
679 		CHECKSIGS(p);
680 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
681 		(void) spl0();		/* XXXSMP */
682 	}
683 
684 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
685 		/* void */;
686 
687 	/* always return EINTR rather than ERESTART... */
688 	return (EINTR);
689 }
690 
691 /*
692  * Suspend process until signal, providing mask to be set
693  * in the meantime.  Note nonstandard calling convention:
694  * libc stub passes mask, not pointer, to save a copyin.
695  */
696 /* ARGSUSED */
697 int
698 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
699 {
700 	struct sys___sigsuspend14_args /* {
701 		syscallarg(const sigset_t *)	set;
702 	} */ *uap = v;
703 	struct proc	*p;
704 	sigset_t	ss;
705 	int		error;
706 
707 	if (SCARG(uap, set)) {
708 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
709 		if (error)
710 			return (error);
711 	}
712 
713 	p = l->l_proc;
714 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
715 }
716 
717 int
718 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
719 	struct sigaltstack *oss)
720 {
721 
722 	if (oss)
723 		*oss = p->p_sigctx.ps_sigstk;
724 
725 	if (nss) {
726 		if (nss->ss_flags & ~SS_ALLBITS)
727 			return (EINVAL);
728 
729 		if (nss->ss_flags & SS_DISABLE) {
730 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
731 				return (EINVAL);
732 		} else {
733 			if (nss->ss_size < MINSIGSTKSZ)
734 				return (ENOMEM);
735 		}
736 		p->p_sigctx.ps_sigstk = *nss;
737 	}
738 
739 	return (0);
740 }
741 
742 /* ARGSUSED */
743 int
744 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
745 {
746 	struct sys___sigaltstack14_args /* {
747 		syscallarg(const struct sigaltstack *)	nss;
748 		syscallarg(struct sigaltstack *)	oss;
749 	} */ *uap = v;
750 	struct proc		*p;
751 	struct sigaltstack	nss, oss;
752 	int			error;
753 
754 	if (SCARG(uap, nss)) {
755 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
756 		if (error)
757 			return (error);
758 	}
759 	p = l->l_proc;
760 	error = sigaltstack1(p,
761 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
762 	if (error)
763 		return (error);
764 	if (SCARG(uap, oss)) {
765 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
766 		if (error)
767 			return (error);
768 	}
769 	return (0);
770 }
771 
772 /* ARGSUSED */
773 int
774 sys_kill(struct lwp *l, void *v, register_t *retval)
775 {
776 	struct sys_kill_args /* {
777 		syscallarg(int)	pid;
778 		syscallarg(int)	signum;
779 	} */ *uap = v;
780 	struct proc	*cp, *p;
781 	struct pcred	*pc;
782 	ksiginfo_t	ksi;
783 
784 	cp = l->l_proc;
785 	pc = cp->p_cred;
786 	if ((u_int)SCARG(uap, signum) >= NSIG)
787 		return (EINVAL);
788 	KSI_INIT(&ksi);
789 	ksi.ksi_signo = SCARG(uap, signum);
790 	ksi.ksi_code = SI_USER;
791 	ksi.ksi_pid = cp->p_pid;
792 	ksi.ksi_uid = cp->p_ucred->cr_uid;
793 	if (SCARG(uap, pid) > 0) {
794 		/* kill single process */
795 		if ((p = pfind(SCARG(uap, pid))) == NULL)
796 			return (ESRCH);
797 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
798 			return (EPERM);
799 		if (SCARG(uap, signum))
800 			kpsignal2(p, &ksi, 1);
801 		return (0);
802 	}
803 	switch (SCARG(uap, pid)) {
804 	case -1:		/* broadcast signal */
805 		return (killpg1(cp, &ksi, 0, 1));
806 	case 0:			/* signal own process group */
807 		return (killpg1(cp, &ksi, 0, 0));
808 	default:		/* negative explicit process group */
809 		return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
810 	}
811 	/* NOTREACHED */
812 }
813 
814 /*
815  * Common code for kill process group/broadcast kill.
816  * cp is calling process.
817  */
818 int
819 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
820 {
821 	struct proc	*p;
822 	struct pcred	*pc;
823 	struct pgrp	*pgrp;
824 	int		nfound;
825 	int		signum = ksi->ksi_signo;
826 
827 	pc = cp->p_cred;
828 	nfound = 0;
829 	if (all) {
830 		/*
831 		 * broadcast
832 		 */
833 		proclist_lock_read();
834 		PROCLIST_FOREACH(p, &allproc) {
835 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
836 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
837 				continue;
838 			nfound++;
839 			if (signum)
840 				kpsignal2(p, ksi, 1);
841 		}
842 		proclist_unlock_read();
843 	} else {
844 		if (pgid == 0)
845 			/*
846 			 * zero pgid means send to my process group.
847 			 */
848 			pgrp = cp->p_pgrp;
849 		else {
850 			pgrp = pgfind(pgid);
851 			if (pgrp == NULL)
852 				return (ESRCH);
853 		}
854 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
855 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
856 			    !CANSIGNAL(cp, pc, p, signum))
857 				continue;
858 			nfound++;
859 			if (signum && P_ZOMBIE(p) == 0)
860 				kpsignal2(p, ksi, 1);
861 		}
862 	}
863 	return (nfound ? 0 : ESRCH);
864 }
865 
866 /*
867  * Send a signal to a process group.
868  */
869 void
870 gsignal(int pgid, int signum)
871 {
872 	ksiginfo_t ksi;
873 	KSI_INIT_EMPTY(&ksi);
874 	ksi.ksi_signo = signum;
875 	kgsignal(pgid, &ksi, NULL);
876 }
877 
878 void
879 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
880 {
881 	struct pgrp *pgrp;
882 
883 	if (pgid && (pgrp = pgfind(pgid)))
884 		kpgsignal(pgrp, ksi, data, 0);
885 }
886 
887 /*
888  * Send a signal to a process group. If checktty is 1,
889  * limit to members which have a controlling terminal.
890  */
891 void
892 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
893 {
894 	ksiginfo_t ksi;
895 	KSI_INIT_EMPTY(&ksi);
896 	ksi.ksi_signo = sig;
897 	kpgsignal(pgrp, &ksi, NULL, checkctty);
898 }
899 
900 void
901 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
902 {
903 	struct proc *p;
904 
905 	if (pgrp)
906 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
907 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
908 				kpsignal(p, ksi, data);
909 }
910 
911 /*
912  * Send a signal caused by a trap to the current process.
913  * If it will be caught immediately, deliver it with correct code.
914  * Otherwise, post it normally.
915  */
916 void
917 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
918 {
919 	struct proc	*p;
920 	struct sigacts	*ps;
921 	int signum = ksi->ksi_signo;
922 
923 	KASSERT(KSI_TRAP_P(ksi));
924 
925 	p = l->l_proc;
926 	ps = p->p_sigacts;
927 	if ((p->p_flag & P_TRACED) == 0 &&
928 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
929 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
930 		p->p_stats->p_ru.ru_nsignals++;
931 #ifdef KTRACE
932 		if (KTRPOINT(p, KTR_PSIG))
933 			ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
934 			    &p->p_sigctx.ps_sigmask, ksi);
935 #endif
936 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
937 		(void) splsched();	/* XXXSMP */
938 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
939 		    &p->p_sigctx.ps_sigmask);
940 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
941 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
942 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
943 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
944 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
945 		}
946 		(void) spl0();		/* XXXSMP */
947 	} else {
948 		p->p_sigctx.ps_lwp = l->l_lid;
949 		/* XXX for core dump/debugger */
950 		p->p_sigctx.ps_signo = ksi->ksi_signo;
951 		p->p_sigctx.ps_code = ksi->ksi_trap;
952 		kpsignal2(p, ksi, 1);
953 	}
954 }
955 
956 /*
957  * Fill in signal information and signal the parent for a child status change.
