1 /* $NetBSD: kern_sig.c,v 1.223 2006/06/13 13:56:50 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.223 2006/06/13 13:56:50 yamt Exp $"); 41 42 #include "opt_ktrace.h" 43 #include "opt_multiprocessor.h" 44 #include "opt_compat_sunos.h" 45 #include "opt_compat_netbsd.h" 46 #include "opt_compat_netbsd32.h" 47 48 #define SIGPROP /* include signal properties table */ 49 #include <sys/param.h> 50 #include <sys/signalvar.h> 51 #include <sys/resourcevar.h> 52 #include <sys/namei.h> 53 #include <sys/vnode.h> 54 #include <sys/proc.h> 55 #include <sys/systm.h> 56 #include <sys/timeb.h> 57 #include <sys/times.h> 58 #include <sys/buf.h> 59 #include <sys/acct.h> 60 #include <sys/file.h> 61 #include <sys/kernel.h> 62 #include <sys/wait.h> 63 #include <sys/ktrace.h> 64 #include <sys/syslog.h> 65 #include <sys/stat.h> 66 #include <sys/core.h> 67 #include <sys/filedesc.h> 68 #include <sys/malloc.h> 69 #include <sys/pool.h> 70 #include <sys/ucontext.h> 71 #include <sys/sa.h> 72 #include <sys/savar.h> 73 #include <sys/exec.h> 74 #include <sys/sysctl.h> 75 #include <sys/kauth.h> 76 77 #include <sys/mount.h> 78 #include <sys/syscallargs.h> 79 80 #include <machine/cpu.h> 81 82 #include <sys/user.h> /* for coredump */ 83 84 #include <uvm/uvm.h> 85 #include <uvm/uvm_extern.h> 86 87 static int build_corename(struct proc *, char *, const char *, size_t); 88 static void ksiginfo_exithook(struct proc *, void *); 89 static void ksiginfo_put(struct proc *, const ksiginfo_t *); 90 static ksiginfo_t *ksiginfo_get(struct proc *, int); 91 static void kpsignal2(struct proc *, const ksiginfo_t *, int); 92 93 sigset_t contsigmask, stopsigmask, sigcantmask; 94 95 struct pool sigacts_pool; /* memory pool for sigacts structures */ 96 97 /* 98 * struct sigacts memory pool allocator. 99 */ 100 101 static void * 102 sigacts_poolpage_alloc(struct pool *pp, int flags) 103 { 104 105 return (void *)uvm_km_alloc(kernel_map, 106 (PAGE_SIZE)*2, (PAGE_SIZE)*2, 107 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 108 | UVM_KMF_WIRED); 109 } 110 111 static void 112 sigacts_poolpage_free(struct pool *pp, void *v) 113 { 114 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED); 115 } 116 117 static struct pool_allocator sigactspool_allocator = { 118 sigacts_poolpage_alloc, sigacts_poolpage_free, 119 }; 120 121 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo", 122 &pool_allocator_nointr); 123 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL); 124 125 /* 126 * Remove and return the first ksiginfo element that matches our requested 127 * signal, or return NULL if one not found. 128 */ 129 static ksiginfo_t * 130 ksiginfo_get(struct proc *p, int signo) 131 { 132 ksiginfo_t *ksi; 133 int s; 134 135 s = splsoftclock(); 136 simple_lock(&p->p_sigctx.ps_silock); 137 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) { 138 if (ksi->ksi_signo == signo) { 139 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list); 140 goto out; 141 } 142 } 143 ksi = NULL; 144 out: 145 simple_unlock(&p->p_sigctx.ps_silock); 146 splx(s); 147 return ksi; 148 } 149 150 /* 151 * Append a new ksiginfo element to the list of pending ksiginfo's, if 152 * we need to (SA_SIGINFO was requested). We replace non RT signals if 153 * they already existed in the queue and we add new entries for RT signals, 154 * or for non RT signals with non-existing entries. 