xref: /netbsd-src/sys/kern/kern_sig.c (revision df0caa2637da0538ecdf6b878c4d08e684b43d8f)
1 /*	$NetBSD: kern_sig.c,v 1.207 2005/06/10 05:10:13 matt Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.207 2005/06/10 05:10:13 matt Exp $");
41 
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46 
47 #define	SIGPROP		/* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73 
74 #include <sys/mount.h>
75 #include <sys/syscallargs.h>
76 
77 #include <machine/cpu.h>
78 
79 #include <sys/user.h>		/* for coredump */
80 
81 #include <uvm/uvm.h>
82 #include <uvm/uvm_extern.h>
83 
84 static void	child_psignal(struct proc *, int);
85 static int	build_corename(struct proc *, char *, const char *, size_t);
86 static void	ksiginfo_exithook(struct proc *, void *);
87 static void	ksiginfo_put(struct proc *, const ksiginfo_t *);
88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
89 static void	kpsignal2(struct proc *, const ksiginfo_t *, int);
90 
91 sigset_t	contsigmask, stopsigmask, sigcantmask;
92 
93 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
94 
95 /*
96  * struct sigacts memory pool allocator.
97  */
98 
99 static void *
100 sigacts_poolpage_alloc(struct pool *pp, int flags)
101 {
102 
103 	return (void *)uvm_km_alloc(kernel_map,
104 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
105 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
106 	    | UVM_KMF_WIRED);
107 }
108 
109 static void
110 sigacts_poolpage_free(struct pool *pp, void *v)
111 {
112         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
113 }
114 
115 static struct pool_allocator sigactspool_allocator = {
116         sigacts_poolpage_alloc, sigacts_poolpage_free,
117 };
118 
119 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
120     &pool_allocator_nointr);
121 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
122 
123 /*
124  * Can process p, with pcred pc, send the signal signum to process q?
125  */
126 #define	CANSIGNAL(p, pc, q, signum) \
127 	((pc)->pc_ucred->cr_uid == 0 || \
128 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
129 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
130 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
131 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
132 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
133 
134 /*
135  * Remove and return the first ksiginfo element that matches our requested
136  * signal, or return NULL if one not found.
137  */
138 static ksiginfo_t *
139 ksiginfo_get(struct proc *p, int signo)
140 {
141 	ksiginfo_t *ksi;
142 	int s;
143 
144 	s = splsoftclock();
145 	simple_lock(&p->p_sigctx.ps_silock);
146 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
147 		if (ksi->ksi_signo == signo) {
148 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
149 			goto out;
150 		}
151 	}
152 	ksi = NULL;
153 out:
154 	simple_unlock(&p->p_sigctx.ps_silock);
155 	splx(s);
156 	return ksi;
157 }
158 
159 /*
160  * Append a new ksiginfo element to the list of pending ksiginfo's, if
161  * we need to (SA_SIGINFO was requested). We replace non RT signals if
162  * they already existed in the queue and we add new entries for RT signals,
163  * or for non RT signals with non-existing entries.
164  */
165 static void
166 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
167 {
168 	ksiginfo_t *kp;
169 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
170 	int s;
171 
172 	if ((sa->sa_flags & SA_SIGINFO) == 0)
173 		return;
174 	/*
175 	 * If there's no info, don't save it.
176 	 */
177 	if (KSI_EMPTY_P(ksi))
178 		return;
179 
180 	s = splsoftclock();
181 	simple_lock(&p->p_sigctx.ps_silock);
182 #ifdef notyet	/* XXX: QUEUING */
183 	if (ksi->ksi_signo < SIGRTMIN)
184 #endif
185 	{
186 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
187 			if (kp->ksi_signo == ksi->ksi_signo) {
188 				KSI_COPY(ksi, kp);
189 				goto out;
190 			}
191 		}
192 	}
193 	kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
194 	if (kp == NULL) {
195 #ifdef DIAGNOSTIC
196 		printf("Out of memory allocating siginfo for pid %d\n",
197 		    p->p_pid);
198 #endif
199 		goto out;
200 	}
201 	*kp = *ksi;
202 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
203 out:
204 	simple_unlock(&p->p_sigctx.ps_silock);
205 	splx(s);
206 }
207 
208 /*
209  * free all pending ksiginfo on exit
210  */
211 static void
212 ksiginfo_exithook(struct proc *p, void *v)
213 {
214 	int s;
215 
216 	s = splsoftclock();
217 	simple_lock(&p->p_sigctx.ps_silock);
218 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
219 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
220 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
221 		pool_put(&ksiginfo_pool, ksi);
222 	}
223 	simple_unlock(&p->p_sigctx.ps_silock);
224 	splx(s);
225 }
226 
227 /*
228  * Initialize signal-related data structures.
229  */
230 void
231 signal_init(void)
232 {
233 
234 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
235 
236 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
237 	    sizeof(struct sigacts) > PAGE_SIZE ?
238 	    &sigactspool_allocator : &pool_allocator_nointr);
239 
240 	exithook_establish(ksiginfo_exithook, NULL);
241 	exechook_establish(ksiginfo_exithook, NULL);
242 }
243 
244 /*
245  * Create an initial sigctx structure, using the same signal state
246  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
247  * copy it from parent.
248  */
249 void
250 sigactsinit(struct proc *np, struct proc *pp, int share)
251 {
252 	struct sigacts *ps;
253 
254 	if (share) {
255 		np->p_sigacts = pp->p_sigacts;
256 		pp->p_sigacts->sa_refcnt++;
257 	} else {
258 		ps = pool_get(&sigacts_pool, PR_WAITOK);
259 		if (pp)
260 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
261 		else
262 			memset(ps, '\0', sizeof(struct sigacts));
263 		ps->sa_refcnt = 1;
264 		np->p_sigacts = ps;
265 	}
266 }
267 
268 /*
269  * Make this process not share its sigctx, maintaining all
270  * signal state.
271  */
272 void
273 sigactsunshare(struct proc *p)
274 {
275 	struct sigacts *oldps;
276 
277 	if (p->p_sigacts->sa_refcnt == 1)
278 		return;
279 
280 	oldps = p->p_sigacts;
281 	sigactsinit(p, NULL, 0);
282 
283 	if (--oldps->sa_refcnt == 0)
284 		pool_put(&sigacts_pool, oldps);
285 }
286 
287 /*
288  * Release a sigctx structure.
289  */
290 void
291 sigactsfree(struct sigacts *ps)
292 {
293 
294 	if (--ps->sa_refcnt > 0)
295 		return;
296 
297 	pool_put(&sigacts_pool, ps);
298 }
299 
300 int
301 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
302 	struct sigaction *osa, const void *tramp, int vers)
303 {
304 	struct sigacts	*ps;
305 	int		prop;
306 
307 	ps = p->p_sigacts;
308 	if (signum <= 0 || signum >= NSIG)
309 		return (EINVAL);
310 
311 	/*
312 	 * Trampoline ABI version 0 is reserved for the legacy
313 	 * kernel-provided on-stack trampoline.  Conversely, if we are
314 	 * using a non-0 ABI version, we must have a trampoline.  Only
315 	 * validate the vers if a new sigaction was supplied. Emulations
316 	 * use legacy kernel trampolines with version 0, alternatively
317 	 * check for that too.
318 	 */
319 	if ((vers != 0 && tramp == NULL) ||
320 #ifdef SIGTRAMP_VALID
321 	    (nsa != NULL &&
322 	    ((vers == 0) ?
323 		(p->p_emul->e_sigcode == NULL) :
324 		!SIGTRAMP_VALID(vers))) ||
325 #endif
326 	    (vers == 0 && tramp != NULL))
327 		return (EINVAL);
328 
329 	if (osa)
330 		*osa = SIGACTION_PS(ps, signum);
331 
332 	if (nsa) {
333 		if (nsa->sa_flags & ~SA_ALLBITS)
334 			return (EINVAL);
335 
336 		prop = sigprop[signum];
337 		if (prop & SA_CANTMASK)
338 			return (EINVAL);
339 
340 		(void) splsched();	/* XXXSMP */
341 		SIGACTION_PS(ps, signum) = *nsa;
342 		ps->sa_sigdesc[signum].sd_tramp = tramp;
343 		ps->sa_sigdesc[signum].sd_vers = vers;
344 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
345 		if ((prop & SA_NORESET) != 0)
346 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
347 		if (signum == SIGCHLD) {
348 			if (nsa->sa_flags & SA_NOCLDSTOP)
349 				p->p_flag |= P_NOCLDSTOP;
350 			else
351 				p->p_flag &= ~P_NOCLDSTOP;
352 			if (nsa->sa_flags & SA_NOCLDWAIT) {
353 				/*
354 				 * Paranoia: since SA_NOCLDWAIT is implemented
355 				 * by reparenting the dying child to PID 1 (and
356 				 * trust it to reap the zombie), PID 1 itself
357 				 * is forbidden to set SA_NOCLDWAIT.
358 				 */
359 				if (p->p_pid == 1)
360 					p->p_flag &= ~P_NOCLDWAIT;
361 				else
362 					p->p_flag |= P_NOCLDWAIT;
363 			} else
364 				p->p_flag &= ~P_NOCLDWAIT;
365 
366 			if (nsa->sa_handler == SIG_IGN) {
367 				/*
368 				 * Paranoia: same as above.
369 				 */
370 				if (p->p_pid == 1)
371 					p->p_flag &= ~P_CLDSIGIGN;
372 				else
373 					p->p_flag |= P_CLDSIGIGN;
374 			} else
375 				p->p_flag &= ~P_CLDSIGIGN;
376 
377 		}
378 		if ((nsa->sa_flags & SA_NODEFER) == 0)
379 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
380 		else
381 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
382 		/*
383 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
384 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
385 		 * to ignore. However, don't put SIGCONT in
386 		 * p_sigctx.ps_sigignore, as we have to restart the process.
