xref: /netbsd-src/sys/kern/kern_sig.c (revision da9817918ec7e88db2912a2882967c7570a83f47)
1 /*	$NetBSD: kern_sig.c,v 1.298 2009/05/24 21:41:26 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.298 2009/05/24 21:41:26 ad Exp $");
70 
71 #include "opt_ptrace.h"
72 #include "opt_compat_sunos.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_compat_netbsd32.h"
75 #include "opt_pax.h"
76 #include "opt_sa.h"
77 
78 #define	SIGPROP		/* include signal properties table */
79 #include <sys/param.h>
80 #include <sys/signalvar.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/wait.h>
84 #include <sys/ktrace.h>
85 #include <sys/syslog.h>
86 #include <sys/filedesc.h>
87 #include <sys/file.h>
88 #include <sys/pool.h>
89 #include <sys/ucontext.h>
90 #include <sys/sa.h>
91 #include <sys/savar.h>
92 #include <sys/exec.h>
93 #include <sys/kauth.h>
94 #include <sys/acct.h>
95 #include <sys/callout.h>
96 #include <sys/atomic.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 
100 #ifdef PAX_SEGVGUARD
101 #include <sys/pax.h>
102 #endif /* PAX_SEGVGUARD */
103 
104 #include <uvm/uvm.h>
105 #include <uvm/uvm_extern.h>
106 
107 static void	ksiginfo_exechook(struct proc *, void *);
108 static void	proc_stop_callout(void *);
109 static int	sigchecktrace(void);
110 static int	sigpost(struct lwp *, sig_t, int, int, int);
111 static void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
112 static int	sigunwait(struct proc *, const ksiginfo_t *);
113 static void	sigswitch(bool, int, int);
114 
115 sigset_t	contsigmask, stopsigmask, sigcantmask;
116 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
117 static void	sigacts_poolpage_free(struct pool *, void *);
118 static void	*sigacts_poolpage_alloc(struct pool *, int);
119 static callout_t proc_stop_ch;
120 static pool_cache_t siginfo_cache;
121 static pool_cache_t ksiginfo_cache;
122 
123 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
124 int (*coredump_vec)(struct lwp *, const char *) =
125     (int (*)(struct lwp *, const char *))enosys;
126 
127 static struct pool_allocator sigactspool_allocator = {
128         .pa_alloc = sigacts_poolpage_alloc,
129 	.pa_free = sigacts_poolpage_free,
130 };
131 
132 #ifdef DEBUG
133 int	kern_logsigexit = 1;
134 #else
135 int	kern_logsigexit = 0;
136 #endif
137 
138 static	const char logcoredump[] =
139     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
140 static	const char lognocoredump[] =
141     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
142 
143 /*
144  * signal_init:
145  *
146  * 	Initialize global signal-related data structures.
147  */
148 void
149 signal_init(void)
150 {
151 
152 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
153 
154 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
155 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
156 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
157 
158 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
159 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
160 
161 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
162 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
163 
164 	exechook_establish(ksiginfo_exechook, NULL);
165 
166 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
167 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
168 }
169 
170 /*
171  * sigacts_poolpage_alloc:
172  *
173  *	 Allocate a page for the sigacts memory pool.
174  */
175 static void *
176 sigacts_poolpage_alloc(struct pool *pp, int flags)
177 {
178 
179 	return (void *)uvm_km_alloc(kernel_map,
180 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
181 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
182 	    | UVM_KMF_WIRED);
183 }
184 
185 /*
186  * sigacts_poolpage_free:
187  *
188  *	 Free a page on behalf of the sigacts memory pool.
189  */
190 static void
191 sigacts_poolpage_free(struct pool *pp, void *v)
192 {
193 
194         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
195 }
196 
197 /*
198  * sigactsinit:
199  *
200  *	 Create an initial sigctx structure, using the same signal state as
201  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
202  *	 copy it from parent.
203  */
204 struct sigacts *
205 sigactsinit(struct proc *pp, int share)
206 {
207 	struct sigacts *ps, *ps2;
208 
209 	ps = pp->p_sigacts;
210 
211 	if (share) {
212 		atomic_inc_uint(&ps->sa_refcnt);
213 		ps2 = ps;
214 	} else {
215 		ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
216 		/* XXXAD get rid of this */
217 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
218 		mutex_enter(&ps->sa_mutex);
219 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
220 		    sizeof(ps2->sa_sigdesc));
221 		mutex_exit(&ps->sa_mutex);
222 		ps2->sa_refcnt = 1;
223 	}
224 
225 	return ps2;
226 }
227 
228 /*
229  * sigactsunshare:
230  *
231  *	Make this process not share its sigctx, maintaining all
232  *	signal state.
233  */
234 void
235 sigactsunshare(struct proc *p)
236 {
237 	struct sigacts *ps, *oldps;
238 
239 	oldps = p->p_sigacts;
240 	if (oldps->sa_refcnt == 1)
241 		return;
242 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
243 	/* XXXAD get rid of this */
244 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
245 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
246 	p->p_sigacts = ps;
247 	sigactsfree(oldps);
248 }
249 
250 /*
251  * sigactsfree;
252  *
253  *	Release a sigctx structure.
254  */
255 void
256 sigactsfree(struct sigacts *ps)
257 {
258 
259 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
260 		mutex_destroy(&ps->sa_mutex);
261 		pool_cache_put(sigacts_cache, ps);
262 	}
263 }
264 
265 /*
266  * siginit:
267  *
268  *	Initialize signal state for process 0; set to ignore signals that
269  *	are ignored by default and disable the signal stack.  Locking not
270  *	required as the system is still cold.
271  */
272 void
273 siginit(struct proc *p)
274 {
275 	struct lwp *l;
276 	struct sigacts *ps;
277 	int signo, prop;
278 
279 	ps = p->p_sigacts;
280 	sigemptyset(&contsigmask);
281 	sigemptyset(&stopsigmask);
282 	sigemptyset(&sigcantmask);
283 	for (signo = 1; signo < NSIG; signo++) {
284 		prop = sigprop[signo];
285 		if (prop & SA_CONT)
286 			sigaddset(&contsigmask, signo);
287 		if (prop & SA_STOP)
288 			sigaddset(&stopsigmask, signo);
289 		if (prop & SA_CANTMASK)
290 			sigaddset(&sigcantmask, signo);
291 		if (prop & SA_IGNORE && signo != SIGCONT)
292 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
293 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
294 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
295 	}
296 	sigemptyset(&p->p_sigctx.ps_sigcatch);
297 	p->p_sflag &= ~PS_NOCLDSTOP;
298 
299 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
300 	sigemptyset(&p->p_sigpend.sp_set);
301 
302 	/*
303 	 * Reset per LWP state.
304 	 */
305 	l = LIST_FIRST(&p->p_lwps);
306 	l->l_sigwaited = NULL;
307 	l->l_sigstk.ss_flags = SS_DISABLE;
308 	l->l_sigstk.ss_size = 0;
309 	l->l_sigstk.ss_sp = 0;
310 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
311 	sigemptyset(&l->l_sigpend.sp_set);
312 
313 	/* One reference. */
314 	ps->sa_refcnt = 1;
315 }
316 
317 /*
318  * execsigs:
319  *
320  *	Reset signals for an exec of the specified process.
321  */
322 void
323 execsigs(struct proc *p)
324 {
325 	struct sigacts *ps;
326 	struct lwp *l;
327 	int signo, prop;
328 	sigset_t tset;
329 	ksiginfoq_t kq;
330 
331 	KASSERT(p->p_nlwps == 1);
332 
333 	sigactsunshare(p);
334 	ps = p->p_sigacts;
335 
336 	/*
337 	 * Reset caught signals.  Held signals remain held through
338 	 * l->l_sigmask (unless they were caught, and are now ignored
339 	 * by default).
340 	 *
341 	 * No need to lock yet, the process has only one LWP and
342 	 * at this point the sigacts are private to the process.
343 	 */
344 	sigemptyset(&tset);
345 	for (signo = 1; signo < NSIG; signo++) {
346 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
347 			prop = sigprop[signo];
348 			if (prop & SA_IGNORE) {
349 				if ((prop & SA_CONT) == 0)
350 					sigaddset(&p->p_sigctx.ps_sigignore,
351 					    signo);
352 				sigaddset(&tset, signo);
353 			}
354 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
355 		}
356 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
357 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
358 	}
359 	ksiginfo_queue_init(&kq);
360 
361 	mutex_enter(p->p_lock);
362 	sigclearall(p, &tset, &kq);
363 	sigemptyset(&p->p_sigctx.ps_sigcatch);
364 
365 	/*
366 	 * Reset no zombies if child dies flag as Solaris does.
367 	 */
368 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
369 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
370 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
371 
372 	/*
373 	 * Reset per-LWP state.