958  */
959 void
960 child_psignal(struct proc *p, int dolock)
961 {
962 	ksiginfo_t ksi;
963 
964 	KSI_INIT(&ksi);
965 	ksi.ksi_signo = SIGCHLD;
966 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
967 	ksi.ksi_pid = p->p_pid;
968 	ksi.ksi_uid = p->p_ucred->cr_uid;
969 	ksi.ksi_status = p->p_xstat;
970 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
971 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
972 	kpsignal2(p->p_pptr, &ksi, dolock);
973 }
974 
975 /*
976  * Send the signal to the process.  If the signal has an action, the action
977  * is usually performed by the target process rather than the caller; we add
978  * the signal to the set of pending signals for the process.
979  *
980  * Exceptions:
981  *   o When a stop signal is sent to a sleeping process that takes the
982  *     default action, the process is stopped without awakening it.
983  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
984  *     regardless of the signal action (eg, blocked or ignored).
985  *
986  * Other ignored signals are discarded immediately.
987  *
988  * XXXSMP: Invoked as psignal() or sched_psignal().
989  */
990 void
991 psignal1(struct proc *p, int signum, int dolock)
992 {
993 	ksiginfo_t ksi;
994 
995 	KSI_INIT_EMPTY(&ksi);
996 	ksi.ksi_signo = signum;
997 	kpsignal2(p, &ksi, dolock);
998 }
999 
1000 void
1001 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
1002 {
1003 
1004 	if ((p->p_flag & P_WEXIT) == 0 && data) {
1005 		size_t fd;
1006 		struct filedesc *fdp = p->p_fd;
1007 
1008 		ksi->ksi_fd = -1;
1009 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1010 			struct file *fp = fdp->fd_ofiles[fd];
1011 			/* XXX: lock? */
1012 			if (fp && fp->f_data == data) {
1013 				ksi->ksi_fd = fd;
1014 				break;
1015 			}
1016 		}
1017 	}
1018 	kpsignal2(p, ksi, dolock);
1019 }
1020 
1021 static void
1022 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1023 {
1024 	struct lwp *l, *suspended = NULL;
1025 	struct sadata_vp *vp;
1026 	int	s = 0, prop, allsusp;
1027 	sig_t	action;
1028 	int	signum = ksi->ksi_signo;
1029 
1030 #ifdef DIAGNOSTIC
1031 	if (signum <= 0 || signum >= NSIG)
1032 		panic("psignal signal number %d", signum);
1033 
1034 	/* XXXSMP: works, but icky */
1035 	if (dolock)
1036 		SCHED_ASSERT_UNLOCKED();
1037 	else
1038 		SCHED_ASSERT_LOCKED();
1039 #endif
1040 
1041 	/*
1042 	 * Notify any interested parties in the signal.
1043 	 */
1044 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1045 
1046 	prop = sigprop[signum];
1047 
1048 	/*
1049 	 * If proc is traced, always give parent a chance.
1050 	 */
1051 	if (p->p_flag & P_TRACED) {
1052 		action = SIG_DFL;
1053 
1054 		/*
1055 		 * If the process is being traced and the signal is being
1056 		 * caught, make sure to save any ksiginfo.
1057 		 */
1058 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1059 			ksiginfo_put(p, ksi);
1060 	} else {
1061 		/*
1062 		 * If the signal was the result of a trap, reset it
1063 		 * to default action if it's currently masked, so that it would
1064 		 * coredump immediatelly instead of spinning repeatedly
1065 		 * taking the signal.
1066 		 */
1067 		if (KSI_TRAP_P(ksi)
1068 		    && sigismember(&p->p_sigctx.ps_sigmask, signum)
1069 		    && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1070 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
1071 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1072 			sigdelset(&p->p_sigctx.ps_sigmask, signum);
1073 			SIGACTION(p, signum).sa_handler = SIG_DFL;
1074 		}
1075 
1076 		/*
1077 		 * If the signal is being ignored,
1078 		 * then we forget about it immediately.
1079 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1080 		 * and if it is set to SIG_IGN,
1081 		 * action will be SIG_DFL here.)
1082 		 */
1083 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1084 			return;
1085 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1086 			action = SIG_HOLD;
1087 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1088 			action = SIG_CATCH;
1089 		else {
1090 			action = SIG_DFL;
1091 
1092 			if (prop & SA_KILL && p->p_nice > NZERO)
1093 				p->p_nice = NZERO;
1094 
1095 			/*
1096 			 * If sending a tty stop signal to a member of an
1097 			 * orphaned process group, discard the signal here if
1098 			 * the action is default; don't stop the process below
1099 			 * if sleeping, and don't clear any pending SIGCONT.
1100 			 */
1101 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1102 				return;
1103 		}
1104 	}
1105 
1106 	if (prop & SA_CONT)
1107 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1108 
1109 	if (prop & SA_STOP)
1110 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1111 
1112 	/*
1113 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1114 	 * please!), check if anything waits on it. If yes, save the
1115 	 * info into provided ps_sigwaited, and wake-up the waiter.
1116 	 * The signal won't be processed further here.
1117 	 */
1118 	if ((prop & SA_CANTMASK) == 0
1119 	    && p->p_sigctx.ps_sigwaited
1120 	    && sigismember(p->p_sigctx.ps_sigwait, signum)
1121 	    && p->p_stat != SSTOP) {
1122 		p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1123 		p->p_sigctx.ps_sigwaited = NULL;
1124 		if (dolock)
1125 			wakeup_one(&p->p_sigctx.ps_sigwait);
1126 		else
1127 			sched_wakeup(&p->p_sigctx.ps_sigwait);
1128 		return;
1129 	}
1130 
1131 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1132 
1133 	/* CHECKSIGS() is "inlined" here. */
1134 	p->p_sigctx.ps_sigcheck = 1;
1135 
1136 	/*
1137 	 * Defer further processing for signals which are held,
1138 	 * except that stopped processes must be continued by SIGCONT.
1139 	 */
1140 	if (action == SIG_HOLD &&
1141 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1142 		ksiginfo_put(p, ksi);
1143 		return;
1144 	}
1145 	/* XXXSMP: works, but icky */
1146 	if (dolock)
1147 		SCHED_LOCK(s);
1148 
1149 	if (p->p_flag & P_SA) {
1150 		allsusp = 0;
1151 		l = NULL;
1152 		if (p->p_stat == SACTIVE) {
1153 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1154 				l = vp->savp_lwp;
1155 				KDASSERT(l != NULL);
1156 				if (l->l_flag & L_SA_IDLE) {
1157 					/* wakeup idle LWP */
1158 					goto found;
1159 					/*NOTREACHED*/
1160 				} else if (l->l_flag & L_SA_YIELD) {
1161 					/* idle LWP is already waking up */
1162 					goto out;
1163 					/*NOTREACHED*/
1164 				}
1165 			}
1166 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1167 				l = vp->savp_lwp;
1168 				if (l->l_stat == LSRUN ||
1169 				    l->l_stat == LSONPROC) {
1170 					signotify(p);
1171 					goto out;
1172 					/*NOTREACHED*/
1173 				}
1174 				if (l->l_stat == LSSLEEP &&
1175 				    l->l_flag & L_SINTR) {
1176 					/* ok to signal vp lwp */
1177 					break;
1178 				} else
1179 					l = NULL;
1180 			}
1181 		} else if (p->p_stat == SSTOP) {
1182 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1183 				l = vp->savp_lwp;
1184 				if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1185 					break;
1186 				l = NULL;
1187 			}
1188 		}
1189 	} else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1190 		/*
1191 		 * At least one LWP is running or on a run queue.