387 	 	 */
388 		if (nsa->sa_handler == SIG_IGN ||
389 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
390 						/* never to be seen again */
391 			sigdelset(&p->p_sigctx.ps_siglist, signum);
392 			if (signum != SIGCONT) {
393 						/* easier in psignal */
394 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
395 			}
396 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
397 		} else {
398 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
399 			if (nsa->sa_handler == SIG_DFL)
400 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
401 			else
402 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
403 		}
404 		(void) spl0();
405 	}
406 
407 	return (0);
408 }
409 
410 #ifdef COMPAT_16
411 /* ARGSUSED */
412 int
413 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
414 {
415 	struct compat_16_sys___sigaction14_args /* {
416 		syscallarg(int)				signum;
417 		syscallarg(const struct sigaction *)	nsa;
418 		syscallarg(struct sigaction *)		osa;
419 	} */ *uap = v;
420 	struct proc		*p;
421 	struct sigaction	nsa, osa;
422 	int			error;
423 
424 	if (SCARG(uap, nsa)) {
425 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
426 		if (error)
427 			return (error);
428 	}
429 	p = l->l_proc;
430 	error = sigaction1(p, SCARG(uap, signum),
431 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
432 	    NULL, 0);
433 	if (error)
434 		return (error);
435 	if (SCARG(uap, osa)) {
436 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
437 		if (error)
438 			return (error);
439 	}
440 	return (0);
441 }
442 #endif
443 
444 /* ARGSUSED */
445 int
446 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
447 {
448 	struct sys___sigaction_sigtramp_args /* {
449 		syscallarg(int)				signum;
450 		syscallarg(const struct sigaction *)	nsa;
451 		syscallarg(struct sigaction *)		osa;
452 		syscallarg(void *)			tramp;
453 		syscallarg(int)				vers;
454 	} */ *uap = v;
455 	struct proc *p = l->l_proc;
456 	struct sigaction nsa, osa;
457 	int error;
458 
459 	if (SCARG(uap, nsa)) {
460 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
461 		if (error)
462 			return (error);
463 	}
464 	error = sigaction1(p, SCARG(uap, signum),
465 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
466 	    SCARG(uap, tramp), SCARG(uap, vers));
467 	if (error)
468 		return (error);
469 	if (SCARG(uap, osa)) {
470 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
471 		if (error)
472 			return (error);
473 	}
474 	return (0);
475 }
476 
477 /*
478  * Initialize signal state for process 0;
479  * set to ignore signals that are ignored by default and disable the signal
480  * stack.
481  */
482 void
483 siginit(struct proc *p)
484 {
485 	struct sigacts	*ps;
486 	int		signum, prop;
487 
488 	ps = p->p_sigacts;
489 	sigemptyset(&contsigmask);
490 	sigemptyset(&stopsigmask);
491 	sigemptyset(&sigcantmask);
492 	for (signum = 1; signum < NSIG; signum++) {
493 		prop = sigprop[signum];
494 		if (prop & SA_CONT)
495 			sigaddset(&contsigmask, signum);
496 		if (prop & SA_STOP)
497 			sigaddset(&stopsigmask, signum);
498 		if (prop & SA_CANTMASK)
499 			sigaddset(&sigcantmask, signum);
500 		if (prop & SA_IGNORE && signum != SIGCONT)
501 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
502 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
503 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
504 	}
505 	sigemptyset(&p->p_sigctx.ps_sigcatch);
506 	p->p_sigctx.ps_sigwaited = NULL;
507 	p->p_flag &= ~P_NOCLDSTOP;
508 
509 	/*
510 	 * Reset stack state to the user stack.
511 	 */
512 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
513 	p->p_sigctx.ps_sigstk.ss_size = 0;
514 	p->p_sigctx.ps_sigstk.ss_sp = 0;
515 
516 	/* One reference. */
517 	ps->sa_refcnt = 1;
518 }
519 
520 /*
521  * Reset signals for an exec of the specified process.
522  */
523 void
524 execsigs(struct proc *p)
525 {
526 	struct sigacts	*ps;
527 	int		signum, prop;
528 
529 	sigactsunshare(p);
530 
531 	ps = p->p_sigacts;
532 
533 	/*
534 	 * Reset caught signals.  Held signals remain held
535 	 * through p_sigctx.ps_sigmask (unless they were caught,
536 	 * and are now ignored by default).
537 	 */
538 	for (signum = 1; signum < NSIG; signum++) {
539 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
540 			prop = sigprop[signum];
541 			if (prop & SA_IGNORE) {
542 				if ((prop & SA_CONT) == 0)
543 					sigaddset(&p->p_sigctx.ps_sigignore,
544 					    signum);
545 				sigdelset(&p->p_sigctx.ps_siglist, signum);
546 			}
547 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
548 		}
549 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
550 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
551 	}
552 	sigemptyset(&p->p_sigctx.ps_sigcatch);
553 	p->p_sigctx.ps_sigwaited = NULL;
554 
555 	/*
556 	 * Reset no zombies if child dies flag as Solaris does.
557 	 */
558 	p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
559 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
560 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
561 
562 	/*
563 	 * Reset stack state to the user stack.
564 	 */
565 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
566 	p->p_sigctx.ps_sigstk.ss_size = 0;
567 	p->p_sigctx.ps_sigstk.ss_sp = 0;
568 }
569 
570 int
571 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
572 {
573 
574 	if (oss)
575 		*oss = p->p_sigctx.ps_sigmask;
576 
577 	if (nss) {
578 		(void)splsched();	/* XXXSMP */
579 		switch (how) {
580 		case SIG_BLOCK:
581 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
582 			break;
583 		case SIG_UNBLOCK:
584 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
585 			CHECKSIGS(p);
586 			break;
587 		case SIG_SETMASK:
588 			p->p_sigctx.ps_sigmask = *nss;
589 			CHECKSIGS(p);
590 			break;
591 		default:
592 			(void)spl0();	/* XXXSMP */
593 			return (EINVAL);
594 		}
595 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
596 		(void)spl0();		/* XXXSMP */
597 	}
598 
599 	return (0);
600 }
601 
602 /*
603  * Manipulate signal mask.
604  * Note that we receive new mask, not pointer,
605  * and return old mask as return value;
606  * the library stub does the rest.
607  */
608 int
609 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
610 {
611 	struct sys___sigprocmask14_args /* {
612 		syscallarg(int)			how;
613 		syscallarg(const sigset_t *)	set;
614 		syscallarg(sigset_t *)		oset;
615 	} */ *uap = v;
616 	struct proc	*p;
617 	sigset_t	nss, oss;
618 	int		error;
619 
620 	if (SCARG(uap, set)) {
621 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
622 		if (error)
623 			return (error);
624 	}
625 	p = l->l_proc;
626 	error = sigprocmask1(p, SCARG(uap, how),
627 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
628 	if (error)
629 		return (error);
630 	if (SCARG(uap, oset)) {
631 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
632 		if (error)
633 			return (error);
634 	}
635 	return (0);
636 }
637 
638 void
639 sigpending1(struct proc *p, sigset_t *ss)
640 {
641 
642 	*ss = p->p_sigctx.ps_siglist;
643 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
644 }
645 
646 /* ARGSUSED */
647 int
648 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
649 {
650 	struct sys___sigpending14_args /* {
651 		syscallarg(sigset_t *)	set;
652 	} */ *uap = v;
653 	struct proc	*p;
654 	sigset_t	ss;
655 
656 	p = l->l_proc;
657 	sigpending1(p, &ss);
658 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
659 }
660 
661 int
662 sigsuspend1(struct proc *p, const sigset_t *ss)
663 {
664 	struct sigacts *ps;
665 
666 	ps = p->p_sigacts;
667 	if (ss) {
668 		/*
669 		 * When returning from sigpause, we want
670 		 * the old mask to be restored after the
671 		 * signal handler has finished.  Thus, we
672 		 * save it here and mark the sigctx structure
673 		 * to indicate this.
674 		 */
675 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
676 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
677 		(void) splsched();	/* XXXSMP */
678 		p->p_sigctx.ps_sigmask = *ss;
679 		CHECKSIGS(p);
680 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
681 		(void) spl0();		/* XXXSMP */
682 	}
683 
684 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
685 		/* void */;
686 
687 	/* always return EINTR rather than ERESTART... */
688 	return (EINTR);
689 }
690 
691 /*
692  * Suspend process until signal, providing mask to be set
693  * in the meantime.  Note nonstandard calling convention:
694  * libc stub passes mask, not pointer, to save a copyin.