374 	 */
375 	l = LIST_FIRST(&p->p_lwps);
376 	l->l_sigwaited = NULL;
377 	l->l_sigstk.ss_flags = SS_DISABLE;
378 	l->l_sigstk.ss_size = 0;
379 	l->l_sigstk.ss_sp = 0;
380 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
381 	sigemptyset(&l->l_sigpend.sp_set);
382 	mutex_exit(p->p_lock);
383 
384 	ksiginfo_queue_drain(&kq);
385 }
386 
387 /*
388  * ksiginfo_exechook:
389  *
390  *	Free all pending ksiginfo entries from a process on exec.
391  *	Additionally, drain any unused ksiginfo structures in the
392  *	system back to the pool.
393  *
394  *	XXX This should not be a hook, every process has signals.
395  */
396 static void
397 ksiginfo_exechook(struct proc *p, void *v)
398 {
399 	ksiginfoq_t kq;
400 
401 	ksiginfo_queue_init(&kq);
402 
403 	mutex_enter(p->p_lock);
404 	sigclearall(p, NULL, &kq);
405 	mutex_exit(p->p_lock);
406 
407 	ksiginfo_queue_drain(&kq);
408 }
409 
410 /*
411  * ksiginfo_alloc:
412  *
413  *	Allocate a new ksiginfo structure from the pool, and optionally copy
414  *	an existing one.  If the existing ksiginfo_t is from the pool, and
415  *	has not been queued somewhere, then just return it.  Additionally,
416  *	if the existing ksiginfo_t does not contain any information beyond
417  *	the signal number, then just return it.
418  */
419 ksiginfo_t *
420 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
421 {
422 	ksiginfo_t *kp;
423 
424 	if (ok != NULL) {
425 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
426 		    KSI_FROMPOOL)
427 		    	return ok;
428 		if (KSI_EMPTY_P(ok))
429 			return ok;
430 	}
431 
432 	kp = pool_cache_get(ksiginfo_cache, flags);
433 	if (kp == NULL) {
434 #ifdef DIAGNOSTIC
435 		printf("Out of memory allocating ksiginfo for pid %d\n",
436 		    p->p_pid);
437 #endif
438 		return NULL;
439 	}
440 
441 	if (ok != NULL) {
442 		memcpy(kp, ok, sizeof(*kp));
443 		kp->ksi_flags &= ~KSI_QUEUED;
444 	} else
445 		KSI_INIT_EMPTY(kp);
446 
447 	kp->ksi_flags |= KSI_FROMPOOL;
448 
449 	return kp;
450 }
451 
452 /*
453  * ksiginfo_free:
454  *
455  *	If the given ksiginfo_t is from the pool and has not been queued,
456  *	then free it.
457  */
458 void
459 ksiginfo_free(ksiginfo_t *kp)
460 {
461 
462 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
463 		return;
464 	pool_cache_put(ksiginfo_cache, kp);
465 }
466 
467 /*
468  * ksiginfo_queue_drain:
469  *
470  *	Drain a non-empty ksiginfo_t queue.
471  */
472 void
473 ksiginfo_queue_drain0(ksiginfoq_t *kq)
474 {
475 	ksiginfo_t *ksi;
476 
477 	KASSERT(!CIRCLEQ_EMPTY(kq));
478 
479 	while (!CIRCLEQ_EMPTY(kq)) {
480 		ksi = CIRCLEQ_FIRST(kq);
481 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
482 		pool_cache_put(ksiginfo_cache, ksi);
483 	}
484 }
485 
486 /*
487  * sigget:
488  *
489  *	Fetch the first pending signal from a set.  Optionally, also fetch
490  *	or manufacture a ksiginfo element.  Returns the number of the first
491  *	pending signal, or zero.
492  */
493 int
494 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
495 {
496         ksiginfo_t *ksi;
497 	sigset_t tset;
498 
499 	/* If there's no pending set, the signal is from the debugger. */
500 	if (sp == NULL)
501 		goto out;
502 
503 	/* Construct mask from signo, and 'mask'. */
504 	if (signo == 0) {
505 		if (mask != NULL) {
506 			tset = *mask;
507 			__sigandset(&sp->sp_set, &tset);
508 		} else
509 			tset = sp->sp_set;
510 
511 		/* If there are no signals pending, that's it. */
512 		if ((signo = firstsig(&tset)) == 0)
513 			goto out;
514 	} else {
515 		KASSERT(sigismember(&sp->sp_set, signo));
516 	}
517 
518 	sigdelset(&sp->sp_set, signo);
519 
520 	/* Find siginfo and copy it out. */
521 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
522 		if (ksi->ksi_signo == signo) {
523 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
524 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
525 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
526 			ksi->ksi_flags &= ~KSI_QUEUED;
527 			if (out != NULL) {
528 				memcpy(out, ksi, sizeof(*out));
529 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
530 			}
531 			ksiginfo_free(ksi);
532 			return signo;
533 		}
534 	}
535 
536 out:
537 	/* If there's no siginfo, then manufacture it. */
538 	if (out != NULL) {
539 		KSI_INIT(out);
540 		out->ksi_info._signo = signo;
541 		out->ksi_info._code = SI_NOINFO;
542 	}
543 
544 	return signo;
545 }
546 
547 /*
548  * sigput:
549  *
550  *	Append a new ksiginfo element to the list of pending ksiginfo's.
551  */
552 static void
553 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
554 {
555 	ksiginfo_t *kp;
556 
557 	KASSERT(mutex_owned(p->p_lock));
558 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
559 
560 	sigaddset(&sp->sp_set, ksi->ksi_signo);
561 
562 	/*
563 	 * If there is no siginfo, we are done.
564 	 */
565 	if (KSI_EMPTY_P(ksi))
566 		return;
567 
568 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
569 
570 #ifdef notyet	/* XXX: QUEUING */
571 	if (ksi->ksi_signo < SIGRTMIN)
572 #endif
573 	{
574 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
575 			if (kp->ksi_signo == ksi->ksi_signo) {
576 				KSI_COPY(ksi, kp);
577 				kp->ksi_flags |= KSI_QUEUED;
578 				return;
579 			}
580 		}
581 	}
582 
583 	ksi->ksi_flags |= KSI_QUEUED;
584 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
585 }
586 
587 /*
588  * sigclear:
589  *
590  *	Clear all pending signals in the specified set.
591  */
592 void
593 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
594 {
595 	ksiginfo_t *ksi, *next;
596 
597 	if (mask == NULL)
598 		sigemptyset(&sp->sp_set);
599 	else
600 		sigminusset(mask, &sp->sp_set);
601 
602 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
603 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
604 		next = CIRCLEQ_NEXT(ksi, ksi_list);
605 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
606 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
607 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
608 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
609 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
610 		}
611 	}
612 }
613 
614 /*
615  * sigclearall:
616  *
617  *	Clear all pending signals in the specified set from a process and
618  *	its LWPs.
619  */
620 void
621 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
622 {
623 	struct lwp *l;
624 
625 	KASSERT(mutex_owned(p->p_lock));
626 
627 	sigclear(&p->p_sigpend, mask, kq);
628 
629 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
630 		sigclear(&l->l_sigpend, mask, kq);
631 	}
632 }
633 
634 /*
635  * sigispending:
636  *
637  *	Return true if there are pending signals for the current LWP.  May
638  *	be called unlocked provided that LW_PENDSIG is set, and that the
639  *	signal has been posted to the appopriate queue before LW_PENDSIG is
640  *	set.
641  */
642 int
643 sigispending(struct lwp *l, int signo)
644 {
645 	struct proc *p = l->l_proc;
646 	sigset_t tset;
647 
648 	membar_consumer();
649 
650 	tset = l->l_sigpend.sp_set;
651 	sigplusset(&p->p_sigpend.sp_set, &tset);
652 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
653 	sigminusset(&l->l_sigmask, &tset);
654 
655 	if (signo == 0) {
656 		if (firstsig(&tset) != 0)
657 			return EINTR;
658 	} else if (sigismember(&tset, signo))
659 		return EINTR;
660 
661 	return 0;
662 }
663 
664 /*
665  * siginfo_alloc:
666  *
667  *	 Allocate a new siginfo_t structure from the pool.
668  */
669 siginfo_t *
670 siginfo_alloc(int flags)
671 {
672 
673 	return pool_cache_get(siginfo_cache, flags);
674 }
675 
676 /*
677  * siginfo_free:
678  *
679  *	 Return a siginfo_t structure to the pool.