1192 		 * The signal will be noticed when one of them returns
1193 		 * to userspace.
1194 		 */
1195 		signotify(p);
1196 		/*
1197 		 * The signal will be noticed very soon.
1198 		 */
1199 		goto out;
1200 		/*NOTREACHED*/
1201 	} else {
1202 		/*
1203 		 * Find out if any of the sleeps are interruptable,
1204 		 * and if all the live LWPs remaining are suspended.
1205 		 */
1206 		allsusp = 1;
1207 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1208 			if (l->l_stat == LSSLEEP &&
1209 			    l->l_flag & L_SINTR)
1210 				break;
1211 			if (l->l_stat == LSSUSPENDED)
1212 				suspended = l;
1213 			else if ((l->l_stat != LSZOMB) &&
1214 			    (l->l_stat != LSDEAD))
1215 				allsusp = 0;
1216 		}
1217 	}
1218 
1219  found:
1220 	switch (p->p_stat) {
1221 	case SACTIVE:
1222 
1223 		if (l != NULL && (p->p_flag & P_TRACED))
1224 			goto run;
1225 
1226 		/*
1227 		 * If SIGCONT is default (or ignored) and process is
1228 		 * asleep, we are finished; the process should not
1229 		 * be awakened.
1230 		 */
1231 		if ((prop & SA_CONT) && action == SIG_DFL) {
1232 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1233 			goto done;
1234 		}
1235 
1236 		/*
1237 		 * When a sleeping process receives a stop
1238 		 * signal, process immediately if possible.
1239 		 */
1240 		if ((prop & SA_STOP) && action == SIG_DFL) {
1241 			/*
1242 			 * If a child holding parent blocked,
1243 			 * stopping could cause deadlock.
1244 			 */
1245 			if (p->p_flag & P_PPWAIT) {
1246 				goto out;
1247 			}
1248 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1249 			p->p_xstat = signum;
1250 			if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1251 				/*
1252 				 * XXXSMP: recursive call; don't lock
1253 				 * the second time around.
1254 				 */
1255 				child_psignal(p, 0);
1256 			}
1257 			proc_stop(p, 1);	/* XXXSMP: recurse? */
1258 			goto done;
1259 		}
1260 
1261 		if (l == NULL) {
1262 			/*
1263 			 * Special case: SIGKILL of a process
1264 			 * which is entirely composed of
1265 			 * suspended LWPs should succeed. We
1266 			 * make this happen by unsuspending one of
1267 			 * them.
1268 			 */
1269 			if (allsusp && (signum == SIGKILL)) {
1270 				lwp_continue(suspended);
1271 			}
1272 			goto done;
1273 		}
1274 		/*
1275 		 * All other (caught or default) signals
1276 		 * cause the process to run.
1277 		 */
1278 		goto runfast;
1279 		/*NOTREACHED*/
1280 	case SSTOP:
1281 		/* Process is stopped */
1282 		/*
1283 		 * If traced process is already stopped,
1284 		 * then no further action is necessary.
1285 		 */
1286 		if (p->p_flag & P_TRACED)
1287 			goto done;
1288 
1289 		/*
1290 		 * Kill signal always sets processes running,
1291 		 * if possible.
1292 		 */
1293 		if (signum == SIGKILL) {
1294 			l = proc_unstop(p);
1295 			if (l)
1296 				goto runfast;
1297 			goto done;
1298 		}
1299 
1300 		if (prop & SA_CONT) {
1301 			/*
1302 			 * If SIGCONT is default (or ignored),
1303 			 * we continue the process but don't
1304 			 * leave the signal in ps_siglist, as
1305 			 * it has no further action.  If
1306 			 * SIGCONT is held, we continue the
1307 			 * process and leave the signal in
1308 			 * ps_siglist.  If the process catches
1309 			 * SIGCONT, let it handle the signal
1310 			 * itself.  If it isn't waiting on an
1311 			 * event, then it goes back to run
1312 			 * state.  Otherwise, process goes
1313 			 * back to sleep state.
1314 			 */
1315 			if (action == SIG_DFL)
1316 				sigdelset(&p->p_sigctx.ps_siglist,
1317 				    signum);
1318 			l = proc_unstop(p);
1319 			if (l && (action == SIG_CATCH))
1320 				goto runfast;
1321 			goto out;
1322 		}
1323 
1324 		if (prop & SA_STOP) {
1325 			/*
1326 			 * Already stopped, don't need to stop again.
1327 			 * (If we did the shell could get confused.)
1328 			 */
1329 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1330 			goto done;
1331 		}
1332 
1333 		/*
1334 		 * If a lwp is sleeping interruptibly, then
1335 		 * wake it up; it will run until the kernel
1336 		 * boundary, where it will stop in issignal(),
1337 		 * since p->p_stat is still SSTOP. When the
1338 		 * process is continued, it will be made
1339 		 * runnable and can look at the signal.
1340 		 */
1341 		if (l)
1342 			goto run;
1343 		goto out;
1344 	case SIDL:
1345 		/* Process is being created by fork */
1346 		/* XXX: We are not ready to receive signals yet */
1347 		goto done;
1348 	default:
1349 		/* Else what? */
1350 		panic("psignal: Invalid process state %d.", p->p_stat);
1351 	}
1352 	/*NOTREACHED*/
1353 
1354  runfast:
1355 	if (action == SIG_CATCH) {
1356 		ksiginfo_put(p, ksi);
1357 		action = SIG_HOLD;
1358 	}
1359 	/*
1360 	 * Raise priority to at least PUSER.
1361 	 */
1362 	if (l->l_priority > PUSER)
1363 		l->l_priority = PUSER;
1364  run:
1365 	if (action == SIG_CATCH) {
1366 		ksiginfo_put(p, ksi);
1367 		action = SIG_HOLD;
1368 	}
1369 
1370 	setrunnable(l);		/* XXXSMP: recurse? */
1371  out:
1372 	if (action == SIG_CATCH)
1373 		ksiginfo_put(p, ksi);
1374  done:
1375 	/* XXXSMP: works, but icky */
1376 	if (dolock)
1377 		SCHED_UNLOCK(s);
1378 }
1379 
1380 siginfo_t *
1381 siginfo_alloc(int flags)
1382 {
1383 
1384 	return pool_get(&siginfo_pool, flags);
1385 }
1386 
1387 void
1388 siginfo_free(void *arg)
1389 {
1390 
1391 	pool_put(&siginfo_pool, arg);
1392 }
1393 
1394 void
1395 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1396 {
1397 	struct proc *p = l->l_proc;
1398 	struct lwp *le, *li;
1399 	siginfo_t *si;
1400 	int f;
1401 
1402 	if (p->p_flag & P_SA) {
1403 
1404 		/* XXXUPSXXX What if not on sa_vp ? */
1405 
1406 		f = l->l_flag & L_SA;
1407 		l->l_flag &= ~L_SA;
1408 		si = siginfo_alloc(PR_WAITOK);
1409 		si->_info = ksi->ksi_info;
1410 		le = li = NULL;
1411 		if (KSI_TRAP_P(ksi))
1412 			le = l;
1413 		else
1414 			li = l;
1415 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1416 		    sizeof(*si), si, siginfo_free) != 0) {
1417 			siginfo_free(si);
1418 			if (KSI_TRAP_P(ksi))
1419 				/* XXX What do we do here?? */;
1420 		}
1421 		l->l_flag |= f;
1422 		return;
1423 	}
1424 
1425 	(*p->p_emul->e_sendsig)(ksi, mask);
1426 }
1427 
1428 static inline int firstsig(const sigset_t *);
1429 
1430 static inline int
1431 firstsig(const sigset_t *ss)
1432 {
1433 	int sig;
1434 
1435 	sig = ffs(ss->__bits[0]);
1436 	if (sig != 0)
1437 		return (sig);
1438 #if NSIG > 33
1439 	sig = ffs(ss->__bits[1]);
1440 	if (sig != 0)
1441 		return (sig + 32);
1442 #endif
1443 #if NSIG > 65
1444 	sig = ffs(ss->__bits[2]);
1445 	if (sig != 0)
1446 		return (sig + 64);
1447 #endif
1448 #if NSIG > 97
1449 	sig = ffs(ss->__bits[3]);
1450 	if (sig != 0)
1451 		return (sig + 96);
1452 #endif
1453 	return (0);
1454 }
1455 
1456 /*
1457  * If the current process has received a signal (should be caught or cause
1458  * termination, should interrupt current syscall), return the signal number.