695  */
696 /* ARGSUSED */
697 int
698 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
699 {
700 	struct sys___sigsuspend14_args /* {
701 		syscallarg(const sigset_t *)	set;
702 	} */ *uap = v;
703 	struct proc	*p;
704 	sigset_t	ss;
705 	int		error;
706 
707 	if (SCARG(uap, set)) {
708 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
709 		if (error)
710 			return (error);
711 	}
712 
713 	p = l->l_proc;
714 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
715 }
716 
717 int
718 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
719 	struct sigaltstack *oss)
720 {
721 
722 	if (oss)
723 		*oss = p->p_sigctx.ps_sigstk;
724 
725 	if (nss) {
726 		if (nss->ss_flags & ~SS_ALLBITS)
727 			return (EINVAL);
728 
729 		if (nss->ss_flags & SS_DISABLE) {
730 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
731 				return (EINVAL);
732 		} else {
733 			if (nss->ss_size < MINSIGSTKSZ)
734 				return (ENOMEM);
735 		}
736 		p->p_sigctx.ps_sigstk = *nss;
737 	}
738 
739 	return (0);
740 }
741 
742 /* ARGSUSED */
743 int
744 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
745 {
746 	struct sys___sigaltstack14_args /* {
747 		syscallarg(const struct sigaltstack *)	nss;
748 		syscallarg(struct sigaltstack *)	oss;
749 	} */ *uap = v;
750 	struct proc		*p;
751 	struct sigaltstack	nss, oss;
752 	int			error;
753 
754 	if (SCARG(uap, nss)) {
755 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
756 		if (error)
757 			return (error);
758 	}
759 	p = l->l_proc;
760 	error = sigaltstack1(p,
761 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
762 	if (error)
763 		return (error);
764 	if (SCARG(uap, oss)) {
765 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
766 		if (error)
767 			return (error);
768 	}
769 	return (0);
770 }
771 
772 /* ARGSUSED */
773 int
774 sys_kill(struct lwp *l, void *v, register_t *retval)
775 {
776 	struct sys_kill_args /* {
777 		syscallarg(int)	pid;
778 		syscallarg(int)	signum;
779 	} */ *uap = v;
780 	struct proc	*cp, *p;
781 	struct pcred	*pc;
782 	ksiginfo_t	ksi;
783 
784 	cp = l->l_proc;
785 	pc = cp->p_cred;
786 	if ((u_int)SCARG(uap, signum) >= NSIG)
787 		return (EINVAL);
788 	KSI_INIT(&ksi);
789 	ksi.ksi_signo = SCARG(uap, signum);
790 	ksi.ksi_code = SI_USER;
791 	ksi.ksi_pid = cp->p_pid;
792 	ksi.ksi_uid = cp->p_ucred->cr_uid;
793 	if (SCARG(uap, pid) > 0) {
794 		/* kill single process */
795 		if ((p = pfind(SCARG(uap, pid))) == NULL)
796 			return (ESRCH);
797 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
798 			return (EPERM);
799 		if (SCARG(uap, signum))
800 			kpsignal2(p, &ksi, 1);
801 		return (0);
802 	}
803 	switch (SCARG(uap, pid)) {
804 	case -1:		/* broadcast signal */
805 		return (killpg1(cp, &ksi, 0, 1));
806 	case 0:			/* signal own process group */
807 		return (killpg1(cp, &ksi, 0, 0));
808 	default:		/* negative explicit process group */
809 		return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
810 	}
811 	/* NOTREACHED */
812 }
813 
814 /*
815  * Common code for kill process group/broadcast kill.
816  * cp is calling process.
817  */
818 int
819 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
820 {
821 	struct proc	*p;
822 	struct pcred	*pc;
823 	struct pgrp	*pgrp;
824 	int		nfound;
825 	int		signum = ksi->ksi_signo;
826 
827 	pc = cp->p_cred;
828 	nfound = 0;
829 	if (all) {
830 		/*
831 		 * broadcast
832 		 */
833 		proclist_lock_read();
834 		PROCLIST_FOREACH(p, &allproc) {
835 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
836 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
837 				continue;
838 			nfound++;
839 			if (signum)
840 				kpsignal2(p, ksi, 1);
841 		}
842 		proclist_unlock_read();
843 	} else {
844 		if (pgid == 0)
845 			/*
846 			 * zero pgid means send to my process group.
847 			 */
848 			pgrp = cp->p_pgrp;
849 		else {
850 			pgrp = pgfind(pgid);
851 			if (pgrp == NULL)
852 				return (ESRCH);
853 		}
854 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
855 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
856 			    !CANSIGNAL(cp, pc, p, signum))
857 				continue;
858 			nfound++;
859 			if (signum && P_ZOMBIE(p) == 0)
860 				kpsignal2(p, ksi, 1);
861 		}
862 	}
863 	return (nfound ? 0 : ESRCH);
864 }
865 
866 /*
867  * Send a signal to a process group.
868  */
869 void
870 gsignal(int pgid, int signum)
871 {
872 	ksiginfo_t ksi;
873 	KSI_INIT_EMPTY(&ksi);
874 	ksi.ksi_signo = signum;
875 	kgsignal(pgid, &ksi, NULL);
876 }
877 
878 void
879 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
880 {
881 	struct pgrp *pgrp;
882 
883 	if (pgid && (pgrp = pgfind(pgid)))
884 		kpgsignal(pgrp, ksi, data, 0);
885 }
886 
887 /*
888  * Send a signal to a process group. If checktty is 1,
889  * limit to members which have a controlling terminal.
890  */
891 void
892 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
893 {
894 	ksiginfo_t ksi;
895 	KSI_INIT_EMPTY(&ksi);
896 	ksi.ksi_signo = sig;
897 	kpgsignal(pgrp, &ksi, NULL, checkctty);
898 }
899 
900 void
901 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
902 {
903 	struct proc *p;
904 
905 	if (pgrp)
906 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
907 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
908 				kpsignal(p, ksi, data);
909 }
910 
911 /*
912  * Send a signal caused by a trap to the current process.
913  * If it will be caught immediately, deliver it with correct code.
914  * Otherwise, post it normally.
915  */
916 void
917 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
918 {
919 	struct proc	*p;
920 	struct sigacts	*ps;
921 	int signum = ksi->ksi_signo;
922 
923 	KASSERT(KSI_TRAP_P(ksi));
924 
925 	p = l->l_proc;
926 	ps = p->p_sigacts;
927 	if ((p->p_flag & P_TRACED) == 0 &&
928 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
929 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
930 		p->p_stats->p_ru.ru_nsignals++;
931 #ifdef KTRACE
932 		if (KTRPOINT(p, KTR_PSIG))
933 			ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
934 			    &p->p_sigctx.ps_sigmask, ksi);
935 #endif
936 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
937 		(void) splsched();	/* XXXSMP */
938 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
939 		    &p->p_sigctx.ps_sigmask);
940 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
941 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
942 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
943 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
944 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
945 		}
946 		(void) spl0();		/* XXXSMP */
947 	} else {
948 		p->p_sigctx.ps_lwp = l->l_lid;
949 		/* XXX for core dump/debugger */
950 		p->p_sigctx.ps_signo = ksi->ksi_signo;
951 		p->p_sigctx.ps_code = ksi->ksi_trap;
952 		kpsignal2(p, ksi, 1);
953 	}
954 }
955 
956 /*
957  * Fill in signal information and signal the parent for a child status change.
958  */
959 static void
960 child_psignal(struct proc *p, int dolock)
961 {
962 	ksiginfo_t ksi;
963 
964 	KSI_INIT(&ksi);
965 	ksi.ksi_signo = SIGCHLD;
966 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
967 	ksi.ksi_pid = p->p_pid;
968 	ksi.ksi_uid = p->p_ucred->cr_uid;
969 	ksi.ksi_status = p->p_xstat;
970 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
971 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
972 	kpsignal2(p->p_pptr, &ksi, dolock);
973 }
974 
975 /*
976  * Send the signal to the process.  If the signal has an action, the action
977  * is usually performed by the target process rather than the caller; we add
978  * the signal to the set of pending signals for the process.
979  *
980  * Exceptions:
981  *   o When a stop signal is sent to a sleeping process that takes the
982  *     default action, the process is stopped without awakening it.
983  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
984  *     regardless of the signal action (eg, blocked or ignored).
985  *
986  * Other ignored signals are discarded immediately.
987  *
988  * XXXSMP: Invoked as psignal() or sched_psignal().
989  */
990 void
991 psignal1(struct proc *p, int signum, int dolock)
992 {
993 	ksiginfo_t ksi;
994 
995 	KSI_INIT_EMPTY(&ksi);
996 	ksi.ksi_signo = signum;
997 	kpsignal2(p, &ksi, dolock);
998 }
999 
1000 void
1001 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
1002 {
1003 
1004 	if ((p->p_flag & P_WEXIT) == 0 && data) {
1005 		size_t fd;
1006 		struct filedesc *fdp = p->p_fd;
1007 
1008 		ksi->ksi_fd = -1;
1009 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1010 			struct file *fp = fdp->fd_ofiles[fd];
1011 			/* XXX: lock? */
1012 			if (fp && fp->f_data == data) {
1013 				ksi->ksi_fd = fd;
1014 				break;
1015 			}
1016 		}
1017 	}
1018 	kpsignal2(p, ksi, dolock);
1019 }
1020 
1021 static void
1022 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1023 {
1024 	struct lwp *l, *suspended = NULL;
1025 	struct sadata_vp *vp;
1026 	int	s = 0, prop, allsusp;
1027 	sig_t	action;
1028 	int	signum = ksi->ksi_signo;
1029 
1030 #ifdef DIAGNOSTIC
1031 	if (signum <= 0 || signum >= NSIG)
1032 		panic("psignal signal number %d", signum);
1033 
1034 	/* XXXSMP: works, but icky */
1035 	if (dolock)
1036 		SCHED_ASSERT_UNLOCKED();
1037 	else
1038 		SCHED_ASSERT_LOCKED();
1039 #endif
1040 
1041 	/*
1042 	 * Notify any interested parties in the signal.
1043 	 */
1044 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1045 
1046 	prop = sigprop[signum];
1047 
1048 	/*
1049 	 * If proc is traced, always give parent a chance.
1050 	 */
1051 	if (p->p_flag & P_TRACED) {
1052 		action = SIG_DFL;
1053 
1054 		/*
1055 		 * If the process is being traced and the signal is being
1056 		 * caught, make sure to save any ksiginfo.