680  */
681 void
682 siginfo_free(void *arg)
683 {
684 
685 	pool_cache_put(siginfo_cache, arg);
686 }
687 
688 void
689 getucontext(struct lwp *l, ucontext_t *ucp)
690 {
691 	struct proc *p = l->l_proc;
692 
693 	KASSERT(mutex_owned(p->p_lock));
694 
695 	ucp->uc_flags = 0;
696 	ucp->uc_link = l->l_ctxlink;
697 
698 #if KERN_SA
699 	if (p->p_sa != NULL)
700 		ucp->uc_sigmask = p->p_sa->sa_sigmask;
701 	else
702 #endif /* KERN_SA */
703 		ucp->uc_sigmask = l->l_sigmask;
704 	ucp->uc_flags |= _UC_SIGMASK;
705 
706 	/*
707 	 * The (unsupplied) definition of the `current execution stack'
708 	 * in the System V Interface Definition appears to allow returning
709 	 * the main context stack.
710 	 */
711 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
712 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
713 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
714 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
715 	} else {
716 		/* Simply copy alternate signal execution stack. */
717 		ucp->uc_stack = l->l_sigstk;
718 	}
719 	ucp->uc_flags |= _UC_STACK;
720 	mutex_exit(p->p_lock);
721 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
722 	mutex_enter(p->p_lock);
723 }
724 
725 /*
726  * getucontext_sa:
727  *      Get a ucontext_t for use in SA upcall generation.
728  * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
729  * fudge things with uc_link (which is usually NULL for libpthread
730  * code), and 3) we report an empty signal mask.
731  */
732 void
733 getucontext_sa(struct lwp *l, ucontext_t *ucp)
734 {
735 	ucp->uc_flags = 0;
736 	ucp->uc_link = l->l_ctxlink;
737 
738 	sigemptyset(&ucp->uc_sigmask);
739 	ucp->uc_flags |= _UC_SIGMASK;
740 
741 	/*
742 	 * The (unsupplied) definition of the `current execution stack'
743 	 * in the System V Interface Definition appears to allow returning
744 	 * the main context stack.
745 	 */
746 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
747 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
748 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
749 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
750 	} else {
751 		/* Simply copy alternate signal execution stack. */
752 		ucp->uc_stack = l->l_sigstk;
753 	}
754 	ucp->uc_flags |= _UC_STACK;
755 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
756 }
757 
758 int
759 setucontext(struct lwp *l, const ucontext_t *ucp)
760 {
761 	struct proc *p = l->l_proc;
762 	int error;
763 
764 	KASSERT(mutex_owned(p->p_lock));
765 
766 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
767 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
768 		if (error != 0)
769 			return error;
770 	}
771 
772 	mutex_exit(p->p_lock);
773 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
774 	mutex_enter(p->p_lock);
775 	if (error != 0)
776 		return (error);
777 
778 	l->l_ctxlink = ucp->uc_link;
779 
780 	/*
781 	 * If there was stack information, update whether or not we are
782 	 * still running on an alternate signal stack.
783 	 */
784 	if ((ucp->uc_flags & _UC_STACK) != 0) {
785 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
786 			l->l_sigstk.ss_flags |= SS_ONSTACK;
787 		else
788 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
789 	}
790 
791 	return 0;
792 }
793 
794 /*
795  * Common code for kill process group/broadcast kill.  cp is calling
796  * process.
797  */
798 int
799 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
800 {
801 	struct proc	*p, *cp;
802 	kauth_cred_t	pc;
803 	struct pgrp	*pgrp;
804 	int		nfound;
805 	int		signo = ksi->ksi_signo;
806 
807 	cp = l->l_proc;
808 	pc = l->l_cred;
809 	nfound = 0;
810 
811 	mutex_enter(proc_lock);
812 	if (all) {
813 		/*
814 		 * broadcast
815 		 */
816 		PROCLIST_FOREACH(p, &allproc) {
817 			if (p->p_pid <= 1 || p == cp ||
818 			    p->p_flag & (PK_SYSTEM|PK_MARKER))
819 				continue;
820 			mutex_enter(p->p_lock);
821 			if (kauth_authorize_process(pc,
822 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
823 			    NULL) == 0) {
824 				nfound++;
825 				if (signo)
826 					kpsignal2(p, ksi);
827 			}
828 			mutex_exit(p->p_lock);
829 		}
830 	} else {
831 		if (pgid == 0)
832 			/*
833 			 * zero pgid means send to my process group.
834 			 */
835 			pgrp = cp->p_pgrp;
836 		else {
837 			pgrp = pg_find(pgid, PFIND_LOCKED);
838 			if (pgrp == NULL)
839 				goto out;
840 		}
841 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
842 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
843 				continue;
844 			mutex_enter(p->p_lock);
845 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
846 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
847 				nfound++;
848 				if (signo && P_ZOMBIE(p) == 0)
849 					kpsignal2(p, ksi);
850 			}
851 			mutex_exit(p->p_lock);
852 		}
853 	}
854   out:
855 	mutex_exit(proc_lock);
856 	return (nfound ? 0 : ESRCH);
857 }
858 
859 /*
860  * Send a signal to a process group. If checktty is 1, limit to members
861  * which have a controlling terminal.
862  */
863 void
864 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
865 {
866 	ksiginfo_t ksi;
867 
868 	KASSERT(!cpu_intr_p());
869 	KASSERT(mutex_owned(proc_lock));
870 
871 	KSI_INIT_EMPTY(&ksi);
872 	ksi.ksi_signo = sig;
873 	kpgsignal(pgrp, &ksi, NULL, checkctty);
874 }
875 
876 void
877 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
878 {
879 	struct proc *p;
880 
881 	KASSERT(!cpu_intr_p());
882 	KASSERT(mutex_owned(proc_lock));
883 
884 	if (__predict_false(pgrp == 0))
885 		return;
886 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
887 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
888 			kpsignal(p, ksi, data);
889 }
890 
891 /*
892  * Send a signal caused by a trap to the current LWP.  If it will be caught
893  * immediately, deliver it with correct code.  Otherwise, post it normally.
894  */
895 void
896 trapsignal(struct lwp *l, ksiginfo_t *ksi)
897 {
898 	struct proc	*p;
899 	struct sigacts	*ps;
900 	int signo = ksi->ksi_signo;
901 	sigset_t *mask;
902 
903 	KASSERT(KSI_TRAP_P(ksi));
904 
905 	ksi->ksi_lid = l->l_lid;
906 	p = l->l_proc;
907 
908 	KASSERT(!cpu_intr_p());
909 	mutex_enter(proc_lock);
910 	mutex_enter(p->p_lock);
911 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
912 	ps = p->p_sigacts;
913 	if ((p->p_slflag & PSL_TRACED) == 0 &&
914 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
915 	    !sigismember(mask, signo)) {
916 		mutex_exit(proc_lock);
917 		l->l_ru.ru_nsignals++;
918 		kpsendsig(l, ksi, mask);
919 		mutex_exit(p->p_lock);
920 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
921 		    mask, ksi);
922 	} else {
923 		/* XXX for core dump/debugger */
924 		p->p_sigctx.ps_lwp = l->l_lid;
925 		p->p_sigctx.ps_signo = ksi->ksi_signo;
926 		p->p_sigctx.ps_code = ksi->ksi_trap;
927 		kpsignal2(p, ksi);
928 		mutex_exit(p->p_lock);
929 		mutex_exit(proc_lock);
930 	}
931 }
932 
933 /*
934  * Fill in signal information and signal the parent for a child status change.
935  */
936 void
937 child_psignal(struct proc *p, int mask)
938 {
939 	ksiginfo_t ksi;
940 	struct proc *q;
941 	int xstat;
942 
943 	KASSERT(mutex_owned(proc_lock));
944 	KASSERT(mutex_owned(p->p_lock));
945 
946 	xstat = p->p_xstat;
947 
948 	KSI_INIT(&ksi);
949 	ksi.ksi_signo = SIGCHLD;
950 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
951 	ksi.ksi_pid = p->p_pid;
952 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
953 	ksi.ksi_status = xstat;
954 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
955 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
956 
957 	q = p->p_pptr;
958 
959 	mutex_exit(p->p_lock);
960 	mutex_enter(q->p_lock);
961 
962 	if ((q->p_sflag & mask) == 0)
963 		kpsignal2(q, &ksi);
964 
965 	mutex_exit(q->p_lock);
966 	mutex_enter(p->p_lock);
967 }
968 
969 void
970 psignal(struct proc *p, int signo)
971 {
972 	ksiginfo_t ksi;
973 
974 	KASSERT(!cpu_intr_p());
975 	KASSERT(mutex_owned(proc_lock));
976 
977 	KSI_INIT_EMPTY(&ksi);
978 	ksi.ksi_signo = signo;
979 	mutex_enter(p->p_lock);
980 	kpsignal2(p, &ksi);
981 	mutex_exit(p->p_lock);
982 }
983 
984 void
985 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
986 {
987 	fdfile_t *ff;
988 	file_t *fp;
989 	fdtab_t *dt;
990 
991 	KASSERT(!cpu_intr_p());
992 	KASSERT(mutex_owned(proc_lock));
993 
994 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
995 		size_t fd;
996 		filedesc_t *fdp = p->p_fd;
997 
998 		/* XXXSMP locking */
999 		ksi->ksi_fd = -1;
1000 		dt = fdp->fd_dt;
1001 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
1002 			if ((ff = dt->dt_ff[fd]) == NULL)
1003 				continue;
1004 			if ((fp = ff->ff_file) == NULL)
1005 				continue;
1006 			if (fp->f_data == data) {
1007 				ksi->ksi_fd = fd;
1008 				break;
1009 			}
1010 		}
1011 	}
1012 	mutex_enter(p->p_lock);
1013 	kpsignal2(p, ksi);
1014 	mutex_exit(p->p_lock);
1015 }
1016 
1017 /*
1018  * sigismasked:
1019  *
1020  *	 Returns true if signal is ignored or masked for the specified LWP.