1459  * Stop signals with default action are processed immediately, then cleared;
1460  * they aren't returned.  This is checked after each entry to the system for
1461  * a syscall or trap (though this can usually be done without calling issignal
1462  * by checking the pending signal masks in the CURSIG macro.) The normal call
1463  * sequence is
1464  *
1465  *	while (signum = CURSIG(curlwp))
1466  *		postsig(signum);
1467  */
1468 int
1469 issignal(struct lwp *l)
1470 {
1471 	struct proc	*p = l->l_proc;
1472 	int		s = 0, signum, prop;
1473 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1474 	sigset_t	ss;
1475 
1476 	/* Bail out if we do not own the virtual processor */
1477 	if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1478 		return 0;
1479 
1480 	if (p->p_stat == SSTOP) {
1481 		/*
1482 		 * The process is stopped/stopping. Stop ourselves now that
1483 		 * we're on the kernel/userspace boundary.
1484 		 */
1485 		if (dolock)
1486 			SCHED_LOCK(s);
1487 		l->l_stat = LSSTOP;
1488 		p->p_nrlwps--;
1489 		if (p->p_flag & P_TRACED)
1490 			goto sigtraceswitch;
1491 		else
1492 			goto sigswitch;
1493 	}
1494 	for (;;) {
1495 		sigpending1(p, &ss);
1496 		if (p->p_flag & P_PPWAIT)
1497 			sigminusset(&stopsigmask, &ss);
1498 		signum = firstsig(&ss);
1499 		if (signum == 0) {		 	/* no signal to send */
1500 			p->p_sigctx.ps_sigcheck = 0;
1501 			if (locked && dolock)
1502 				SCHED_LOCK(s);
1503 			return (0);
1504 		}
1505 							/* take the signal! */
1506 		sigdelset(&p->p_sigctx.ps_siglist, signum);
1507 
1508 		/*
1509 		 * We should see pending but ignored signals
1510 		 * only if P_TRACED was on when they were posted.
1511 		 */
1512 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1513 		    (p->p_flag & P_TRACED) == 0)
1514 			continue;
1515 
1516 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1517 			/*
1518 			 * If traced, always stop, and stay
1519 			 * stopped until released by the debugger.
1520 			 */
1521 			p->p_xstat = signum;
1522 
1523 			/* Emulation-specific handling of signal trace */
1524 			if ((p->p_emul->e_tracesig != NULL) &&
1525 			    ((*p->p_emul->e_tracesig)(p, signum) != 0))
1526 				goto childresumed;
1527 
1528 			if ((p->p_flag & P_FSTRACE) == 0)
1529 				child_psignal(p, dolock);
1530 			if (dolock)
1531 				SCHED_LOCK(s);
1532 			proc_stop(p, 1);
1533 		sigtraceswitch:
1534 			mi_switch(l, NULL);
1535 			SCHED_ASSERT_UNLOCKED();
1536 			if (dolock)
1537 				splx(s);
1538 			else
1539 				dolock = 1;
1540 
1541 		childresumed:
1542 			/*
1543 			 * If we are no longer being traced, or the parent
1544 			 * didn't give us a signal, look for more signals.
1545 			 */
1546 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1547 				continue;
1548 
1549 			/*
1550 			 * If the new signal is being masked, look for other
1551 			 * signals.
1552 			 */
1553 			signum = p->p_xstat;
1554 			p->p_xstat = 0;
1555 			/*
1556 			 * `p->p_sigctx.ps_siglist |= mask' is done
1557 			 * in setrunnable().
1558 			 */
1559 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1560 				continue;
1561 							/* take the signal! */
1562 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1563 		}
1564 
1565 		prop = sigprop[signum];
1566 
1567 		/*
1568 		 * Decide whether the signal should be returned.
1569 		 * Return the signal's number, or fall through
1570 		 * to clear it from the pending mask.
1571 		 */
1572 		switch ((long)SIGACTION(p, signum).sa_handler) {
1573 
1574 		case (long)SIG_DFL:
1575 			/*
1576 			 * Don't take default actions on system processes.
1577 			 */
1578 			if (p->p_pid <= 1) {
1579 #ifdef DIAGNOSTIC
1580 				/*
1581 				 * Are you sure you want to ignore SIGSEGV
1582 				 * in init? XXX
1583 				 */
1584 				printf("Process (pid %d) got signal %d\n",
1585 				    p->p_pid, signum);
1586 #endif
1587 				break;		/* == ignore */
1588 			}
1589 			/*
1590 			 * If there is a pending stop signal to process
1591 			 * with default action, stop here,
1592 			 * then clear the signal.  However,
1593 			 * if process is member of an orphaned
1594 			 * process group, ignore tty stop signals.
1595 			 */
1596 			if (prop & SA_STOP) {
1597 				if (p->p_flag & P_TRACED ||
1598 		    		    (p->p_pgrp->pg_jobc == 0 &&
1599 				    prop & SA_TTYSTOP))
1600 					break;	/* == ignore */
1601 				p->p_xstat = signum;
1602 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1603 					child_psignal(p, dolock);
1604 				if (dolock)
1605 					SCHED_LOCK(s);
1606 				proc_stop(p, 1);
1607 			sigswitch:
1608 				mi_switch(l, NULL);
1609 				SCHED_ASSERT_UNLOCKED();
1610 				if (dolock)
1611 					splx(s);
1612 				else
1613 					dolock = 1;
1614 				break;
1615 			} else if (prop & SA_IGNORE) {
1616 				/*
1617 				 * Except for SIGCONT, shouldn't get here.
1618 				 * Default action is to ignore; drop it.
1619 				 */
1620 				break;		/* == ignore */
1621 			} else
1622 				goto keep;
1623 			/*NOTREACHED*/
1624 
1625 		case (long)SIG_IGN:
1626 			/*
1627 			 * Masking above should prevent us ever trying
1628 			 * to take action on an ignored signal other
1629 			 * than SIGCONT, unless process is traced.
1630 			 */
1631 #ifdef DEBUG_ISSIGNAL
1632 			if ((prop & SA_CONT) == 0 &&
1633 			    (p->p_flag & P_TRACED) == 0)
1634 				printf("issignal\n");
1635 #endif
1636 			break;		/* == ignore */
1637 
1638 		default:
1639 			/*
1640 			 * This signal has an action, let
1641 			 * postsig() process it.