1057 		 */
1058 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1059 			ksiginfo_put(p, ksi);
1060 	} else {
1061 		/*
1062 		 * If the signal was the result of a trap, reset it
1063 		 * to default action if it's currently masked, so that it would
1064 		 * coredump immediatelly instead of spinning repeatedly
1065 		 * taking the signal.
1066 		 */
1067 		if (KSI_TRAP_P(ksi)
1068 		    && sigismember(&p->p_sigctx.ps_sigmask, signum)
1069 		    && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1070 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
1071 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1072 			sigdelset(&p->p_sigctx.ps_sigmask, signum);
1073 			SIGACTION(p, signum).sa_handler = SIG_DFL;
1074 		}
1075 
1076 		/*
1077 		 * If the signal is being ignored,
1078 		 * then we forget about it immediately.
1079 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1080 		 * and if it is set to SIG_IGN,
1081 		 * action will be SIG_DFL here.)
1082 		 */
1083 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1084 			return;
1085 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1086 			action = SIG_HOLD;
1087 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1088 			action = SIG_CATCH;
1089 		else {
1090 			action = SIG_DFL;
1091 
1092 			if (prop & SA_KILL && p->p_nice > NZERO)
1093 				p->p_nice = NZERO;
1094 
1095 			/*
1096 			 * If sending a tty stop signal to a member of an
1097 			 * orphaned process group, discard the signal here if
1098 			 * the action is default; don't stop the process below
1099 			 * if sleeping, and don't clear any pending SIGCONT.
1100 			 */
1101 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1102 				return;
1103 		}
1104 	}
1105 
1106 	if (prop & SA_CONT)
1107 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1108 
1109 	if (prop & SA_STOP)
1110 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1111 
1112 	/*
1113 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1114 	 * please!), check if anything waits on it. If yes, save the
1115 	 * info into provided ps_sigwaited, and wake-up the waiter.
1116 	 * The signal won't be processed further here.
1117 	 */
1118 	if ((prop & SA_CANTMASK) == 0
1119 	    && p->p_sigctx.ps_sigwaited
1120 	    && sigismember(p->p_sigctx.ps_sigwait, signum)
1121 	    && p->p_stat != SSTOP) {
1122 		p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1123 		p->p_sigctx.ps_sigwaited = NULL;
1124 		if (dolock)
1125 			wakeup_one(&p->p_sigctx.ps_sigwait);
1126 		else
1127 			sched_wakeup(&p->p_sigctx.ps_sigwait);
1128 		return;
1129 	}
1130 
1131 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1132 
1133 	/* CHECKSIGS() is "inlined" here. */
1134 	p->p_sigctx.ps_sigcheck = 1;
1135 
1136 	/*
1137 	 * Defer further processing for signals which are held,
1138 	 * except that stopped processes must be continued by SIGCONT.
1139 	 */
1140 	if (action == SIG_HOLD &&
1141 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1142 		ksiginfo_put(p, ksi);
1143 		return;
1144 	}
1145 	/* XXXSMP: works, but icky */
1146 	if (dolock)
1147 		SCHED_LOCK(s);
1148 
1149 	if (p->p_flag & P_SA) {
1150 		allsusp = 0;
1151 		l = NULL;
1152 		if (p->p_stat == SACTIVE) {
1153 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1154 				l = vp->savp_lwp;
1155 				KDASSERT(l != NULL);
1156 				if (l->l_flag & L_SA_IDLE) {
1157 					/* wakeup idle LWP */
1158 					goto found;
1159 					/*NOTREACHED*/
1160 				} else if (l->l_flag & L_SA_YIELD) {
1161 					/* idle LWP is already waking up */
1162 					goto out;
1163 					/*NOTREACHED*/
1164 				}
1165 			}
1166 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1167 				l = vp->savp_lwp;
1168 				if (l->l_stat == LSRUN ||
1169 				    l->l_stat == LSONPROC) {
1170 					signotify(p);
1171 					goto out;
1172 					/*NOTREACHED*/
1173 				}
1174 				if (l->l_stat == LSSLEEP &&
1175 				    l->l_flag & L_SINTR) {
1176 					/* ok to signal vp lwp */
1177 				} else
1178 					l = NULL;
1179 			}
1180 			if (l == NULL)
1181 				allsusp = 1;
1182 		} else if (p->p_stat == SSTOP) {
1183 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1184 				l = vp->savp_lwp;
1185 				if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1186 					break;
1187 				l = NULL;
1188 			}
1189 		}
1190 	} else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1191 		/*
1192 		 * At least one LWP is running or on a run queue.
1193 		 * The signal will be noticed when one of them returns
1194 		 * to userspace.
1195 		 */
1196 		signotify(p);
1197 		/*
1198 		 * The signal will be noticed very soon.
1199 		 */
1200 		goto out;
1201 		/*NOTREACHED*/
1202 	} else {
1203 		/*
1204 		 * Find out if any of the sleeps are interruptable,
1205 		 * and if all the live LWPs remaining are suspended.
1206 		 */
1207 		allsusp = 1;
1208 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1209 			if (l->l_stat == LSSLEEP &&
1210 			    l->l_flag & L_SINTR)
1211 				break;
1212 			if (l->l_stat == LSSUSPENDED)
1213 				suspended = l;
1214 			else if ((l->l_stat != LSZOMB) &&
1215 			    (l->l_stat != LSDEAD))
1216 				allsusp = 0;
1217 		}
1218 	}
1219 
1220  found:
1221 	switch (p->p_stat) {
1222 	case SACTIVE:
1223 
1224 		if (l != NULL && (p->p_flag & P_TRACED))
1225 			goto run;
1226 
1227 		/*
1228 		 * If SIGCONT is default (or ignored) and process is
1229 		 * asleep, we are finished; the process should not
1230 		 * be awakened.
1231 		 */
1232 		if ((prop & SA_CONT) && action == SIG_DFL) {
1233 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1234 			goto done;
1235 		}
1236 
1237 		/*
1238 		 * When a sleeping process receives a stop
1239 		 * signal, process immediately if possible.
1240 		 */
1241 		if ((prop & SA_STOP) && action == SIG_DFL) {
1242 			/*
1243 			 * If a child holding parent blocked,
1244 			 * stopping could cause deadlock.
1245 			 */
1246 			if (p->p_flag & P_PPWAIT) {
1247 				goto out;
1248 			}
1249 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1250 			p->p_xstat = signum;
1251 			if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1252 				/*
1253 				 * XXXSMP: recursive call; don't lock
1254 				 * the second time around.
1255 				 */
1256 				child_psignal(p, 0);
1257 			}
1258 			proc_stop(p, 1);	/* XXXSMP: recurse? */
1259 			goto done;
1260 		}
1261 
1262 		if (l == NULL) {
1263 			/*
1264 			 * Special case: SIGKILL of a process
1265 			 * which is entirely composed of
1266 			 * suspended LWPs should succeed. We
1267 			 * make this happen by unsuspending one of
1268 			 * them.
1269 			 */
1270 			if (allsusp && (signum == SIGKILL)) {
1271 				if (p->p_flag & P_SA) {
1272 					/*
1273 					 * get a suspended lwp from
1274 					 * the cache to send KILL
1275 					 * signal
1276 					 * XXXcl add signal checks at resume points
1277 					 */
1278 					suspended = sa_getcachelwp
1279 						(SLIST_FIRST(&p->p_sa->sa_vps));
1280 				}
1281 				lwp_continue(suspended);
1282 			}
1283 			goto done;
1284 		}
1285 		/*
1286 		 * All other (caught or default) signals
1287 		 * cause the process to run.
1288 		 */
1289 		goto runfast;
1290 		/*NOTREACHED*/
1291 	case SSTOP:
1292 		/* Process is stopped */
1293 		/*
1294 		 * If traced process is already stopped,
1295 		 * then no further action is necessary.
1296 		 */
1297 		if (p->p_flag & P_TRACED)
1298 			goto done;
1299 
1300 		/*
1301 		 * Kill signal always sets processes running,
1302 		 * if possible.
1303 		 */
1304 		if (signum == SIGKILL) {
1305 			l = proc_unstop(p);
1306 			if (l)
1307 				goto runfast;
1308 			goto done;
1309 		}
1310 
1311 		if (prop & SA_CONT) {
1312 			/*
1313 			 * If SIGCONT is default (or ignored),
1314 			 * we continue the process but don't
1315 			 * leave the signal in ps_siglist, as
1316 			 * it has no further action.  If
1317 			 * SIGCONT is held, we continue the
1318 			 * process and leave the signal in
1319 			 * ps_siglist.  If the process catches
1320 			 * SIGCONT, let it handle the signal
1321 			 * itself.  If it isn't waiting on an
1322 			 * event, then it goes back to run
1323 			 * state.  Otherwise, process goes
1324 			 * back to sleep state.
1325 			 */
1326 			if (action == SIG_DFL)
1327 				sigdelset(&p->p_sigctx.ps_siglist,
1328 				    signum);
1329 			l = proc_unstop(p);
1330 			if (l && (action == SIG_CATCH))
1331 				goto runfast;
1332 			goto out;
1333 		}
1334 
1335 		if (prop & SA_STOP) {
1336 			/*
1337 			 * Already stopped, don't need to stop again.
1338 			 * (If we did the shell could get confused.)
1339 			 */
1340 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1341 			goto done;
1342 		}
1343 
1344 		/*
1345 		 * If a lwp is sleeping interruptibly, then
1346 		 * wake it up; it will run until the kernel
1347 		 * boundary, where it will stop in issignal(),
1348 		 * since p->p_stat is still SSTOP. When the
1349 		 * process is continued, it will be made
1350 		 * runnable and can look at the signal.