1021  */
1022 int
1023 sigismasked(struct lwp *l, int sig)
1024 {
1025 	struct proc *p = l->l_proc;
1026 
1027 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1028 	    sigismember(&l->l_sigmask, sig)
1029 #if KERN_SA
1030 	    || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
1031 #endif /* KERN_SA */
1032 	    );
1033 }
1034 
1035 /*
1036  * sigpost:
1037  *
1038  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP may
1039  *	 be able to take the signal.
1040  */
1041 static int
1042 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
1043 {
1044 	int rv, masked;
1045 	struct proc *p = l->l_proc;
1046 
1047 	KASSERT(mutex_owned(p->p_lock));
1048 
1049 	/*
1050 	 * If the LWP is on the way out, sigclear() will be busy draining all
1051 	 * pending signals.  Don't give it more.
1052 	 */
1053 	if (l->l_refcnt == 0)
1054 		return 0;
1055 
1056 	/*
1057 	 * Have the LWP check for signals.  This ensures that even if no LWP
1058 	 * is found to take the signal immediately, it should be taken soon.
1059 	 */
1060 	lwp_lock(l);
1061 	l->l_flag |= LW_PENDSIG;
1062 
1063 	/*
1064 	 * When sending signals to SA processes, we first try to find an
1065 	 * idle VP to take it.
1066 	 */
1067 	if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
1068 		lwp_unlock(l);
1069 		return 0;
1070 	}
1071 
1072 	/*
1073 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1074 	 * Note: SIGKILL and SIGSTOP cannot be masked.
1075 	 */
1076 #if KERN_SA
1077 	if (p->p_sa != NULL)
1078 		masked = sigismember(&p->p_sa->sa_sigmask, sig);
1079 	else
1080 #endif
1081 		masked = sigismember(&l->l_sigmask, sig);
1082 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1083 		lwp_unlock(l);
1084 		return 0;
1085 	}
1086 
1087 	/*
1088 	 * If killing the process, make it run fast.
1089 	 */
1090 	if (__predict_false((prop & SA_KILL) != 0) &&
1091 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1092 		KASSERT(l->l_class == SCHED_OTHER);
1093 		lwp_changepri(l, MAXPRI_USER);
1094 	}
1095 
1096 	/*
1097 	 * If the LWP is running or on a run queue, then we win.  If it's
1098 	 * sleeping interruptably, wake it and make it take the signal.  If
1099 	 * the sleep isn't interruptable, then the chances are it will get
1100 	 * to see the signal soon anyhow.  If suspended, it can't take the
1101 	 * signal right now.  If it's LWP private or for all LWPs, save it
1102 	 * for later; otherwise punt.
1103 	 */
1104 	rv = 0;
1105 
1106 	switch (l->l_stat) {
1107 	case LSRUN:
1108 	case LSONPROC:
1109 		lwp_need_userret(l);
1110 		rv = 1;
1111 		break;
1112 
1113 	case LSSLEEP:
1114 		if ((l->l_flag & LW_SINTR) != 0) {
1115 			/* setrunnable() will release the lock. */
1116 			setrunnable(l);
1117 			return 1;
1118 		}
1119 		break;
1120 
1121 	case LSSUSPENDED:
1122 		if ((prop & SA_KILL) != 0) {
1123 			/* lwp_continue() will release the lock. */
1124 			lwp_continue(l);
1125 			return 1;
1126 		}
1127 		break;
1128 
1129 	case LSSTOP:
1130 		if ((prop & SA_STOP) != 0)
1131 			break;
1132 
1133 		/*
1134 		 * If the LWP is stopped and we are sending a continue
1135 		 * signal, then start it again.
1136 		 */
1137 		if ((prop & SA_CONT) != 0) {
1138 			if (l->l_wchan != NULL) {
1139 				l->l_stat = LSSLEEP;
1140 				p->p_nrlwps++;
1141 				rv = 1;
1142 				break;
1143 			}
1144 			/* setrunnable() will release the lock. */
1145 			setrunnable(l);
1146 			return 1;
1147 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1148 			/* setrunnable() will release the lock. */
1149 			setrunnable(l);
1150 			return 1;
1151 		}
1152 		break;
1153 
1154 	default:
1155 		break;
1156 	}
1157 
1158 	lwp_unlock(l);
1159 	return rv;
1160 }
1161 
1162 /*
1163  * Notify an LWP that it has a pending signal.
1164  */
1165 void
1166 signotify(struct lwp *l)
1167 {
1168 	KASSERT(lwp_locked(l, NULL));
1169 
1170 	l->l_flag |= LW_PENDSIG;
1171 	lwp_need_userret(l);
1172 }
1173 
1174 /*
1175  * Find an LWP within process p that is waiting on signal ksi, and hand
1176  * it on.
1177  */
1178 static int
1179 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1180 {
1181 	struct lwp *l;
1182 	int signo;
1183 
1184 	KASSERT(mutex_owned(p->p_lock));
1185 
1186 	signo = ksi->ksi_signo;
1187 
1188 	if (ksi->ksi_lid != 0) {
1189 		/*
1190 		 * Signal came via _lwp_kill().  Find the LWP and see if
1191 		 * it's interested.
1192 		 */
1193 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1194 			return 0;
1195 		if (l->l_sigwaited == NULL ||
1196 		    !sigismember(&l->l_sigwaitset, signo))
1197 			return 0;
1198 	} else {
1199 		/*
1200 		 * Look for any LWP that may be interested.
1201 		 */
1202 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1203 			KASSERT(l->l_sigwaited != NULL);
1204 			if (sigismember(&l->l_sigwaitset, signo))
1205 				break;
1206 		}
1207 	}
1208 
1209 	if (l != NULL) {
1210 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1211 		l->l_sigwaited = NULL;
1212 		LIST_REMOVE(l, l_sigwaiter);
1213 		cv_signal(&l->l_sigcv);
1214 		return 1;
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 /*
1221  * Send the signal to the process.  If the signal has an action, the action
1222  * is usually performed by the target process rather than the caller; we add
1223  * the signal to the set of pending signals for the process.
1224  *
1225  * Exceptions:
1226  *   o When a stop signal is sent to a sleeping process that takes the
1227  *     default action, the process is stopped without awakening it.
1228  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1229  *     regardless of the signal action (eg, blocked or ignored).
1230  *
1231  * Other ignored signals are discarded immediately.
1232  */
1233 void
1234 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1235 {
1236 	int prop, lid, toall, signo = ksi->ksi_signo;
1237 	struct sigacts *sa;
1238 	struct lwp *l;
1239 	ksiginfo_t *kp;
1240 	ksiginfoq_t kq;
1241 	sig_t action;
1242 #ifdef KERN_SA
1243 	struct sadata_vp *vp;
1244 #endif
1245 
1246 	KASSERT(!cpu_intr_p());
1247 	KASSERT(mutex_owned(proc_lock));
1248 	KASSERT(mutex_owned(p->p_lock));
1249 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1250 	KASSERT(signo > 0 && signo < NSIG);
1251 
1252 	/*
1253 	 * If the process is being created by fork, is a zombie or is
1254 	 * exiting, then just drop the signal here and bail out.
1255 	 */
1256 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1257 		return;
1258 
1259 	/*
1260 	 * Notify any interested parties of the signal.
1261 	 */
1262 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1263 
1264 	/*
1265 	 * Some signals including SIGKILL must act on the entire process.
1266 	 */
1267 	kp = NULL;
1268 	prop = sigprop[signo];
1269 	toall = ((prop & SA_TOALL) != 0);
1270 
1271 	if (toall)
1272 		lid = 0;
1273 	else
1274 		lid = ksi->ksi_lid;
1275 
1276 	/*
1277 	 * If proc is traced, always give parent a chance.