1642 			 */
1643 			goto keep;
1644 		}
1645 	}
1646 	/* NOTREACHED */
1647 
1648  keep:
1649 						/* leave the signal for later */
1650 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1651 	CHECKSIGS(p);
1652 	if (locked && dolock)
1653 		SCHED_LOCK(s);
1654 	return (signum);
1655 }
1656 
1657 /*
1658  * Put the argument process into the stopped state and notify the parent
1659  * via wakeup.  Signals are handled elsewhere.  The process must not be
1660  * on the run queue.
1661  */
1662 void
1663 proc_stop(struct proc *p, int dowakeup)
1664 {
1665 	struct lwp *l;
1666 	struct proc *parent;
1667 	struct sadata_vp *vp;
1668 
1669 	SCHED_ASSERT_LOCKED();
1670 
1671 	/* XXX lock process LWP state */
1672 	p->p_flag &= ~P_WAITED;
1673 	p->p_stat = SSTOP;
1674 	parent = p->p_pptr;
1675 	parent->p_nstopchild++;
1676 
1677 	if (p->p_flag & P_SA) {
1678 		/*
1679 		 * Only (try to) put the LWP on the VP in stopped
1680 		 * state.
1681 		 * All other LWPs will suspend in sa_setwoken()
1682 		 * because the VP-LWP in stopped state cannot be
1683 		 * repossessed.
1684 		 */
1685 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1686 			l = vp->savp_lwp;
1687 			if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1688 				l->l_stat = LSSTOP;
1689 				p->p_nrlwps--;
1690 			} else if (l->l_stat == LSRUN) {
1691 				/* Remove LWP from the run queue */
1692 				remrunqueue(l);
1693 				l->l_stat = LSSTOP;
1694 				p->p_nrlwps--;
1695 			} else if (l->l_stat == LSSLEEP &&
1696 			    l->l_flag & L_SA_IDLE) {
1697 				l->l_flag &= ~L_SA_IDLE;
1698 				l->l_stat = LSSTOP;
1699 			}
1700 		}
1701 		goto out;
1702 	}
1703 
1704 	/*
1705 	 * Put as many LWP's as possible in stopped state.
1706 	 * Sleeping ones will notice the stopped state as they try to
1707 	 * return to userspace.
1708 	 */
1709 
1710 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1711 		if (l->l_stat == LSONPROC) {
1712 			/* XXX SMP this assumes that a LWP that is LSONPROC
1713 			 * is curlwp and hence is about to be mi_switched
1714 			 * away; the only callers of proc_stop() are:
1715 			 * - psignal
1716 			 * - issignal()
1717 			 * For the former, proc_stop() is only called when
1718 			 * no processes are running, so we don't worry.
1719 			 * For the latter, proc_stop() is called right
1720 			 * before mi_switch().
1721 			 */
1722 			l->l_stat = LSSTOP;
1723 			p->p_nrlwps--;
1724 		} else if (l->l_stat == LSRUN) {
1725 			/* Remove LWP from the run queue */
1726 			remrunqueue(l);
1727 			l->l_stat = LSSTOP;
1728 			p->p_nrlwps--;
1729 		} else if ((l->l_stat == LSSLEEP) ||
1730 		    (l->l_stat == LSSUSPENDED) ||
1731 		    (l->l_stat == LSZOMB) ||
1732 		    (l->l_stat == LSDEAD)) {
1733 			/*
1734 			 * Don't do anything; let sleeping LWPs
1735 			 * discover the stopped state of the process
1736 			 * on their way out of the kernel; otherwise,
1737 			 * things like NFS threads that sleep with
1738 			 * locks will block the rest of the system
1739 			 * from getting any work done.
1740 			 *
1741 			 * Suspended/dead/zombie LWPs aren't going
1742 			 * anywhere, so we don't need to touch them.
1743 			 */
1744 		}
1745 #ifdef DIAGNOSTIC
1746 		else {
1747 			panic("proc_stop: process %d lwp %d "
1748 			      "in unstoppable state %d.\n",
1749 			    p->p_pid, l->l_lid, l->l_stat);
1750 		}
1751 #endif
1752 	}
1753 
1754  out:
1755 	/* XXX unlock process LWP state */
1756 
1757 	if (dowakeup)
1758 		sched_wakeup((caddr_t)p->p_pptr);
1759 }
1760 
1761 /*
1762  * Given a process in state SSTOP, set the state back to SACTIVE and
1763  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1764  *
1765  * If no LWPs ended up runnable (and therefore able to take a signal),
1766  * return a LWP that is sleeping interruptably. The caller can wake
1767  * that LWP up to take a signal.
1768  */
1769 struct lwp *
1770 proc_unstop(struct proc *p)
1771 {
1772 	struct lwp *l, *lr = NULL;
1773 	struct sadata_vp *vp;
1774 	int cantake = 0;
1775 
1776 	SCHED_ASSERT_LOCKED();
1777 
1778 	/*
1779 	 * Our caller wants to be informed if there are only sleeping
1780 	 * and interruptable LWPs left after we have run so that it
1781 	 * can invoke setrunnable() if required - return one of the
1782 	 * interruptable LWPs if this is the case.
1783 	 */
1784 
1785 	if (!(p->p_flag & P_WAITED))
1786 		p->p_pptr->p_nstopchild--;
1787 	p->p_stat = SACTIVE;
1788 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1789 		if (l->l_stat == LSRUN) {
1790 			lr = NULL;
1791 			cantake = 1;
1792 		}
1793 		if (l->l_stat != LSSTOP)
1794 			continue;
1795 
1796 		if (l->l_wchan != NULL) {
1797 			l->l_stat = LSSLEEP;
1798 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1799 				lr = l;
1800 				cantake = 1;
1801 			}
1802 		} else {
1803 			setrunnable(l);
1804 			lr = NULL;
1805 			cantake = 1;
1806 		}
1807 	}
1808 	if (p->p_flag & P_SA) {
1809 		/* Only consider returning the LWP on the VP. */
1810 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1811 			lr = vp->savp_lwp;
1812 			if (lr->l_stat == LSSLEEP) {
1813 				if (lr->l_flag & L_SA_YIELD) {
1814 					setrunnable(lr);
1815 					break;
1816 				} else if (lr->l_flag & L_SINTR)
1817 					return lr;
1818 			}
1819 		}
1820 		return NULL;
1821 	}
1822 	return lr;
1823 }
1824 
1825 /*
1826  * Take the action for the specified signal
1827  * from the current set of pending signals.
1828  */
1829 void
1830 postsig(int signum)
1831 {
1832 	struct lwp *l;
1833 	struct proc	*p;
1834 	struct sigacts	*ps;
1835 	sig_t		action;
1836 	sigset_t	*returnmask;
1837 
1838 	l = curlwp;
1839 	p = l->l_proc;
1840 	ps = p->p_sigacts;
1841 #ifdef DIAGNOSTIC
1842 	if (signum == 0)
1843 		panic("postsig");
1844 #endif
1845 
1846 	KERNEL_PROC_LOCK(l);
1847 
1848 #ifdef MULTIPROCESSOR
1849 	/*
1850 	 * On MP, issignal() can return the same signal to multiple
1851 	 * LWPs.  The LWPs will block above waiting for the kernel
1852 	 * lock and the first LWP which gets through will then remove
1853 	 * the signal from ps_siglist.  All other LWPs exit here.