1351 		 */
1352 		if (l)
1353 			goto run;
1354 		goto out;
1355 	case SIDL:
1356 		/* Process is being created by fork */
1357 		/* XXX: We are not ready to receive signals yet */
1358 		goto done;
1359 	default:
1360 		/* Else what? */
1361 		panic("psignal: Invalid process state %d.", p->p_stat);
1362 	}
1363 	/*NOTREACHED*/
1364 
1365  runfast:
1366 	if (action == SIG_CATCH) {
1367 		ksiginfo_put(p, ksi);
1368 		action = SIG_HOLD;
1369 	}
1370 	/*
1371 	 * Raise priority to at least PUSER.
1372 	 */
1373 	if (l->l_priority > PUSER)
1374 		l->l_priority = PUSER;
1375  run:
1376 	if (action == SIG_CATCH) {
1377 		ksiginfo_put(p, ksi);
1378 		action = SIG_HOLD;
1379 	}
1380 
1381 	setrunnable(l);		/* XXXSMP: recurse? */
1382  out:
1383 	if (action == SIG_CATCH)
1384 		ksiginfo_put(p, ksi);
1385  done:
1386 	/* XXXSMP: works, but icky */
1387 	if (dolock)
1388 		SCHED_UNLOCK(s);
1389 }
1390 
1391 void
1392 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1393 {
1394 	struct proc *p = l->l_proc;
1395 	struct lwp *le, *li;
1396 	siginfo_t *si;
1397 	int f;
1398 
1399 	if (p->p_flag & P_SA) {
1400 
1401 		/* XXXUPSXXX What if not on sa_vp ? */
1402 
1403 		f = l->l_flag & L_SA;
1404 		l->l_flag &= ~L_SA;
1405 		si = pool_get(&siginfo_pool, PR_WAITOK);
1406 		si->_info = ksi->ksi_info;
1407 		le = li = NULL;
1408 		if (KSI_TRAP_P(ksi))
1409 			le = l;
1410 		else
1411 			li = l;
1412 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1413 		    sizeof(*si), si) != 0) {
1414 			pool_put(&siginfo_pool, si);
1415 			if (KSI_TRAP_P(ksi))
1416 				/* XXX What do we do here?? */;
1417 		}
1418 		l->l_flag |= f;
1419 		return;
1420 	}
1421 
1422 	(*p->p_emul->e_sendsig)(ksi, mask);
1423 }
1424 
1425 static __inline int firstsig(const sigset_t *);
1426 
1427 static __inline int
1428 firstsig(const sigset_t *ss)
1429 {
1430 	int sig;
1431 
1432 	sig = ffs(ss->__bits[0]);
1433 	if (sig != 0)
1434 		return (sig);
1435 #if NSIG > 33
1436 	sig = ffs(ss->__bits[1]);
1437 	if (sig != 0)
1438 		return (sig + 32);
1439 #endif
1440 #if NSIG > 65
1441 	sig = ffs(ss->__bits[2]);
1442 	if (sig != 0)
1443 		return (sig + 64);
1444 #endif
1445 #if NSIG > 97
1446 	sig = ffs(ss->__bits[3]);
1447 	if (sig != 0)
1448 		return (sig + 96);
1449 #endif
1450 	return (0);
1451 }
1452 
1453 /*
1454  * If the current process has received a signal (should be caught or cause
1455  * termination, should interrupt current syscall), return the signal number.
1456  * Stop signals with default action are processed immediately, then cleared;
1457  * they aren't returned.  This is checked after each entry to the system for
1458  * a syscall or trap (though this can usually be done without calling issignal
1459  * by checking the pending signal masks in the CURSIG macro.) The normal call
1460  * sequence is
1461  *
1462  *	while (signum = CURSIG(curlwp))
1463  *		postsig(signum);
1464  */
1465 int
1466 issignal(struct lwp *l)
1467 {
1468 	struct proc	*p = l->l_proc;
1469 	int		s = 0, signum, prop;
1470 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1471 	sigset_t	ss;
1472 
1473 	/* Bail out if we do not own the virtual processor */
1474 	if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1475 		return 0;
1476 
1477 	if (p->p_stat == SSTOP) {
1478 		/*
1479 		 * The process is stopped/stopping. Stop ourselves now that
1480 		 * we're on the kernel/userspace boundary.
1481 		 */
1482 		if (dolock)
1483 			SCHED_LOCK(s);
1484 		l->l_stat = LSSTOP;
1485 		p->p_nrlwps--;
1486 		if (p->p_flag & P_TRACED)
1487 			goto sigtraceswitch;
1488 		else
1489 			goto sigswitch;
1490 	}
1491 	for (;;) {
1492 		sigpending1(p, &ss);
1493 		if (p->p_flag & P_PPWAIT)
1494 			sigminusset(&stopsigmask, &ss);
1495 		signum = firstsig(&ss);
1496 		if (signum == 0) {		 	/* no signal to send */
1497 			p->p_sigctx.ps_sigcheck = 0;
1498 			if (locked && dolock)
1499 				SCHED_LOCK(s);
1500 			return (0);
1501 		}
1502 							/* take the signal! */
1503 		sigdelset(&p->p_sigctx.ps_siglist, signum);
1504 
1505 		/*
1506 		 * We should see pending but ignored signals
1507 		 * only if P_TRACED was on when they were posted.
1508 		 */
1509 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1510 		    (p->p_flag & P_TRACED) == 0)
1511 			continue;
1512 
1513 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1514 			/*
1515 			 * If traced, always stop, and stay
1516 			 * stopped until released by the debugger.
1517 			 */
1518 			p->p_xstat = signum;
1519 
1520 			/* Emulation-specific handling of signal trace */
1521 			if ((p->p_emul->e_tracesig != NULL) &&
1522 			    ((*p->p_emul->e_tracesig)(p, signum) != 0))
1523 				goto childresumed;
1524 
1525 			if ((p->p_flag & P_FSTRACE) == 0)
1526 				child_psignal(p, dolock);
1527 			if (dolock)
1528 				SCHED_LOCK(s);
1529 			proc_stop(p, 1);
1530 		sigtraceswitch:
1531 			mi_switch(l, NULL);
1532 			SCHED_ASSERT_UNLOCKED();
1533 			if (dolock)
1534 				splx(s);
1535 			else
1536 				dolock = 1;
1537 
1538 		childresumed:
1539 			/*
1540 			 * If we are no longer being traced, or the parent
1541 			 * didn't give us a signal, look for more signals.
1542 			 */
1543 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1544 				continue;
1545 
1546 			/*
1547 			 * If the new signal is being masked, look for other
1548 			 * signals.
1549 			 */
1550 			signum = p->p_xstat;
1551 			p->p_xstat = 0;
1552 			/*
1553 			 * `p->p_sigctx.ps_siglist |= mask' is done
1554 			 * in setrunnable().
1555 			 */
1556 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1557 				continue;
1558 							/* take the signal! */
1559 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1560 		}
1561 
1562 		prop = sigprop[signum];
1563 
1564 		/*
1565 		 * Decide whether the signal should be returned.
1566 		 * Return the signal's number, or fall through
1567 		 * to clear it from the pending mask.
1568 		 */
1569 		switch ((long)SIGACTION(p, signum).sa_handler) {
1570 
1571 		case (long)SIG_DFL:
1572 			/*
1573 			 * Don't take default actions on system processes.
1574 			 */
1575 			if (p->p_pid <= 1) {
1576 #ifdef DIAGNOSTIC
1577 				/*
1578 				 * Are you sure you want to ignore SIGSEGV
1579 				 * in init? XXX
1580 				 */
1581 				printf("Process (pid %d) got signal %d\n",
1582 				    p->p_pid, signum);
1583 #endif
1584 				break;		/* == ignore */
1585 			}
1586 			/*
1587 			 * If there is a pending stop signal to process
1588 			 * with default action, stop here,
1589 			 * then clear the signal.  However,
1590 			 * if process is member of an orphaned
1591 			 * process group, ignore tty stop signals.
1592 			 */
1593 			if (prop & SA_STOP) {
1594 				if (p->p_flag & P_TRACED ||
1595 		    		    (p->p_pgrp->pg_jobc == 0 &&
1596 				    prop & SA_TTYSTOP))
1597 					break;	/* == ignore */
1598 				p->p_xstat = signum;
1599 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1600 					child_psignal(p, dolock);
1601 				if (dolock)
1602 					SCHED_LOCK(s);
1603 				proc_stop(p, 1);
1604 			sigswitch:
1605 				mi_switch(l, NULL);
1606 				SCHED_ASSERT_UNLOCKED();
1607 				if (dolock)
1608 					splx(s);
1609 				else
1610 					dolock = 1;
1611 				break;
1612 			} else if (prop & SA_IGNORE) {
1613 				/*
1614 				 * Except for SIGCONT, shouldn't get here.
1615 				 * Default action is to ignore; drop it.
1616 				 */
1617 				break;		/* == ignore */
1618 			} else
1619 				goto keep;
1620 			/*NOTREACHED*/
1621 
1622 		case (long)SIG_IGN:
1623 			/*
1624 			 * Masking above should prevent us ever trying
1625 			 * to take action on an ignored signal other
1626 			 * than SIGCONT, unless process is traced.
1627 			 */
1628 #ifdef DEBUG_ISSIGNAL
1629 			if ((prop & SA_CONT) == 0 &&
1630 			    (p->p_flag & P_TRACED) == 0)
1631 				printf("issignal\n");
1632 #endif
1633 			break;		/* == ignore */
1634 
1635 		default:
1636 			/*
1637 			 * This signal has an action, let
1638 			 * postsig() process it.