1278 	 */
1279 	if (p->p_slflag & PSL_TRACED) {
1280 		action = SIG_DFL;
1281 
1282 		if (lid == 0) {
1283 			/*
1284 			 * If the process is being traced and the signal
1285 			 * is being caught, make sure to save any ksiginfo.
1286 			 */
1287 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1288 				return;
1289 			sigput(&p->p_sigpend, p, kp);
1290 		}
1291 	} else {
1292 		/*
1293 		 * If the signal was the result of a trap and is not being
1294 		 * caught, then reset it to default action so that the
1295 		 * process dumps core immediately.
1296 		 */
1297 		if (KSI_TRAP_P(ksi)) {
1298 			sa = p->p_sigacts;
1299 			mutex_enter(&sa->sa_mutex);
1300 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1301 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
1302 				SIGACTION(p, signo).sa_handler = SIG_DFL;
1303 			}
1304 			mutex_exit(&sa->sa_mutex);
1305 		}
1306 
1307 		/*
1308 		 * If the signal is being ignored, then drop it.  Note: we
1309 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1310 		 * SIG_IGN, action will be SIG_DFL here.
1311 		 */
1312 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1313 			return;
1314 
1315 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1316 			action = SIG_CATCH;
1317 		else {
1318 			action = SIG_DFL;
1319 
1320 			/*
1321 			 * If sending a tty stop signal to a member of an
1322 			 * orphaned process group, discard the signal here if
1323 			 * the action is default; don't stop the process below
1324 			 * if sleeping, and don't clear any pending SIGCONT.
1325 			 */
1326 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1327 				return;
1328 
1329 			if (prop & SA_KILL && p->p_nice > NZERO)
1330 				p->p_nice = NZERO;
1331 		}
1332 	}
1333 
1334 	/*
1335 	 * If stopping or continuing a process, discard any pending
1336 	 * signals that would do the inverse.
1337 	 */
1338 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1339 		ksiginfo_queue_init(&kq);
1340 		if ((prop & SA_CONT) != 0)
1341 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1342 		if ((prop & SA_STOP) != 0)
1343 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1344 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1345 	}
1346 
1347 	/*
1348 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1349 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1350 	 * the signal info.  The signal won't be processed further here.
1351 	 */
1352 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1353 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1354 	    sigunwait(p, ksi))
1355 		return;
1356 
1357 	/*
1358 	 * XXXSMP Should be allocated by the caller, we're holding locks
1359 	 * here.
1360 	 */
1361 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1362 		return;
1363 
1364 	/*
1365 	 * LWP private signals are easy - just find the LWP and post
1366 	 * the signal to it.
1367 	 */
1368 	if (lid != 0) {
1369 		l = lwp_find(p, lid);
1370 		if (l != NULL) {
1371 			sigput(&l->l_sigpend, p, kp);
1372 			membar_producer();
1373 			(void)sigpost(l, action, prop, kp->ksi_signo, 0);
1374 		}
1375 		goto out;
1376 	}
1377 
1378 	/*
1379 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
1380 	 * or for an SA process.
1381 	 */
1382 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1383 		if ((p->p_slflag & PSL_TRACED) != 0)
1384 			goto deliver;
1385 
1386 		/*
1387 		 * If SIGCONT is default (or ignored) and process is
1388 		 * asleep, we are finished; the process should not
1389 		 * be awakened.
1390 		 */
1391 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1392 			goto out;
1393 	} else {
1394 		/*
1395 		 * Process is stopped or stopping.  If traced, then no
1396 		 * further action is necessary.
1397 		 */
1398 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1399 			goto out;
1400 
1401 		/*
1402 		 * Run the process only if sending SIGCONT or SIGKILL.
1403 		 */
1404 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1405 			/*
1406 			 * Re-adjust p_nstopchild if the process wasn't
1407 			 * collected by its parent.
1408 			 */
1409 			p->p_stat = SACTIVE;
1410 			p->p_sflag &= ~PS_STOPPING;
1411 			if (!p->p_waited)
1412 				p->p_pptr->p_nstopchild--;
1413 
1414 			/*
1415 			 * Do not make signal pending if SIGCONT is default.
1416 			 *
1417 			 * If the process catches SIGCONT, let it handle the
1418 			 * signal itself (if waiting on event - process runs,
1419 			 * otherwise continues sleeping).
1420 			 */
1421 			if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
1422 				KASSERT(signo != SIGKILL);
1423 				goto deliver;
1424 			}
1425 		} else if ((prop & SA_STOP) != 0) {
1426 			/*
1427 			 * Already stopped, don't need to stop again.
1428 			 * (If we did the shell could get confused.)
1429 			 */
1430 			goto out;
1431 		}
1432 	}
1433 	/*
1434 	 * Make signal pending.
1435 	 */
1436 	sigput(&p->p_sigpend, p, kp);
1437 
1438  deliver:
1439 	/*
1440 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1441 	 * visible on the per process list (for sigispending()).  This
1442 	 * is unlikely to be needed in practice, but...
1443 	 */
1444 	membar_producer();
1445 
1446 	/*
1447 	 * Try to find an LWP that can take the signal.
1448 	 */
1449 #if KERN_SA
1450 	if ((p->p_sa != NULL) && !toall) {
1451 		/*
1452 		 * If we're in this delivery path, we are delivering a
1453 		 * signal that needs to go to one thread in the process.
1454 		 *
1455 		 * In the SA case, we try to find an idle LWP that can take
1456 		 * the signal.  If that fails, only then do we consider
1457 		 * interrupting active LWPs. Since the signal's going to
1458 		 * just one thread, we need only look at "blessed" lwps,
1459 		 * so scan the vps for them.
1460 		 */
1461 		l = NULL;
1462 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1463 			l = vp->savp_lwp;
1464 			if (sigpost(l, action, prop, kp->ksi_signo, 1))
1465 				break;
1466 		}
1467 
1468 		if (l == NULL) {
1469 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1470 				l = vp->savp_lwp;
1471 				if (sigpost(l, action, prop, kp->ksi_signo, 0))
1472 					break;
1473 			}
1474 		}
1475 	} else	/* Catch the brace below if we're defined */
1476 #endif /* KERN_SA */
1477 	    {
1478 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
1479 			if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
1480 				break;
1481 	}
1482 
1483  out:
1484  	/*
1485  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1486  	 * with locks held.  The caller should take care of this.
1487  	 */
1488  	ksiginfo_free(kp);
1489 }
1490 
1491 void
1492 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1493 {
1494 	struct proc *p = l->l_proc;
1495 #ifdef KERN_SA
1496 	struct lwp *le, *li;
1497 	siginfo_t *si;
1498 	int f;
1499 #endif /* KERN_SA */
1500 
1501 	KASSERT(mutex_owned(p->p_lock));
1502 
1503 #ifdef KERN_SA
1504 	if (p->p_sflag & PS_SA) {
1505 		/* f indicates if we should clear LP_SA_NOBLOCK */
1506 		f = ~l->l_pflag & LP_SA_NOBLOCK;
1507 		l->l_pflag |= LP_SA_NOBLOCK;
1508 
1509 		mutex_exit(p->p_lock);
1510 		/* XXXUPSXXX What if not on sa_vp? */
1511 		/*
1512 		 * WRS: I think it won't matter, beyond the
1513 		 * question of what exactly we do with a signal
1514 		 * to a blocked user thread. Also, we try hard to always
1515 		 * send signals to blessed lwps, so we would only send
1516 		 * to a non-blessed lwp under special circumstances.
1517 		 */
1518 		si = siginfo_alloc(PR_WAITOK);
1519 
1520 		si->_info = ksi->ksi_info;
1521 
1522 		/*
1523 		 * Figure out if we're the innocent victim or the main
1524 		 * perpitrator.
1525 		 */
1526 		le = li = NULL;
1527 		if (KSI_TRAP_P(ksi))
1528 			le = l;
1529 		else
1530 			li = l;
1531 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1532 		    sizeof(*si), si, siginfo_free) != 0) {
1533 			siginfo_free(si);
1534 #if 0
1535 			if (KSI_TRAP_P(ksi))
1536 				/* XXX What dowe do here? The signal
1537 				 * didn't make it
1538 				 */;
1539 #endif
1540 		}
1541 		l->l_pflag ^= f;
1542 		mutex_enter(p->p_lock);
1543 		return;
1544 	}
1545 #endif /* KERN_SA */
1546 
1547 	(*p->p_emul->e_sendsig)(ksi, mask);
1548 }
1549 
1550 /*
1551  * Stop any LWPs sleeping interruptably.