1854 	 */
1855 	if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1856 		KERNEL_PROC_UNLOCK(l);
1857 		return;
1858 	}
1859 #endif
1860 	sigdelset(&p->p_sigctx.ps_siglist, signum);
1861 	action = SIGACTION_PS(ps, signum).sa_handler;
1862 	if (action == SIG_DFL) {
1863 #ifdef KTRACE
1864 		if (KTRPOINT(p, KTR_PSIG))
1865 			ktrpsig(l, signum, action,
1866 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1867 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1868 			    NULL);
1869 #endif
1870 		/*
1871 		 * Default action, where the default is to kill
1872 		 * the process.  (Other cases were ignored above.)
1873 		 */
1874 		sigexit(l, signum);
1875 		/* NOTREACHED */
1876 	} else {
1877 		ksiginfo_t *ksi;
1878 		/*
1879 		 * If we get here, the signal must be caught.
1880 		 */
1881 #ifdef DIAGNOSTIC
1882 		if (action == SIG_IGN ||
1883 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
1884 			panic("postsig action");
1885 #endif
1886 		/*
1887 		 * Set the new mask value and also defer further
1888 		 * occurrences of this signal.
1889 		 *
1890 		 * Special case: user has done a sigpause.  Here the
1891 		 * current mask is not of interest, but rather the
1892 		 * mask from before the sigpause is what we want
1893 		 * restored after the signal processing is completed.
1894 		 */
1895 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1896 			returnmask = &p->p_sigctx.ps_oldmask;
1897 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1898 		} else
1899 			returnmask = &p->p_sigctx.ps_sigmask;
1900 		p->p_stats->p_ru.ru_nsignals++;
1901 		ksi = ksiginfo_get(p, signum);
1902 #ifdef KTRACE
1903 		if (KTRPOINT(p, KTR_PSIG))
1904 			ktrpsig(l, signum, action,
1905 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1906 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1907 			    ksi);
1908 #endif
1909 		if (ksi == NULL) {
1910 			ksiginfo_t ksi1;
1911 			/*
1912 			 * we did not save any siginfo for this, either
1913 			 * because the signal was not caught, or because the
1914 			 * user did not request SA_SIGINFO
1915 			 */
1916 			KSI_INIT_EMPTY(&ksi1);
1917 			ksi1.ksi_signo = signum;
1918 			kpsendsig(l, &ksi1, returnmask);
1919 		} else {
1920 			kpsendsig(l, ksi, returnmask);
1921 			pool_put(&ksiginfo_pool, ksi);
1922 		}
1923 		p->p_sigctx.ps_lwp = 0;
1924 		p->p_sigctx.ps_code = 0;
1925 		p->p_sigctx.ps_signo = 0;
1926 		(void) splsched();	/* XXXSMP */
1927 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1928 		    &p->p_sigctx.ps_sigmask);
1929 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1930 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1931 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1932 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
1933 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1934 		}
1935 		(void) spl0();		/* XXXSMP */
1936 	}
1937 
1938 	KERNEL_PROC_UNLOCK(l);
1939 }
1940 
1941 /*
1942  * Kill the current process for stated reason.
1943  */
1944 void
1945 killproc(struct proc *p, const char *why)
1946 {
1947 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1948 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1949 	psignal(p, SIGKILL);
1950 }
1951 
1952 /*
1953  * Force the current process to exit with the specified signal, dumping core
1954  * if appropriate.  We bypass the normal tests for masked and caught signals,
1955  * allowing unrecoverable failures to terminate the process without changing
1956  * signal state.  Mark the accounting record with the signal termination.
1957  * If dumping core, save the signal number for the debugger.  Calls exit and
1958  * does not return.
1959  */
1960 
1961 #if defined(DEBUG)
1962 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
1963 #else
1964 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
1965 #endif
1966 
1967 static	const char logcoredump[] =
1968 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1969 static	const char lognocoredump[] =
1970 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1971 
1972 /* Wrapper function for use in p_userret */
1973 static void
1974 lwp_coredump_hook(struct lwp *l, void *arg)
1975 {
1976 	int s;
1977 
1978 	/*
1979 	 * Suspend ourselves, so that the kernel stack and therefore
1980 	 * the userland registers saved in the trapframe are around
1981 	 * for coredump() to write them out.
1982 	 */
1983 	KERNEL_PROC_LOCK(l);
1984 	l->l_flag &= ~L_DETACHED;
1985 	SCHED_LOCK(s);
1986 	l->l_stat = LSSUSPENDED;
1987 	l->l_proc->p_nrlwps--;
1988 	/* XXX NJWLWP check if this makes sense here: */
1989 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
1990 	mi_switch(l, NULL);
1991 	SCHED_ASSERT_UNLOCKED();
1992 	splx(s);
1993 
1994 	lwp_exit(l);
1995 }
1996 
1997 void
1998 sigexit(struct lwp *l, int signum)
1999 {
2000 	struct proc	*p;
2001 #if 0
2002 	struct lwp	*l2;
2003 #endif
2004 	int		error, exitsig;
2005 
2006 	p = l->l_proc;
2007 
2008 	/*
2009 	 * Don't permit coredump() or exit1() multiple times
2010 	 * in the same process.
2011 	 */
2012 	if (p->p_flag & P_WEXIT) {
2013 		KERNEL_PROC_UNLOCK(l);
2014 		(*p->p_userret)(l, p->p_userret_arg);
2015 	}
2016 	p->p_flag |= P_WEXIT;
2017 	/* We don't want to switch away from exiting. */
2018 	/* XXX multiprocessor: stop LWPs on other processors. */
2019 #if 0
2020 	if (p->p_flag & P_SA) {
2021 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2022 		    l2->l_flag &= ~L_SA;
2023 		p->p_flag &= ~P_SA;
2024 	}
2025 #endif
2026 
2027 	/* Make other LWPs stick around long enough to be dumped */
2028 	p->p_userret = lwp_coredump_hook;
2029 	p->p_userret_arg = NULL;
2030 
2031 	exitsig = signum;
2032 	p->p_acflag |= AXSIG;
2033 	if (sigprop[signum] & SA_CORE) {
2034 		p->p_sigctx.ps_signo = signum;
2035 		if ((error = coredump(l, NULL)) == 0)
2036 			exitsig |= WCOREFLAG;
2037 
2038 		if (kern_logsigexit) {
2039 			/* XXX What if we ever have really large UIDs? */
2040 			int uid = p->p_cred && p->p_ucred ?
2041 				(int) p->p_ucred->cr_uid : -1;
2042 
2043 			if (error)
2044 				log(LOG_INFO, lognocoredump, p->p_pid,
2045 				    p->p_comm, uid, signum, error);
2046 			else
2047 				log(LOG_INFO, logcoredump, p->p_pid,
2048 				    p->p_comm, uid, signum);
2049 		}
2050 
2051 	}
2052 
2053 	exit1(l, W_EXITCODE(0, exitsig));
2054 	/* NOTREACHED */
2055 }
2056 
2057 struct coredump_iostate {
2058 	struct lwp *io_lwp;
2059 	struct vnode *io_vp;
2060 	struct ucred *io_cred;
2061 	off_t io_offset;
2062 };
2063 
2064 int
2065 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2066 {
2067 	struct coredump_iostate *io = cookie;
2068 	int error;
2069 
2070 	error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2071 	    io->io_offset, segflg,
2072 	    IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2073 	    segflg == UIO_USERSPACE ? io->io_lwp : NULL);
2074 	if (error) {
2075 		printf("pid %d (%s): %s write of %zu@%p at %lld failed: %d\n",
2076 		    io->io_lwp->l_proc->p_pid, io->io_lwp->l_proc->p_comm,
2077 		    segflg == UIO_USERSPACE ? "user" : "system",
2078 		    len, data, (long long) io->io_offset, error);
2079 		return (error);
2080 	}
2081 
2082 	io->io_offset += len;
2083 	return (0);
2084 }
2085 
2086 /*
2087  * Dump core, into a file named "progname.core" or "core" (depending on the
2088  * value of shortcorename), unless the process was setuid/setgid.