155 */ 156 static void 157 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi) 158 { 159 ksiginfo_t *kp; 160 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo); 161 int s; 162 163 if ((sa->sa_flags & SA_SIGINFO) == 0) 164 return; 165 /* 166 * If there's no info, don't save it. 167 */ 168 if (KSI_EMPTY_P(ksi)) 169 return; 170 171 s = splsoftclock(); 172 simple_lock(&p->p_sigctx.ps_silock); 173 #ifdef notyet /* XXX: QUEUING */ 174 if (ksi->ksi_signo < SIGRTMIN) 175 #endif 176 { 177 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) { 178 if (kp->ksi_signo == ksi->ksi_signo) { 179 KSI_COPY(ksi, kp); 180 goto out; 181 } 182 } 183 } 184 kp = pool_get(&ksiginfo_pool, PR_NOWAIT); 185 if (kp == NULL) { 186 #ifdef DIAGNOSTIC 187 printf("Out of memory allocating siginfo for pid %d\n", 188 p->p_pid); 189 #endif 190 goto out; 191 } 192 *kp = *ksi; 193 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list); 194 out: 195 simple_unlock(&p->p_sigctx.ps_silock); 196 splx(s); 197 } 198 199 /* 200 * free all pending ksiginfo on exit 201 */ 202 static void 203 ksiginfo_exithook(struct proc *p, void *v) 204 { 205 int s; 206 207 s = splsoftclock(); 208 simple_lock(&p->p_sigctx.ps_silock); 209 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) { 210 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo); 211 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list); 212 pool_put(&ksiginfo_pool, ksi); 213 } 214 simple_unlock(&p->p_sigctx.ps_silock); 215 splx(s); 216 } 217 218 /* 219 * Initialize signal-related data structures. 220 */ 221 void 222 signal_init(void) 223 { 224 225 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 226 227 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl", 228 sizeof(struct sigacts) > PAGE_SIZE ? 229 &sigactspool_allocator : &pool_allocator_nointr); 230 231 exithook_establish(ksiginfo_exithook, NULL); 232 exechook_establish(ksiginfo_exithook, NULL); 233 } 234 235 /* 236 * Create an initial sigctx structure, using the same signal state 237 * as p. If 'share' is set, share the sigctx_proc part, otherwise just 238 * copy it from parent. 239 */ 240 void 241 sigactsinit(struct proc *np, struct proc *pp, int share) 242 { 243 struct sigacts *ps; 244 245 if (share) { 246 np->p_sigacts = pp->p_sigacts; 247 pp->p_sigacts->sa_refcnt++; 248 } else { 249 ps = pool_get(&sigacts_pool, PR_WAITOK); 250 if (pp) 251 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts)); 252 else 253 memset(ps, '\0', sizeof(struct sigacts)); 254 ps->sa_refcnt = 1; 255 np->p_sigacts = ps; 256 } 257 } 258 259 /* 260 * Make this process not share its sigctx, maintaining all 261 * signal state. 262 */ 263 void 264 sigactsunshare(struct proc *p) 265 { 266 struct sigacts *oldps; 267 268 if (p->p_sigacts->sa_refcnt == 1) 269 return; 270 271 oldps = p->p_sigacts; 272 sigactsinit(p, NULL, 0); 273 274 if (--oldps->sa_refcnt == 0) 275 pool_put(&sigacts_pool, oldps); 276 } 277 278 /* 279 * Release a sigctx structure. 