1552  */
1553 static void
1554 proc_stop_lwps(struct proc *p)
1555 {
1556 	struct lwp *l;
1557 
1558 	KASSERT(mutex_owned(p->p_lock));
1559 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1560 
1561 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1562 		lwp_lock(l);
1563 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1564 			l->l_stat = LSSTOP;
1565 			p->p_nrlwps--;
1566 		}
1567 		lwp_unlock(l);
1568 	}
1569 }
1570 
1571 /*
1572  * Finish stopping of a process.  Mark it stopped and notify the parent.
1573  *
1574  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1575  */
1576 static void
1577 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1578 {
1579 
1580 	KASSERT(mutex_owned(proc_lock));
1581 	KASSERT(mutex_owned(p->p_lock));
1582 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1583 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1584 
1585 	p->p_sflag &= ~PS_STOPPING;
1586 	p->p_stat = SSTOP;
1587 	p->p_waited = 0;
1588 	p->p_pptr->p_nstopchild++;
1589 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1590 		if (ppsig) {
1591 			/* child_psignal drops p_lock briefly. */
1592 			child_psignal(p, ppmask);
1593 		}
1594 		cv_broadcast(&p->p_pptr->p_waitcv);
1595 	}
1596 }
1597 
1598 /*
1599  * Stop the current process and switch away when being stopped or traced.
1600  */
1601 static void
1602 sigswitch(bool ppsig, int ppmask, int signo)
1603 {
1604 	struct lwp *l = curlwp;
1605 	struct proc *p = l->l_proc;
1606 	int biglocks;
1607 
1608 	KASSERT(mutex_owned(p->p_lock));
1609 	KASSERT(l->l_stat == LSONPROC);
1610 	KASSERT(p->p_nrlwps > 0);
1611 
1612 	/*
1613 	 * On entry we know that the process needs to stop.  If it's
1614 	 * the result of a 'sideways' stop signal that has been sourced
1615 	 * through issignal(), then stop other LWPs in the process too.
1616 	 */
1617 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1618 		KASSERT(signo != 0);
1619 		proc_stop(p, 1, signo);
1620 		KASSERT(p->p_nrlwps > 0);
1621 	}
1622 
1623 	/*
1624 	 * If we are the last live LWP, and the stop was a result of
1625 	 * a new signal, then signal the parent.
1626 	 */
1627 	if ((p->p_sflag & PS_STOPPING) != 0) {
1628 		if (!mutex_tryenter(proc_lock)) {
1629 			mutex_exit(p->p_lock);
1630 			mutex_enter(proc_lock);
1631 			mutex_enter(p->p_lock);
1632 		}
1633 
1634 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1635 			/*
1636 			 * Note that proc_stop_done() can drop
1637 			 * p->p_lock briefly.
1638 			 */
1639 			proc_stop_done(p, ppsig, ppmask);
1640 		}
1641 
1642 		mutex_exit(proc_lock);
1643 	}
1644 
1645 	/*
1646 	 * Unlock and switch away.
1647 	 */
1648 	KERNEL_UNLOCK_ALL(l, &biglocks);
1649 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1650 		p->p_nrlwps--;
1651 		lwp_lock(l);
1652 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1653 		l->l_stat = LSSTOP;
1654 		lwp_unlock(l);
1655 	}
1656 
1657 	mutex_exit(p->p_lock);
1658 	lwp_lock(l);
1659 	mi_switch(l);
1660 	KERNEL_LOCK(biglocks, l);
1661 	mutex_enter(p->p_lock);
1662 }
1663 
1664 /*
1665  * Check for a signal from the debugger.
1666  */
1667 static int
1668 sigchecktrace(void)
1669 {
1670 	struct lwp *l = curlwp;
1671 	struct proc *p = l->l_proc;
1672 	sigset_t *mask;
1673 	int signo;
1674 
1675 	KASSERT(mutex_owned(p->p_lock));
1676 
1677 	/* If there's a pending SIGKILL, process it immediately. */
1678 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1679 		return 0;
1680 
1681 	/*
1682 	 * If we are no longer being traced, or the parent didn't
1683 	 * give us a signal, look for more signals.
1684 	 */
1685 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1686 		return 0;
1687 
1688 	/*
1689 	 * If the new signal is being masked, look for other signals.
1690 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1691 	 */
1692 	signo = p->p_xstat;
1693 	p->p_xstat = 0;
1694 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
1695 	if (sigismember(mask, signo))
1696 		signo = 0;
1697 
1698 	return signo;
1699 }
1700 
1701 /*
1702  * If the current process has received a signal (should be caught or cause
1703  * termination, should interrupt current syscall), return the signal number.
1704  *
1705  * Stop signals with default action are processed immediately, then cleared;
1706  * they aren't returned.  This is checked after each entry to the system for
1707  * a syscall or trap.
1708  *
1709  * We will also return -1 if the process is exiting and the current LWP must
1710  * follow suit.
1711  */
1712 int
1713 issignal(struct lwp *l)
1714 {
1715 	struct proc *p;
1716 	int signo, prop;
1717 	sigpend_t *sp;
1718 	sigset_t ss;
1719 
1720 	p = l->l_proc;
1721 	sp = NULL;
1722 	signo = 0;
1723 
1724 	KASSERT(p == curproc);
1725 	KASSERT(mutex_owned(p->p_lock));
1726 
1727 	for (;;) {
1728 		/* Discard any signals that we have decided not to take. */
1729 		if (signo != 0)
1730 			(void)sigget(sp, NULL, signo, NULL);
1731 
1732 		/* Bail out if we do not own the virtual processor */
1733 		if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
1734 			break;
1735 
1736 		/*
1737 		 * If the process is stopped/stopping, then stop ourselves
1738 		 * now that we're on the kernel/userspace boundary.  When
1739 		 * we awaken, check for a signal from the debugger.
1740 		 */
1741 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1742 			sigswitch(true, PS_NOCLDSTOP, 0);
1743 			signo = sigchecktrace();
1744 		} else
1745 			signo = 0;
1746 
1747 		/* Signals from the debugger are "out of band". */
1748 		sp = NULL;
1749 
1750 		/*
1751 		 * If the debugger didn't provide a signal, find a pending
1752 		 * signal from our set.  Check per-LWP signals first, and
1753 		 * then per-process.
1754 		 */
1755 		if (signo == 0) {
1756 			sp = &l->l_sigpend;
1757 			ss = sp->sp_set;
1758 			if ((p->p_lflag & PL_PPWAIT) != 0)
1759 				sigminusset(&stopsigmask, &ss);
1760 			sigminusset(&l->l_sigmask, &ss);
1761 
1762 			if ((signo = firstsig(&ss)) == 0) {
1763 				sp = &p->p_sigpend;
1764 				ss = sp->sp_set;
1765 				if ((p->p_lflag & PL_PPWAIT) != 0)
1766 					sigminusset(&stopsigmask, &ss);
1767 				sigminusset(&l->l_sigmask, &ss);
1768 
1769 				if ((signo = firstsig(&ss)) == 0) {
1770 					/*
1771 					 * No signal pending - clear the
1772 					 * indicator and bail out.
1773 					 */
1774 					lwp_lock(l);
1775 					l->l_flag &= ~LW_PENDSIG;
1776 					lwp_unlock(l);
1777 					sp = NULL;
1778 					break;
1779 				}
1780 			}
1781 		}
1782 
1783 		/*
1784 		 * We should see pending but ignored signals only if
1785 		 * we are being traced.
1786 		 */
1787 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1788 		    (p->p_slflag & PSL_TRACED) == 0) {
1789 			/* Discard the signal. */
1790 			continue;
1791 		}
1792 
1793 		/*
1794 		 * If traced, always stop, and stay stopped until released
1795 		 * by the debugger.  If the our parent process is waiting
1796 		 * for us, don't hang as we could deadlock.
1797 		 */
1798 		if ((p->p_slflag & PSL_TRACED) != 0 &&
1799 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1800 			/* Take the signal. */
1801 			(void)sigget(sp, NULL, signo, NULL);
1802 			p->p_xstat = signo;
1803 
1804 			/* Emulation-specific handling of signal trace */
1805 			if (p->p_emul->e_tracesig == NULL ||
1806 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
1807 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1808 				    signo);
1809 
1810 			/* Check for a signal from the debugger. */
1811 			if ((signo = sigchecktrace()) == 0)
1812 				continue;
1813 
1814 			/* Signals from the debugger are "out of band". */
1815 			sp = NULL;
1816 		}
1817 
1818 		prop = sigprop[signo];
1819 
1820 		/*
1821 		 * Decide whether the signal should be returned.
1822 		 */
1823 		switch ((long)SIGACTION(p, signo).sa_handler) {
1824 		case (long)SIG_DFL:
1825 			/*
1826 			 * Don't take default actions on system processes.