2089  */
2090 int
2091 coredump(struct lwp *l, const char *pattern)
2092 {
2093 	struct vnode		*vp;
2094 	struct proc		*p;
2095 	struct vmspace		*vm;
2096 	struct ucred		*cred;
2097 	struct nameidata	nd;
2098 	struct vattr		vattr;
2099 	struct mount		*mp;
2100 	struct coredump_iostate	io;
2101 	int			error, error1;
2102 	char			*name = NULL;
2103 
2104 	p = l->l_proc;
2105 	vm = p->p_vmspace;
2106 	cred = p->p_cred->pc_ucred;
2107 
2108 	/*
2109 	 * Make sure the process has not set-id, to prevent data leaks,
2110 	 * unless it was specifically requested to allow set-id coredumps.
2111 	 */
2112 	if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
2113 		return EPERM;
2114 
2115 	/*
2116 	 * Refuse to core if the data + stack + user size is larger than
2117 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
2118 	 * data.
2119 	 */
2120 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2121 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
2122 		return EFBIG;		/* better error code? */
2123 
2124 restart:
2125 	/*
2126 	 * The core dump will go in the current working directory.  Make
2127 	 * sure that the directory is still there and that the mount flags
2128 	 * allow us to write core dumps there.
2129 	 */
2130 	vp = p->p_cwdi->cwdi_cdir;
2131 	if (vp->v_mount == NULL ||
2132 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) {
2133 		error = EPERM;
2134 		goto done;
2135 	}
2136 
2137 	if ((p->p_flag & P_SUGID) && security_setidcore_dump)
2138 		pattern = security_setidcore_path;
2139 
2140 	if (pattern == NULL)
2141 		pattern = p->p_limit->pl_corename;
2142 	if (name == NULL) {
2143 		name = PNBUF_GET();
2144 	}
2145 	if ((error = build_corename(p, name, pattern, MAXPATHLEN)) != 0)
2146 		goto done;
2147 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
2148 	if ((error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE,
2149 	    S_IRUSR | S_IWUSR)) != 0)
2150 		goto done;
2151 	vp = nd.ni_vp;
2152 
2153 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2154 		VOP_UNLOCK(vp, 0);
2155 		if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
2156 			goto done;
2157 		if ((error = vn_start_write(NULL, &mp,
2158 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2159 			goto done;
2160 		goto restart;
2161 	}
2162 
2163 	/* Don't dump to non-regular files or files with links. */
2164 	if (vp->v_type != VREG ||
2165 	    VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
2166 		error = EINVAL;
2167 		goto out;
2168 	}
2169 	VATTR_NULL(&vattr);
2170 	vattr.va_size = 0;
2171 
2172 	if ((p->p_flag & P_SUGID) && security_setidcore_dump) {
2173 		vattr.va_uid = security_setidcore_owner;
2174 		vattr.va_gid = security_setidcore_group;
2175 		vattr.va_mode = security_setidcore_mode;
2176 	}
2177 
2178 	VOP_LEASE(vp, l, cred, LEASE_WRITE);
2179 	VOP_SETATTR(vp, &vattr, cred, l);
2180 	p->p_acflag |= ACORE;
2181 
2182 	io.io_lwp = l;
2183 	io.io_vp = vp;
2184 	io.io_cred = cred;
2185 	io.io_offset = 0;
2186 
2187 	/* Now dump the actual core file. */
2188 	error = (*p->p_execsw->es_coredump)(l, &io);
2189  out:
2190 	VOP_UNLOCK(vp, 0);
2191 	vn_finished_write(mp, 0);
2192 	error1 = vn_close(vp, FWRITE, cred, l);
2193 	if (error == 0)
2194 		error = error1;
2195 done:
2196 	if (name != NULL)
2197 		PNBUF_PUT(name);
2198 	return error;
2199 }
2200 
2201 /*
2202  * Nonexistent system call-- signal process (may want to handle it).
2203  * Flag error in case process won't see signal immediately (blocked or ignored).
2204  */
2205 /* ARGSUSED */
2206 int
2207 sys_nosys(struct lwp *l, void *v, register_t *retval)
2208 {
2209 	struct proc 	*p;
2210 
2211 	p = l->l_proc;
2212 	psignal(p, SIGSYS);
2213 	return (ENOSYS);
2214 }
2215 
2216 static int
2217 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2218 {
2219 	const char	*s;
2220 	char		*d, *end;
2221 	int		i;
2222 
2223 	for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2224 		if (*s == '%') {
2225 			switch (*(s + 1)) {
2226 			case 'n':
2227 				i = snprintf(d, end - d, "%s", p->p_comm);
2228 				break;
2229 			case 'p':
2230 				i = snprintf(d, end - d, "%d", p->p_pid);
2231 				break;
2232 			case 'u':
2233 				i = snprintf(d, end - d, "%.*s",
2234 				    (int)sizeof p->p_pgrp->pg_session->s_login,
2235 				    p->p_pgrp->pg_session->s_login);
2236 				break;
2237 			case 't':
2238 				i = snprintf(d, end - d, "%ld",
2239 				    p->p_stats->p_start.tv_sec);
2240 				break;
2241 			default:
2242 				goto copy;
2243 			}
2244 			d += i;
2245 			s++;
2246 		} else {
2247  copy:			*d = *s;
2248 			d++;
2249 		}
2250 		if (d >= end)
2251 			return (ENAMETOOLONG);
2252 	}
2253 	*d = '\0';
2254 	return 0;
2255 }
2256 
2257 void
2258 getucontext(struct lwp *l, ucontext_t *ucp)
2259 {
2260 	struct proc	*p;
2261 
2262 	p = l->l_proc;
2263 
2264 	ucp->uc_flags = 0;
2265 	ucp->uc_link = l->l_ctxlink;
2266 
2267 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2268 	ucp->uc_flags |= _UC_SIGMASK;
2269 
2270 	/*
2271 	 * The (unsupplied) definition of the `current execution stack'
2272 	 * in the System V Interface Definition appears to allow returning
2273 	 * the main context stack.
2274 	 */
2275 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2276 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
2277 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2278 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
2279 	} else {
2280 		/* Simply copy alternate signal execution stack. */
2281 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
2282 	}
2283 	ucp->uc_flags |= _UC_STACK;
2284 
2285 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2286 }
2287 
2288 /* ARGSUSED */
2289 int
2290 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2291 {
2292 	struct sys_getcontext_args /* {
2293 		syscallarg(struct __ucontext *) ucp;
2294 	} */ *uap = v;
2295 	ucontext_t uc;
2296 
2297 	getucontext(l, &uc);
2298 
2299 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2300 }
2301 
2302 int
2303 setucontext(struct lwp *l, const ucontext_t *ucp)
2304 {
2305 	struct proc	*p;
2306 	int		error;
2307 
2308 	p = l->l_proc;
2309 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2310 		return (error);
2311 	l->l_ctxlink = ucp->uc_link;
2312 
2313 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2314 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2315 
2316 	/*
2317 	 * If there was stack information, update whether or not we are
2318 	 * still running on an alternate signal stack.