1639 			 */
1640 			goto keep;
1641 		}
1642 	}
1643 	/* NOTREACHED */
1644 
1645  keep:
1646 						/* leave the signal for later */
1647 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1648 	CHECKSIGS(p);
1649 	if (locked && dolock)
1650 		SCHED_LOCK(s);
1651 	return (signum);
1652 }
1653 
1654 /*
1655  * Put the argument process into the stopped state and notify the parent
1656  * via wakeup.  Signals are handled elsewhere.  The process must not be
1657  * on the run queue.
1658  */
1659 void
1660 proc_stop(struct proc *p, int dowakeup)
1661 {
1662 	struct lwp *l;
1663 	struct proc *parent;
1664 	struct sadata_vp *vp;
1665 
1666 	SCHED_ASSERT_LOCKED();
1667 
1668 	/* XXX lock process LWP state */
1669 	p->p_flag &= ~P_WAITED;
1670 	p->p_stat = SSTOP;
1671 	parent = p->p_pptr;
1672 	parent->p_nstopchild++;
1673 
1674 	if (p->p_flag & P_SA) {
1675 		/*
1676 		 * Only (try to) put the LWP on the VP in stopped
1677 		 * state.
1678 		 * All other LWPs will suspend in sa_setwoken()
1679 		 * because the VP-LWP in stopped state cannot be
1680 		 * repossessed.
1681 		 */
1682 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1683 			l = vp->savp_lwp;
1684 			if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1685 				l->l_stat = LSSTOP;
1686 				p->p_nrlwps--;
1687 			} else if (l->l_stat == LSRUN) {
1688 				/* Remove LWP from the run queue */
1689 				remrunqueue(l);
1690 				l->l_stat = LSSTOP;
1691 				p->p_nrlwps--;
1692 			} else if (l->l_stat == LSSLEEP &&
1693 			    l->l_flag & L_SA_IDLE) {
1694 				l->l_flag &= ~L_SA_IDLE;
1695 				l->l_stat = LSSTOP;
1696 			}
1697 		}
1698 		goto out;
1699 	}
1700 
1701 	/*
1702 	 * Put as many LWP's as possible in stopped state.
1703 	 * Sleeping ones will notice the stopped state as they try to
1704 	 * return to userspace.
1705 	 */
1706 
1707 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1708 		if (l->l_stat == LSONPROC) {
1709 			/* XXX SMP this assumes that a LWP that is LSONPROC
1710 			 * is curlwp and hence is about to be mi_switched
1711 			 * away; the only callers of proc_stop() are:
1712 			 * - psignal
1713 			 * - issignal()
1714 			 * For the former, proc_stop() is only called when
1715 			 * no processes are running, so we don't worry.
1716 			 * For the latter, proc_stop() is called right
1717 			 * before mi_switch().
1718 			 */
1719 			l->l_stat = LSSTOP;
1720 			p->p_nrlwps--;
1721 		} else if (l->l_stat == LSRUN) {
1722 			/* Remove LWP from the run queue */
1723 			remrunqueue(l);
1724 			l->l_stat = LSSTOP;
1725 			p->p_nrlwps--;
1726 		} else if ((l->l_stat == LSSLEEP) ||
1727 		    (l->l_stat == LSSUSPENDED) ||
1728 		    (l->l_stat == LSZOMB) ||
1729 		    (l->l_stat == LSDEAD)) {
1730 			/*
1731 			 * Don't do anything; let sleeping LWPs
1732 			 * discover the stopped state of the process
1733 			 * on their way out of the kernel; otherwise,
1734 			 * things like NFS threads that sleep with
1735 			 * locks will block the rest of the system
1736 			 * from getting any work done.
1737 			 *
1738 			 * Suspended/dead/zombie LWPs aren't going
1739 			 * anywhere, so we don't need to touch them.
1740 			 */
1741 		}
1742 #ifdef DIAGNOSTIC
1743 		else {
1744 			panic("proc_stop: process %d lwp %d "
1745 			      "in unstoppable state %d.\n",
1746 			    p->p_pid, l->l_lid, l->l_stat);
1747 		}
1748 #endif
1749 	}
1750 
1751  out:
1752 	/* XXX unlock process LWP state */
1753 
1754 	if (dowakeup)
1755 		sched_wakeup((caddr_t)p->p_pptr);
1756 }
1757 
1758 /*
1759  * Given a process in state SSTOP, set the state back to SACTIVE and
1760  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1761  *
1762  * If no LWPs ended up runnable (and therefore able to take a signal),
1763  * return a LWP that is sleeping interruptably. The caller can wake
1764  * that LWP up to take a signal.
1765  */
1766 struct lwp *
1767 proc_unstop(struct proc *p)
1768 {
1769 	struct lwp *l, *lr = NULL;
1770 	struct sadata_vp *vp;
1771 	int cantake = 0;
1772 
1773 	SCHED_ASSERT_LOCKED();
1774 
1775 	/*
1776 	 * Our caller wants to be informed if there are only sleeping
1777 	 * and interruptable LWPs left after we have run so that it
1778 	 * can invoke setrunnable() if required - return one of the
1779 	 * interruptable LWPs if this is the case.
1780 	 */
1781 
1782 	if (!(p->p_flag & P_WAITED))
1783 		p->p_pptr->p_nstopchild--;
1784 	p->p_stat = SACTIVE;
1785 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1786 		if (l->l_stat == LSRUN) {
1787 			lr = NULL;
1788 			cantake = 1;
1789 		}
1790 		if (l->l_stat != LSSTOP)
1791 			continue;
1792 
1793 		if (l->l_wchan != NULL) {
1794 			l->l_stat = LSSLEEP;
1795 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1796 				lr = l;
1797 				cantake = 1;
1798 			}
1799 		} else {
1800 			setrunnable(l);
1801 			lr = NULL;
1802 			cantake = 1;
1803 		}
1804 	}
1805 	if (p->p_flag & P_SA) {
1806 		/* Only consider returning the LWP on the VP. */
1807 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1808 			lr = vp->savp_lwp;
1809 			if (lr->l_stat == LSSLEEP) {
1810 				if (lr->l_flag & L_SA_YIELD) {
1811 					setrunnable(lr);
1812 					break;
1813 				} else if (lr->l_flag & L_SINTR)
1814 					return lr;
1815 			}
1816 		}
1817 		return NULL;
1818 	}
1819 	return lr;
1820 }
1821 
1822 /*
1823  * Take the action for the specified signal
1824  * from the current set of pending signals.
1825  */
1826 void
1827 postsig(int signum)
1828 {
1829 	struct lwp *l;
1830 	struct proc	*p;
1831 	struct sigacts	*ps;
1832 	sig_t		action;
1833 	sigset_t	*returnmask;
1834 
1835 	l = curlwp;
1836 	p = l->l_proc;
1837 	ps = p->p_sigacts;
1838 #ifdef DIAGNOSTIC
1839 	if (signum == 0)
1840 		panic("postsig");
1841 #endif
1842 
1843 	KERNEL_PROC_LOCK(l);
1844 
1845 #ifdef MULTIPROCESSOR
1846 	/*
1847 	 * On MP, issignal() can return the same signal to multiple
1848 	 * LWPs.  The LWPs will block above waiting for the kernel
1849 	 * lock and the first LWP which gets through will then remove
1850 	 * the signal from ps_siglist.  All other LWPs exit here.
1851 	 */
1852 	if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1853 		KERNEL_PROC_UNLOCK(l);
1854 		return;
1855 	}
1856 #endif
1857 	sigdelset(&p->p_sigctx.ps_siglist, signum);
1858 	action = SIGACTION_PS(ps, signum).sa_handler;
1859 	if (action == SIG_DFL) {
1860 #ifdef KTRACE
1861 		if (KTRPOINT(p, KTR_PSIG))
1862 			ktrpsig(p, signum, action,
1863 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1864 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1865 			    NULL);
1866 #endif
1867 		/*
1868 		 * Default action, where the default is to kill
1869 		 * the process.  (Other cases were ignored above.)
1870 		 */
1871 		sigexit(l, signum);
1872 		/* NOTREACHED */
1873 	} else {
1874 		ksiginfo_t *ksi;
1875 		/*
1876 		 * If we get here, the signal must be caught.
1877 		 */
1878 #ifdef DIAGNOSTIC
1879 		if (action == SIG_IGN ||
1880 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
1881 			panic("postsig action");
1882 #endif
1883 		/*
1884 		 * Set the new mask value and also defer further
1885 		 * occurrences of this signal.
1886 		 *
1887 		 * Special case: user has done a sigpause.  Here the
1888 		 * current mask is not of interest, but rather the
1889 		 * mask from before the sigpause is what we want
1890 		 * restored after the signal processing is completed.
1891 		 */
1892 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1893 			returnmask = &p->p_sigctx.ps_oldmask;
1894 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1895 		} else
1896 			returnmask = &p->p_sigctx.ps_sigmask;
1897 		p->p_stats->p_ru.ru_nsignals++;
1898 		ksi = ksiginfo_get(p, signum);
1899 #ifdef KTRACE
1900 		if (KTRPOINT(p, KTR_PSIG))
1901 			ktrpsig(p, signum, action,
1902 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1903 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1904 			    ksi);
1905 #endif
1906 		if (ksi == NULL) {
1907 			ksiginfo_t ksi1;
1908 			/*
1909 			 * we did not save any siginfo for this, either
1910 			 * because the signal was not caught, or because the
1911 			 * user did not request SA_SIGINFO
1912 			 */
1913 			KSI_INIT_EMPTY(&ksi1);
1914 			ksi1.ksi_signo = signum;
1915 			kpsendsig(l, &ksi1, returnmask);
1916 		} else {
1917 			kpsendsig(l, ksi, returnmask);
1918 			pool_put(&ksiginfo_pool, ksi);
1919 		}
1920 		p->p_sigctx.ps_lwp = 0;
1921 		p->p_sigctx.ps_code = 0;
1922 		p->p_sigctx.ps_signo = 0;
1923 		(void) splsched();	/* XXXSMP */
1924 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1925 		    &p->p_sigctx.ps_sigmask);
1926 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1927 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1928 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1929 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
1930 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1931 		}
1932 		(void) spl0();		/* XXXSMP */
1933 	}
1934 
1935 	KERNEL_PROC_UNLOCK(l);
1936 }
1937 
1938 /*
1939  * Kill the current process for stated reason.