1827 			 */
1828 			if (p->p_pid <= 1) {
1829 #ifdef DIAGNOSTIC
1830 				/*
1831 				 * Are you sure you want to ignore SIGSEGV
1832 				 * in init? XXX
1833 				 */
1834 				printf_nolog("Process (pid %d) got sig %d\n",
1835 				    p->p_pid, signo);
1836 #endif
1837 				continue;
1838 			}
1839 
1840 			/*
1841 			 * If there is a pending stop signal to process with
1842 			 * default action, stop here, then clear the signal.
1843 			 * However, if process is member of an orphaned
1844 			 * process group, ignore tty stop signals.
1845 			 */
1846 			if (prop & SA_STOP) {
1847 				/*
1848 				 * XXX Don't hold proc_lock for p_lflag,
1849 				 * but it's not a big deal.
1850 				 */
1851 				if (p->p_slflag & PSL_TRACED ||
1852 		    		    ((p->p_lflag & PL_ORPHANPG) != 0 &&
1853 				    prop & SA_TTYSTOP)) {
1854 				    	/* Ignore the signal. */
1855 					continue;
1856 				}
1857 				/* Take the signal. */
1858 				(void)sigget(sp, NULL, signo, NULL);
1859 				p->p_xstat = signo;
1860 				signo = 0;
1861 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1862 			} else if (prop & SA_IGNORE) {
1863 				/*
1864 				 * Except for SIGCONT, shouldn't get here.
1865 				 * Default action is to ignore; drop it.
1866 				 */
1867 				continue;
1868 			}
1869 			break;
1870 
1871 		case (long)SIG_IGN:
1872 #ifdef DEBUG_ISSIGNAL
1873 			/*
1874 			 * Masking above should prevent us ever trying
1875 			 * to take action on an ignored signal other
1876 			 * than SIGCONT, unless process is traced.
1877 			 */
1878 			if ((prop & SA_CONT) == 0 &&
1879 			    (p->p_slflag & PSL_TRACED) == 0)
1880 				printf_nolog("issignal\n");
1881 #endif
1882 			continue;
1883 
1884 		default:
1885 			/*
1886 			 * This signal has an action, let postsig() process
1887 			 * it.
1888 			 */
1889 			break;
1890 		}
1891 
1892 		break;
1893 	}
1894 
1895 	l->l_sigpendset = sp;
1896 	return signo;
1897 }
1898 
1899 /*
1900  * Take the action for the specified signal
1901  * from the current set of pending signals.
1902  */
1903 void
1904 postsig(int signo)
1905 {
1906 	struct lwp	*l;
1907 	struct proc	*p;
1908 	struct sigacts	*ps;
1909 	sig_t		action;
1910 	sigset_t	*returnmask;
1911 	ksiginfo_t	ksi;
1912 
1913 	l = curlwp;
1914 	p = l->l_proc;
1915 	ps = p->p_sigacts;
1916 
1917 	KASSERT(mutex_owned(p->p_lock));
1918 	KASSERT(signo > 0);
1919 
1920 	/*
1921 	 * Set the new mask value and also defer further occurrences of this
1922 	 * signal.
1923 	 *
1924 	 * Special case: user has done a sigsuspend.  Here the current mask is
1925 	 * not of interest, but rather the mask from before the sigsuspend is
1926 	 * what we want restored after the signal processing is completed.
1927 	 */
1928 	if (l->l_sigrestore) {
1929 		returnmask = &l->l_sigoldmask;
1930 		l->l_sigrestore = 0;
1931 	} else
1932 		returnmask = &l->l_sigmask;
1933 
1934 	/*
1935 	 * Commit to taking the signal before releasing the mutex.
1936 	 */
1937 	action = SIGACTION_PS(ps, signo).sa_handler;
1938 	l->l_ru.ru_nsignals++;
1939 	sigget(l->l_sigpendset, &ksi, signo, NULL);
1940 
1941 	if (ktrpoint(KTR_PSIG)) {
1942 		mutex_exit(p->p_lock);
1943 		ktrpsig(signo, action, returnmask, &ksi);
1944 		mutex_enter(p->p_lock);
1945 	}
1946 
1947 	if (action == SIG_DFL) {
1948 		/*
1949 		 * Default action, where the default is to kill
1950 		 * the process.  (Other cases were ignored above.)
1951 		 */
1952 		sigexit(l, signo);
1953 		return;
1954 	}
1955 
1956 	/*
1957 	 * If we get here, the signal must be caught.
1958 	 */
1959 #ifdef DIAGNOSTIC
1960 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1961 		panic("postsig action");
1962 #endif
1963 
1964 	kpsendsig(l, &ksi, returnmask);
1965 }
1966 
1967 /*
1968  * sendsig:
1969  *
1970  *	Default signal delivery method for NetBSD.
1971  */
1972 void
1973 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1974 {
1975 	struct sigacts *sa;
1976 	int sig;
1977 
1978 	sig = ksi->ksi_signo;
1979 	sa = curproc->p_sigacts;
1980 
1981 	switch (sa->sa_sigdesc[sig].sd_vers)  {
1982 	case 0:
1983 	case 1:
1984 		/* Compat for 1.6 and earlier. */
1985 		if (sendsig_sigcontext_vec == NULL) {
1986 			break;
1987 		}
1988 		(*sendsig_sigcontext_vec)(ksi, mask);
1989 		return;
1990 	case 2:
1991 	case 3:
1992 		sendsig_siginfo(ksi, mask);
1993 		return;
1994 	default:
1995 		break;
1996 	}
1997 
1998 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
1999 	sigexit(curlwp, SIGILL);
2000 }
2001 
2002 /*
2003  * sendsig_reset:
2004  *
2005  *	Reset the signal action.  Called from emulation specific sendsig()
2006  *	before unlocking to deliver the signal.
2007  */
2008 void
2009 sendsig_reset(struct lwp *l, int signo)
2010 {
2011 	struct proc *p = l->l_proc;
2012 	struct sigacts *ps = p->p_sigacts;
2013 	sigset_t *mask;
2014 
2015 	KASSERT(mutex_owned(p->p_lock));
2016 
2017 	p->p_sigctx.ps_lwp = 0;
2018 	p->p_sigctx.ps_code = 0;
2019 	p->p_sigctx.ps_signo = 0;
2020 
2021 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
2022 
2023 	mutex_enter(&ps->sa_mutex);
2024 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
2025 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2026 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2027 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2028 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
2029 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2030 	}
2031 	mutex_exit(&ps->sa_mutex);
2032 }
2033 
2034 /*
2035  * Kill the current process for stated reason.
2036  */
2037 void
2038 killproc(struct proc *p, const char *why)
2039 {
2040 
2041 	KASSERT(mutex_owned(proc_lock));
2042 
2043 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2044 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2045 	psignal(p, SIGKILL);
2046 }
2047 
2048 /*
2049  * Force the current process to exit with the specified signal, dumping core
2050  * if appropriate.  We bypass the normal tests for masked and caught
2051  * signals, allowing unrecoverable failures to terminate the process without
2052  * changing signal state.  Mark the accounting record with the signal
2053  * termination.  If dumping core, save the signal number for the debugger.
2054  * Calls exit and does not return.
2055  */
2056 void
2057 sigexit(struct lwp *l, int signo)
2058 {
2059 	int exitsig, error, docore;
2060 	struct proc *p;
2061 	struct lwp *t;
2062 
2063 	p = l->l_proc;
2064 
2065 	KASSERT(mutex_owned(p->p_lock));
2066 	KERNEL_UNLOCK_ALL(l, NULL);
2067 
2068 	/*
2069 	 * Don't permit coredump() multiple times in the same process.
2070 	 * Call back into sigexit, where we will be suspended until
2071 	 * the deed is done.  Note that this is a recursive call, but
2072 	 * LW_WCORE will prevent us from coming back this way.
2073 	 */
2074 	if ((p->p_sflag & PS_WCORE) != 0) {
2075 		lwp_lock(l);
2076 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2077 		lwp_unlock(l);
2078 		mutex_exit(p->p_lock);
2079 		lwp_userret(l);
2080 		panic("sigexit 1");
2081 		/* NOTREACHED */
2082 	}
2083 
2084 	/* If process is already on the way out, then bail now. */
2085 	if ((p->p_sflag & PS_WEXIT) != 0) {
2086 		mutex_exit(p->p_lock);
2087 		lwp_exit(l);
2088 		panic("sigexit 2");
2089 		/* NOTREACHED */
2090 	}
2091 
2092 	/*
2093 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
2094 	 * so that their registers are available long enough to be dumped.