2319 	 */
2320 	if ((ucp->uc_flags & _UC_STACK) != 0) {
2321 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2322 			p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2323 		else
2324 			p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2325 	}
2326 
2327 	return 0;
2328 }
2329 
2330 /* ARGSUSED */
2331 int
2332 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2333 {
2334 	struct sys_setcontext_args /* {
2335 		syscallarg(const ucontext_t *) ucp;
2336 	} */ *uap = v;
2337 	ucontext_t uc;
2338 	int error;
2339 
2340 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
2341 		exit1(l, W_EXITCODE(0, 0));
2342 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2343 	    (error = setucontext(l, &uc)) != 0)
2344 		return (error);
2345 
2346 	return (EJUSTRETURN);
2347 }
2348 
2349 /*
2350  * sigtimedwait(2) system call, used also for implementation
2351  * of sigwaitinfo() and sigwait().
2352  *
2353  * This only handles single LWP in signal wait. libpthread provides
2354  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2355  */
2356 int
2357 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2358 {
2359 	return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2360 }
2361 
2362 int
2363 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
2364     copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
2365 {
2366 	struct sys___sigtimedwait_args /* {
2367 		syscallarg(const sigset_t *) set;
2368 		syscallarg(siginfo_t *) info;
2369 		syscallarg(struct timespec *) timeout;
2370 	} */ *uap = v;
2371 	sigset_t *waitset, twaitset;
2372 	struct proc *p = l->l_proc;
2373 	int error, signum, s;
2374 	int timo = 0;
2375 	struct timeval tvstart;
2376 	struct timespec ts;
2377 	ksiginfo_t *ksi;
2378 
2379 	MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2380 
2381 	if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2382 		FREE(waitset, M_TEMP);
2383 		return (error);
2384 	}
2385 
2386 	/*
2387 	 * Silently ignore SA_CANTMASK signals. psignal1() would
2388 	 * ignore SA_CANTMASK signals in waitset, we do this
2389 	 * only for the below siglist check.
2390 	 */
2391 	sigminusset(&sigcantmask, waitset);
2392 
2393 	/*
2394 	 * First scan siglist and check if there is signal from
2395 	 * our waitset already pending.
2396 	 */
2397 	twaitset = *waitset;
2398 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2399 	if ((signum = firstsig(&twaitset))) {
2400 		/* found pending signal */
2401 		sigdelset(&p->p_sigctx.ps_siglist, signum);
2402 		ksi = ksiginfo_get(p, signum);
2403 		if (!ksi) {
2404 			/* No queued siginfo, manufacture one */
2405 			ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2406 			KSI_INIT(ksi);
2407 			ksi->ksi_info._signo = signum;
2408 			ksi->ksi_info._code = SI_USER;
2409 		}
2410 
2411 		goto sig;
2412 	}
2413 
2414 	/*
2415 	 * Calculate timeout, if it was specified.
2416 	 */
2417 	if (SCARG(uap, timeout)) {
2418 		uint64_t ms;
2419 
2420 		if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2421 			return (error);
2422 
2423 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2424 		timo = mstohz(ms);
2425 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2426 			timo = 1;
2427 		if (timo <= 0)
2428 			return (EAGAIN);
2429 
2430 		/*
2431 		 * Remember current mono_time, it would be used in
2432 		 * ECANCELED/ERESTART case.
2433 		 */
2434 		s = splclock();
2435 		tvstart = mono_time;
2436 		splx(s);
2437 	}
2438 
2439 	/*
2440 	 * Setup ps_sigwait list. Pass pointer to malloced memory
2441 	 * here; it's not possible to pass pointer to a structure
2442 	 * on current process's stack, the current process might
2443 	 * be swapped out at the time the signal would get delivered.
2444 	 */
2445 	ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2446 	p->p_sigctx.ps_sigwaited = ksi;
2447 	p->p_sigctx.ps_sigwait = waitset;
2448 
2449 	/*
2450 	 * Wait for signal to arrive. We can either be woken up or
2451 	 * time out.
2452 	 */
2453 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2454 
2455 	/*
2456 	 * Need to find out if we woke as a result of lwp_wakeup()
2457 	 * or a signal outside our wait set.
2458 	 */
2459 	if (error == EINTR && p->p_sigctx.ps_sigwaited
2460 	    && !firstsig(&p->p_sigctx.ps_siglist)) {
2461 		/* wakeup via _lwp_wakeup() */
2462 		error = ECANCELED;
2463 	} else if (!error && p->p_sigctx.ps_sigwaited) {
2464 		/* spurious wakeup - arrange for syscall restart */
2465 		error = ERESTART;
2466 		goto fail;
2467 	}
2468 
2469 	/*
2470 	 * On error, clear sigwait indication. psignal1() clears it
2471 	 * in !error case.
2472 	 */
2473 	if (error) {
2474 		p->p_sigctx.ps_sigwaited = NULL;
2475 
2476 		/*
2477 		 * If the sleep was interrupted (either by signal or wakeup),
2478 		 * update the timeout and copyout new value back.
2479 		 * It would be used when the syscall would be restarted
2480 		 * or called again.
2481 		 */
2482 		if (timo && (error == ERESTART || error == ECANCELED)) {
2483 			struct timeval tvnow, tvtimo;
2484 			int err;
2485 
2486 			s = splclock();
2487 			tvnow = mono_time;
2488 			splx(s);
2489 
2490 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2491 
2492 			/* compute how much time has passed since start */
2493 			timersub(&tvnow, &tvstart, &tvnow);
2494 			/* substract passed time from timeout */
2495 			timersub(&tvtimo, &tvnow, &tvtimo);
2496 
2497 			if (tvtimo.tv_sec < 0) {
2498 				error = EAGAIN;
2499 				goto fail;
2500 			}
2501 
2502 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2503 
2504 			/* copy updated timeout to userland */
2505 			if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2506 			    sizeof(ts)))) {
2507 				error = err;
2508 				goto fail;
2509 			}
2510 		}
2511 
2512 		goto fail;
2513 	}
2514 
2515 	/*
2516 	 * If a signal from the wait set arrived, copy it to userland.
2517 	 * Copy only the used part of siginfo, the padding part is
2518 	 * left unchanged (userland is not supposed to touch it anyway).
2519 	 */
2520  sig:
2521 	return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2522 
2523  fail:
2524 	FREE(waitset, M_TEMP);
2525 	pool_put(&ksiginfo_pool, ksi);
2526 	p->p_sigctx.ps_sigwait = NULL;
2527 
2528 	return (error);
2529 }
2530 
2531 /*
2532  * Returns true if signal is ignored or masked for passed process.
2533  */
2534 int
2535 sigismasked(struct proc *p, int sig)
2536 {
2537 
2538 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2539 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
2540 }
2541 
2542 static int
2543 filt_sigattach(struct knote *kn)
2544 {
2545 	struct proc *p = curproc;
2546 
2547 	kn->kn_ptr.p_proc = p;
2548 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2549 
2550 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2551 
2552 	return (0);
2553 }
2554 
2555 static void
2556 filt_sigdetach(struct knote *kn)
2557 {
2558 	struct proc *p = kn->kn_ptr.p_proc;
2559 
2560 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2561 }
2562 
2563 /*
2564  * signal knotes are shared with proc knotes, so we apply a mask to
2565  * the hint in order to differentiate them from process hints.  This
2566  * could be avoided by using a signal-specific knote list, but probably
2567  * isn't worth the trouble.
2568  */
2569 static int
2570 filt_signal(struct knote *kn, long hint)
2571 {
2572 
2573 	if (hint & NOTE_SIGNAL) {
2574 		hint &= ~NOTE_SIGNAL;
2575 
2576 		if (kn->kn_id == hint)
2577 			kn->kn_data++;
2578 	}
2579 	return (kn->kn_data != 0);
2580 }
2581 
2582 const struct filterops sig_filtops = {
2583 	0, filt_sigattach, filt_sigdetach, filt_signal
2584 };
2585