1940  */
1941 void
1942 killproc(struct proc *p, const char *why)
1943 {
1944 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1945 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1946 	psignal(p, SIGKILL);
1947 }
1948 
1949 /*
1950  * Force the current process to exit with the specified signal, dumping core
1951  * if appropriate.  We bypass the normal tests for masked and caught signals,
1952  * allowing unrecoverable failures to terminate the process without changing
1953  * signal state.  Mark the accounting record with the signal termination.
1954  * If dumping core, save the signal number for the debugger.  Calls exit and
1955  * does not return.
1956  */
1957 
1958 #if defined(DEBUG)
1959 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
1960 #else
1961 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
1962 #endif
1963 
1964 static	const char logcoredump[] =
1965 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1966 static	const char lognocoredump[] =
1967 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1968 
1969 /* Wrapper function for use in p_userret */
1970 static void
1971 lwp_coredump_hook(struct lwp *l, void *arg)
1972 {
1973 	int s;
1974 
1975 	/*
1976 	 * Suspend ourselves, so that the kernel stack and therefore
1977 	 * the userland registers saved in the trapframe are around
1978 	 * for coredump() to write them out.
1979 	 */
1980 	KERNEL_PROC_LOCK(l);
1981 	l->l_flag &= ~L_DETACHED;
1982 	SCHED_LOCK(s);
1983 	l->l_stat = LSSUSPENDED;
1984 	l->l_proc->p_nrlwps--;
1985 	/* XXX NJWLWP check if this makes sense here: */
1986 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
1987 	mi_switch(l, NULL);
1988 	SCHED_ASSERT_UNLOCKED();
1989 	splx(s);
1990 
1991 	lwp_exit(l);
1992 }
1993 
1994 void
1995 sigexit(struct lwp *l, int signum)
1996 {
1997 	struct proc	*p;
1998 #if 0
1999 	struct lwp	*l2;
2000 #endif
2001 	int		error, exitsig;
2002 
2003 	p = l->l_proc;
2004 
2005 	/*
2006 	 * Don't permit coredump() or exit1() multiple times
2007 	 * in the same process.
2008 	 */
2009 	if (p->p_flag & P_WEXIT) {
2010 		KERNEL_PROC_UNLOCK(l);
2011 		(*p->p_userret)(l, p->p_userret_arg);
2012 	}
2013 	p->p_flag |= P_WEXIT;
2014 	/* We don't want to switch away from exiting. */
2015 	/* XXX multiprocessor: stop LWPs on other processors. */
2016 #if 0
2017 	if (p->p_flag & P_SA) {
2018 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2019 		    l2->l_flag &= ~L_SA;
2020 		p->p_flag &= ~P_SA;
2021 	}
2022 #endif
2023 
2024 	/* Make other LWPs stick around long enough to be dumped */
2025 	p->p_userret = lwp_coredump_hook;
2026 	p->p_userret_arg = NULL;
2027 
2028 	exitsig = signum;
2029 	p->p_acflag |= AXSIG;
2030 	if (sigprop[signum] & SA_CORE) {
2031 		p->p_sigctx.ps_signo = signum;
2032 		if ((error = coredump(l, NULL)) == 0)
2033 			exitsig |= WCOREFLAG;
2034 
2035 		if (kern_logsigexit) {
2036 			/* XXX What if we ever have really large UIDs? */
2037 			int uid = p->p_cred && p->p_ucred ?
2038 				(int) p->p_ucred->cr_uid : -1;
2039 
2040 			if (error)
2041 				log(LOG_INFO, lognocoredump, p->p_pid,
2042 				    p->p_comm, uid, signum, error);
2043 			else
2044 				log(LOG_INFO, logcoredump, p->p_pid,
2045 				    p->p_comm, uid, signum);
2046 		}
2047 
2048 	}
2049 
2050 	exit1(l, W_EXITCODE(0, exitsig));
2051 	/* NOTREACHED */
2052 }
2053 
2054 struct coredump_iostate {
2055 	struct proc *io_proc;
2056 	struct vnode *io_vp;
2057 	struct ucred *io_cred;
2058 	off_t io_offset;
2059 };
2060 
2061 int
2062 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2063 {
2064 	struct coredump_iostate *io = cookie;
2065 	int error;
2066 
2067 	error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2068 	    io->io_offset, segflg,
2069 	    IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2070 	    segflg == UIO_USERSPACE ? io->io_proc : NULL);
2071 	if (error)
2072 		return (error);
2073 
2074 	io->io_offset += len;
2075 	return (0);
2076 }
2077 
2078 /*
2079  * Dump core, into a file named "progname.core" or "core" (depending on the
2080  * value of shortcorename), unless the process was setuid/setgid.
2081  */
2082 int
2083 coredump(struct lwp *l, const char *pattern)
2084 {
2085 	struct vnode		*vp;
2086 	struct proc		*p;
2087 	struct vmspace		*vm;
2088 	struct ucred		*cred;
2089 	struct nameidata	nd;
2090 	struct vattr		vattr;
2091 	struct mount		*mp;
2092 	struct coredump_iostate	io;
2093 	int			error, error1;
2094 	char			name[MAXPATHLEN];
2095 
2096 	p = l->l_proc;
2097 	vm = p->p_vmspace;
2098 	cred = p->p_cred->pc_ucred;
2099 
2100 	/*
2101 	 * Make sure the process has not set-id, to prevent data leaks.
2102 	 */
2103 	if (p->p_flag & P_SUGID)
2104 		return (EPERM);
2105 
2106 	/*
2107 	 * Refuse to core if the data + stack + user size is larger than
2108 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
2109 	 * data.
2110 	 */
2111 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2112 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
2113 		return (EFBIG);		/* better error code? */
2114 
2115 restart:
2116 	/*
2117 	 * The core dump will go in the current working directory.  Make
2118 	 * sure that the directory is still there and that the mount flags
2119 	 * allow us to write core dumps there.
2120 	 */
2121 	vp = p->p_cwdi->cwdi_cdir;
2122 	if (vp->v_mount == NULL ||
2123 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
2124 		return (EPERM);
2125 
2126 	if (pattern == NULL)
2127 		pattern = p->p_limit->pl_corename;
2128 	if ((error = build_corename(p, name, pattern, sizeof(name))) != 0)
2129 		return error;
2130 
2131 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
2132 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
2133 	if (error)
2134 		return (error);
2135 	vp = nd.ni_vp;
2136 
2137 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2138 		VOP_UNLOCK(vp, 0);
2139 		if ((error = vn_close(vp, FWRITE, cred, p)) != 0)
2140 			return (error);
2141 		if ((error = vn_start_write(NULL, &mp,
2142 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2143 			return (error);
2144 		goto restart;
2145 	}
2146 
2147 	/* Don't dump to non-regular files or files with links. */
2148 	if (vp->v_type != VREG ||
2149 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
2150 		error = EINVAL;
2151 		goto out;
2152 	}
2153 	VATTR_NULL(&vattr);
2154 	vattr.va_size = 0;
2155 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
2156 	VOP_SETATTR(vp, &vattr, cred, p);
2157 	p->p_acflag |= ACORE;
2158 
2159 	io.io_proc = p;
2160 	io.io_vp = vp;
2161 	io.io_cred = cred;
2162 	io.io_offset = 0;
2163 
2164 	/* Now dump the actual core file. */
2165 	error = (*p->p_execsw->es_coredump)(l, &io);
2166  out:
2167 	VOP_UNLOCK(vp, 0);
2168 	vn_finished_write(mp, 0);
2169 	error1 = vn_close(vp, FWRITE, cred, p);
2170 	if (error == 0)
2171 		error = error1;
2172 	return (error);
2173 }
2174 
2175 /*
2176  * Nonexistent system call-- signal process (may want to handle it).
2177  * Flag error in case process won't see signal immediately (blocked or ignored).
2178  */
2179 /* ARGSUSED */
2180 int
2181 sys_nosys(struct lwp *l, void *v, register_t *retval)
2182 {
2183 	struct proc 	*p;
2184 
2185 	p = l->l_proc;
2186 	psignal(p, SIGSYS);
2187 	return (ENOSYS);
2188 }
2189 
2190 static int
2191 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2192 {
2193 	const char	*s;
2194 	char		*d, *end;
2195 	int		i;
2196 
2197 	for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2198 		if (*s == '%') {
2199 			switch (*(s + 1)) {
2200 			case 'n':
2201 				i = snprintf(d, end - d, "%s", p->p_comm);
2202 				break;
2203 			case 'p':
2204 				i = snprintf(d, end - d, "%d", p->p_pid);
2205 				break;
2206 			case 'u':
2207 				i = snprintf(d, end - d, "%.*s",
2208 				    (int)sizeof p->p_pgrp->pg_session->s_login,
2209 				    p->p_pgrp->pg_session->s_login);
2210 				break;
2211 			case 't':
2212 				i = snprintf(d, end - d, "%ld",
2213 				    p->p_stats->p_start.tv_sec);
2214 				break;
2215 			default:
2216 				goto copy;
2217 			}
2218 			d += i;
2219 			s++;
2220 		} else {
2221  copy:			*d = *s;
2222 			d++;
2223 		}
2224 		if (d >= end)
2225 			return (ENAMETOOLONG);
2226 	}
2227 	*d = '\0';
2228 	return 0;
2229 }
2230 
2231 void
2232 getucontext(struct lwp *l, ucontext_t *ucp)
2233 {
2234 	struct proc	*p;
2235 
2236 	p = l->l_proc;
2237 
2238 	ucp->uc_flags = 0;
2239 	ucp->uc_link = l->l_ctxlink;
2240 
2241 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2242 	ucp->uc_flags |= _UC_SIGMASK;
2243 
2244 	/*
2245 	 * The (unsupplied) definition of the `current execution stack'
2246 	 * in the System V Interface Definition appears to allow returning
2247 	 * the main context stack.