2095  	 */
2096 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2097 		p->p_sflag |= PS_WCORE;
2098 		for (;;) {
2099 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2100 				lwp_lock(t);
2101 				if (t == l) {
2102 					t->l_flag &= ~LW_WSUSPEND;
2103 					lwp_unlock(t);
2104 					continue;
2105 				}
2106 				t->l_flag |= (LW_WCORE | LW_WEXIT);
2107 				lwp_suspend(l, t);
2108 			}
2109 
2110 			if (p->p_nrlwps == 1)
2111 				break;
2112 
2113 			/*
2114 			 * Kick any LWPs sitting in lwp_wait1(), and wait
2115 			 * for everyone else to stop before proceeding.
2116 			 */
2117 			p->p_nlwpwait++;
2118 			cv_broadcast(&p->p_lwpcv);
2119 			cv_wait(&p->p_lwpcv, p->p_lock);
2120 			p->p_nlwpwait--;
2121 		}
2122 	}
2123 
2124 	exitsig = signo;
2125 	p->p_acflag |= AXSIG;
2126 	p->p_sigctx.ps_signo = signo;
2127 
2128 	if (docore) {
2129 		mutex_exit(p->p_lock);
2130 		if ((error = (*coredump_vec)(l, NULL)) == 0)
2131 			exitsig |= WCOREFLAG;
2132 
2133 		if (kern_logsigexit) {
2134 			int uid = l->l_cred ?
2135 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
2136 
2137 			if (error)
2138 				log(LOG_INFO, lognocoredump, p->p_pid,
2139 				    p->p_comm, uid, signo, error);
2140 			else
2141 				log(LOG_INFO, logcoredump, p->p_pid,
2142 				    p->p_comm, uid, signo);
2143 		}
2144 
2145 #ifdef PAX_SEGVGUARD
2146 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
2147 #endif /* PAX_SEGVGUARD */
2148 		/* Acquire the sched state mutex.  exit1() will release it. */
2149 		mutex_enter(p->p_lock);
2150 	}
2151 
2152 	/* No longer dumping core. */
2153 	p->p_sflag &= ~PS_WCORE;
2154 
2155 	exit1(l, W_EXITCODE(0, exitsig));
2156 	/* NOTREACHED */
2157 }
2158 
2159 /*
2160  * Put process 'p' into the stopped state and optionally, notify the parent.
2161  */
2162 void
2163 proc_stop(struct proc *p, int notify, int signo)
2164 {
2165 	struct lwp *l;
2166 
2167 	KASSERT(mutex_owned(p->p_lock));
2168 
2169 	/*
2170 	 * First off, set the stopping indicator and bring all sleeping
2171 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
2172 	 * unlock between here and the p->p_nrlwps check below.
2173 	 */
2174 	p->p_sflag |= PS_STOPPING;
2175 	if (notify)
2176 		p->p_sflag |= PS_NOTIFYSTOP;
2177 	else
2178 		p->p_sflag &= ~PS_NOTIFYSTOP;
2179 	membar_producer();
2180 
2181 	proc_stop_lwps(p);
2182 
2183 	/*
2184 	 * If there are no LWPs available to take the signal, then we
2185 	 * signal the parent process immediately.  Otherwise, the last
2186 	 * LWP to stop will take care of it.
2187 	 */
2188 
2189 	if (p->p_nrlwps == 0) {
2190 		proc_stop_done(p, true, PS_NOCLDSTOP);
2191 	} else {
2192 		/*
2193 		 * Have the remaining LWPs come to a halt, and trigger
2194 		 * proc_stop_callout() to ensure that they do.
2195 		 */
2196 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
2197 			sigpost(l, SIG_DFL, SA_STOP, signo, 0);
2198 		callout_schedule(&proc_stop_ch, 1);
2199 	}
2200 }
2201 
2202 /*
2203  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2204  * but wait for them to come to a halt at the kernel-user boundary.  This is
2205  * to allow LWPs to release any locks that they may hold before stopping.
2206  *
2207  * Non-interruptable sleeps can be long, and there is the potential for an
2208  * LWP to begin sleeping interruptably soon after the process has been set
2209  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2210  * stopping, and so complete halt of the process and the return of status
2211  * information to the parent could be delayed indefinitely.
2212  *
2213  * To handle this race, proc_stop_callout() runs once per tick while there
2214  * are stopping processes in the system.  It sets LWPs that are sleeping
2215  * interruptably into the LSSTOP state.
2216  *
2217  * Note that we are not concerned about keeping all LWPs stopped while the
2218  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2219  * What we do need to ensure is that all LWPs in a stopping process have
2220  * stopped at least once, so that notification can be sent to the parent
2221  * process.
2222  */
2223 static void
2224 proc_stop_callout(void *cookie)
2225 {
2226 	bool more, restart;
2227 	struct proc *p;
2228 
2229 	(void)cookie;
2230 
2231 	do {
2232 		restart = false;
2233 		more = false;
2234 
2235 		mutex_enter(proc_lock);
2236 		PROCLIST_FOREACH(p, &allproc) {
2237 			if ((p->p_flag & PK_MARKER) != 0)
2238 				continue;
2239 			mutex_enter(p->p_lock);
2240 
2241 			if ((p->p_sflag & PS_STOPPING) == 0) {
2242 				mutex_exit(p->p_lock);
2243 				continue;
2244 			}
2245 
2246 			/* Stop any LWPs sleeping interruptably. */
2247 			proc_stop_lwps(p);
2248 			if (p->p_nrlwps == 0) {
2249 				/*
2250 				 * We brought the process to a halt.
2251 				 * Mark it as stopped and notify the
2252 				 * parent.
2253 				 */
2254 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2255 					/*
2256 					 * Note that proc_stop_done() will
2257 					 * drop p->p_lock briefly.
2258 					 * Arrange to restart and check
2259 					 * all processes again.
2260 					 */
2261 					restart = true;
2262 				}
2263 				proc_stop_done(p, true, PS_NOCLDSTOP);
2264 			} else
2265 				more = true;
2266 
2267 			mutex_exit(p->p_lock);
2268 			if (restart)
2269 				break;
2270 		}
2271 		mutex_exit(proc_lock);
2272 	} while (restart);
2273 
2274 	/*
2275 	 * If we noted processes that are stopping but still have
2276 	 * running LWPs, then arrange to check again in 1 tick.
2277 	 */
2278 	if (more)
2279 		callout_schedule(&proc_stop_ch, 1);
2280 }
2281 
2282 /*
2283  * Given a process in state SSTOP, set the state back to SACTIVE and
2284  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2285  */
2286 void
2287 proc_unstop(struct proc *p)
2288 {
2289 	struct lwp *l;
2290 	int sig;
2291 
2292 	KASSERT(mutex_owned(proc_lock));
2293 	KASSERT(mutex_owned(p->p_lock));
2294 
2295 	p->p_stat = SACTIVE;
2296 	p->p_sflag &= ~PS_STOPPING;
2297 	sig = p->p_xstat;
2298 
2299 	if (!p->p_waited)
2300 		p->p_pptr->p_nstopchild--;
2301 
2302 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2303 		lwp_lock(l);
2304 		if (l->l_stat != LSSTOP) {
2305 			lwp_unlock(l);
2306 			continue;
2307 		}
2308 		if (l->l_wchan == NULL) {
2309 			setrunnable(l);
2310 			continue;
2311 		}
2312 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2313 		        setrunnable(l);
2314 		        sig = 0;
2315 		} else {
2316 			l->l_stat = LSSLEEP;
2317 			p->p_nrlwps++;
2318 			lwp_unlock(l);
2319 		}
2320 	}
2321 }
2322 
2323 static int
2324 filt_sigattach(struct knote *kn)
2325 {
2326 	struct proc *p = curproc;
2327 
2328 	kn->kn_obj = p;
2329 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2330 
2331 	mutex_enter(p->p_lock);
2332 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2333 	mutex_exit(p->p_lock);
2334 
2335 	return (0);
2336 }
2337 
2338 static void
2339 filt_sigdetach(struct knote *kn)
2340 {
2341 	struct proc *p = kn->kn_obj;
2342 
2343 	mutex_enter(p->p_lock);
2344 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2345 	mutex_exit(p->p_lock);
2346 }
2347 
2348 /*
2349  * signal knotes are shared with proc knotes, so we apply a mask to
2350  * the hint in order to differentiate them from process hints.  This
2351  * could be avoided by using a signal-specific knote list, but probably
2352  * isn't worth the trouble.
2353  */
2354 static int
2355 filt_signal(struct knote *kn, long hint)
2356 {
2357 
2358 	if (hint & NOTE_SIGNAL) {
2359 		hint &= ~NOTE_SIGNAL;
2360 
2361 		if (kn->kn_id == hint)
2362 			kn->kn_data++;
2363 	}
2364 	return (kn->kn_data != 0);
2365 }
2366 
2367 const struct filterops sig_filtops = {
2368 	0, filt_sigattach, filt_sigdetach, filt_signal
2369 };
2370