2248 	 */
2249 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2250 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
2251 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2252 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
2253 	} else {
2254 		/* Simply copy alternate signal execution stack. */
2255 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
2256 	}
2257 	ucp->uc_flags |= _UC_STACK;
2258 
2259 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2260 }
2261 
2262 /* ARGSUSED */
2263 int
2264 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2265 {
2266 	struct sys_getcontext_args /* {
2267 		syscallarg(struct __ucontext *) ucp;
2268 	} */ *uap = v;
2269 	ucontext_t uc;
2270 
2271 	getucontext(l, &uc);
2272 
2273 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2274 }
2275 
2276 int
2277 setucontext(struct lwp *l, const ucontext_t *ucp)
2278 {
2279 	struct proc	*p;
2280 	int		error;
2281 
2282 	p = l->l_proc;
2283 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2284 		return (error);
2285 	l->l_ctxlink = ucp->uc_link;
2286 
2287 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2288 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2289 
2290 	/*
2291 	 * If there was stack information, update whether or not we are
2292 	 * still running on an alternate signal stack.
2293 	 */
2294 	if ((ucp->uc_flags & _UC_STACK) != 0) {
2295 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2296 			p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2297 		else
2298 			p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2299 	}
2300 
2301 	return 0;
2302 }
2303 
2304 /* ARGSUSED */
2305 int
2306 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2307 {
2308 	struct sys_setcontext_args /* {
2309 		syscallarg(const ucontext_t *) ucp;
2310 	} */ *uap = v;
2311 	ucontext_t uc;
2312 	int error;
2313 
2314 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
2315 		exit1(l, W_EXITCODE(0, 0));
2316 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2317 	    (error = setucontext(l, &uc)) != 0)
2318 		return (error);
2319 
2320 	return (EJUSTRETURN);
2321 }
2322 
2323 /*
2324  * sigtimedwait(2) system call, used also for implementation
2325  * of sigwaitinfo() and sigwait().
2326  *
2327  * This only handles single LWP in signal wait. libpthread provides
2328  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2329  */
2330 int
2331 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2332 {
2333 	struct sys___sigtimedwait_args /* {
2334 		syscallarg(const sigset_t *) set;
2335 		syscallarg(siginfo_t *) info;
2336 		syscallarg(struct timespec *) timeout;
2337 	} */ *uap = v;
2338 	sigset_t *waitset, twaitset;
2339 	struct proc *p = l->l_proc;
2340 	int error, signum, s;
2341 	int timo = 0;
2342 	struct timeval tvstart;
2343 	struct timespec ts;
2344 	ksiginfo_t *ksi;
2345 
2346 	MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2347 
2348 	if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2349 		FREE(waitset, M_TEMP);
2350 		return (error);
2351 	}
2352 
2353 	/*
2354 	 * Silently ignore SA_CANTMASK signals. psignal1() would
2355 	 * ignore SA_CANTMASK signals in waitset, we do this
2356 	 * only for the below siglist check.
2357 	 */
2358 	sigminusset(&sigcantmask, waitset);
2359 
2360 	/*
2361 	 * First scan siglist and check if there is signal from
2362 	 * our waitset already pending.
2363 	 */
2364 	twaitset = *waitset;
2365 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2366 	if ((signum = firstsig(&twaitset))) {
2367 		/* found pending signal */
2368 		sigdelset(&p->p_sigctx.ps_siglist, signum);
2369 		ksi = ksiginfo_get(p, signum);
2370 		if (!ksi) {
2371 			/* No queued siginfo, manufacture one */
2372 			ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2373 			KSI_INIT(ksi);
2374 			ksi->ksi_info._signo = signum;
2375 			ksi->ksi_info._code = SI_USER;
2376 		}
2377 
2378 		goto sig;
2379 	}
2380 
2381 	/*
2382 	 * Calculate timeout, if it was specified.
2383 	 */
2384 	if (SCARG(uap, timeout)) {
2385 		uint64_t ms;
2386 
2387 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
2388 			return (error);
2389 
2390 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2391 		timo = mstohz(ms);
2392 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2393 			timo = 1;
2394 		if (timo <= 0)
2395 			return (EAGAIN);
2396 
2397 		/*
2398 		 * Remember current mono_time, it would be used in
2399 		 * ECANCELED/ERESTART case.
2400 		 */
2401 		s = splclock();
2402 		tvstart = mono_time;
2403 		splx(s);
2404 	}
2405 
2406 	/*
2407 	 * Setup ps_sigwait list. Pass pointer to malloced memory
2408 	 * here; it's not possible to pass pointer to a structure
2409 	 * on current process's stack, the current process might
2410 	 * be swapped out at the time the signal would get delivered.
2411 	 */
2412 	ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2413 	p->p_sigctx.ps_sigwaited = ksi;
2414 	p->p_sigctx.ps_sigwait = waitset;
2415 
2416 	/*
2417 	 * Wait for signal to arrive. We can either be woken up or
2418 	 * time out.
2419 	 */
2420 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2421 
2422 	/*
2423 	 * Need to find out if we woke as a result of lwp_wakeup()
2424 	 * or a signal outside our wait set.
2425 	 */
2426 	if (error == EINTR && p->p_sigctx.ps_sigwaited
2427 	    && !firstsig(&p->p_sigctx.ps_siglist)) {
2428 		/* wakeup via _lwp_wakeup() */
2429 		error = ECANCELED;
2430 	} else if (!error && p->p_sigctx.ps_sigwaited) {
2431 		/* spurious wakeup - arrange for syscall restart */
2432 		error = ERESTART;
2433 		goto fail;
2434 	}
2435 
2436 	/*
2437 	 * On error, clear sigwait indication. psignal1() clears it
2438 	 * in !error case.
2439 	 */
2440 	if (error) {
2441 		p->p_sigctx.ps_sigwaited = NULL;
2442 
2443 		/*
2444 		 * If the sleep was interrupted (either by signal or wakeup),
2445 		 * update the timeout and copyout new value back.
2446 		 * It would be used when the syscall would be restarted
2447 		 * or called again.
2448 		 */
2449 		if (timo && (error == ERESTART || error == ECANCELED)) {
2450 			struct timeval tvnow, tvtimo;
2451 			int err;
2452 
2453 			s = splclock();
2454 			tvnow = mono_time;
2455 			splx(s);
2456 
2457 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2458 
2459 			/* compute how much time has passed since start */
2460 			timersub(&tvnow, &tvstart, &tvnow);
2461 			/* substract passed time from timeout */
2462 			timersub(&tvtimo, &tvnow, &tvtimo);
2463 
2464 			if (tvtimo.tv_sec < 0) {
2465 				error = EAGAIN;
2466 				goto fail;
2467 			}
2468 
2469 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2470 
2471 			/* copy updated timeout to userland */
2472 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts)))) {
2473 				error = err;
2474 				goto fail;
2475 			}
2476 		}
2477 
2478 		goto fail;
2479 	}
2480 
2481 	/*
2482 	 * If a signal from the wait set arrived, copy it to userland.
2483 	 * Copy only the used part of siginfo, the padding part is
2484 	 * left unchanged (userland is not supposed to touch it anyway).
2485 	 */
2486  sig:
2487 	error = copyout(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2488 
2489  fail:
2490 	FREE(waitset, M_TEMP);
2491 	pool_put(&ksiginfo_pool, ksi);
2492 	p->p_sigctx.ps_sigwait = NULL;
2493 
2494 	return (error);
2495 }
2496 
2497 /*
2498  * Returns true if signal is ignored or masked for passed process.
2499  */
2500 int
2501 sigismasked(struct proc *p, int sig)
2502 {
2503 
2504 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2505 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
2506 }
2507 
2508 static int
2509 filt_sigattach(struct knote *kn)
2510 {
2511 	struct proc *p = curproc;
2512 
2513 	kn->kn_ptr.p_proc = p;
2514 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2515 
2516 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2517 
2518 	return (0);
2519 }
2520 
2521 static void
2522 filt_sigdetach(struct knote *kn)
2523 {
2524 	struct proc *p = kn->kn_ptr.p_proc;
2525 
2526 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2527 }
2528 
2529 /*
2530  * signal knotes are shared with proc knotes, so we apply a mask to
2531  * the hint in order to differentiate them from process hints.  This
2532  * could be avoided by using a signal-specific knote list, but probably
2533  * isn't worth the trouble.
2534  */
2535 static int
2536 filt_signal(struct knote *kn, long hint)
2537 {
2538 
2539 	if (hint & NOTE_SIGNAL) {
2540 		hint &= ~NOTE_SIGNAL;
2541 
2542 		if (kn->kn_id == hint)
2543 			kn->kn_data++;
2544 	}
2545 	return (kn->kn_data != 0);
2546 }
2547 
2548 const struct filterops sig_filtops = {
2549 	0, filt_sigattach, filt_sigdetach, filt_signal
2550 };
2551