280 */ 281 void 282 sigactsfree(struct sigacts *ps) 283 { 284 285 if (--ps->sa_refcnt > 0) 286 return; 287 288 pool_put(&sigacts_pool, ps); 289 } 290 291 int 292 sigaction1(struct proc *p, int signum, const struct sigaction *nsa, 293 struct sigaction *osa, const void *tramp, int vers) 294 { 295 struct sigacts *ps; 296 int prop; 297 298 ps = p->p_sigacts; 299 if (signum <= 0 || signum >= NSIG) 300 return (EINVAL); 301 302 /* 303 * Trampoline ABI version 0 is reserved for the legacy 304 * kernel-provided on-stack trampoline. Conversely, if we are 305 * using a non-0 ABI version, we must have a trampoline. Only 306 * validate the vers if a new sigaction was supplied. Emulations 307 * use legacy kernel trampolines with version 0, alternatively 308 * check for that too. 309 */ 310 if ((vers != 0 && tramp == NULL) || 311 #ifdef SIGTRAMP_VALID 312 (nsa != NULL && 313 ((vers == 0) ? 314 (p->p_emul->e_sigcode == NULL) : 315 !SIGTRAMP_VALID(vers))) || 316 #endif 317 (vers == 0 && tramp != NULL)) 318 return (EINVAL); 319 320 if (osa) 321 *osa = SIGACTION_PS(ps, signum); 322 323 if (nsa) { 324 if (nsa->sa_flags & ~SA_ALLBITS) 325 return (EINVAL); 326 327 prop = sigprop[signum]; 328 if (prop & SA_CANTMASK) 329 return (EINVAL); 330 331 (void) splsched(); /* XXXSMP */ 332 SIGACTION_PS(ps, signum) = *nsa; 333 ps->sa_sigdesc[signum].sd_tramp = tramp; 334 ps->sa_sigdesc[signum].sd_vers = vers; 335 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask); 336 if ((prop & SA_NORESET) != 0) 337 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND; 338 if (signum == SIGCHLD) { 339 if (nsa->sa_flags & SA_NOCLDSTOP) 340 p->p_flag |= P_NOCLDSTOP; 341 else 342 p->p_flag &= ~P_NOCLDSTOP; 343 if (nsa->sa_flags & SA_NOCLDWAIT) { 344 /* 345 * Paranoia: since SA_NOCLDWAIT is implemented 346 * by reparenting the dying child to PID 1 (and 347 * trust it to reap the zombie), PID 1 itself 348 * is forbidden to set SA_NOCLDWAIT. 349 */ 350 if (p->p_pid == 1) 351 p->p_flag &= ~P_NOCLDWAIT; 352 else 353 p->p_flag |= P_NOCLDWAIT; 354 } else 355 p->p_flag &= ~P_NOCLDWAIT; 356 357 if (nsa->sa_handler == SIG_IGN) { 358 /* 359 * Paranoia: same as above. 360 */ 361 if (p->p_pid == 1) 362 p->p_flag &= ~P_CLDSIGIGN; 363 else 364 p->p_flag |= P_CLDSIGIGN; 365 } else 366 p->p_flag &= ~P_CLDSIGIGN; 367 368 } 369 if ((nsa->sa_flags & SA_NODEFER) == 0) 370 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum); 371 else 372 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum); 373 /* 374 * Set bit in p_sigctx.ps_sigignore for signals that are set to 375 * SIG_IGN, and for signals set to SIG_DFL where the default is 376 * to ignore. However, don't put SIGCONT in 377 * p_sigctx.ps_sigignore, as we have to restart the process. 378 */ 379 if (nsa->sa_handler == SIG_IGN || 380 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) { 381 /* never to be seen again */ 382 sigdelset(&p->p_sigctx.ps_siglist, signum); 383 if (signum != SIGCONT) { 384 /* easier in psignal */ 385 sigaddset(&p->p_sigctx.ps_sigignore, signum); 386 } 387 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 388 } else { 389 sigdelset(&p->p_sigctx.ps_sigignore, signum); 390 if (nsa->sa_handler == SIG_DFL) 391 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 392 else 393 sigaddset(&p->p_sigctx.ps_sigcatch, signum); 394 } 395 (void) spl0(); 396 } 397 398 return (0); 399 } 400 401 #ifdef COMPAT_16 402 /* ARGSUSED */ 403 int 404 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval) 405 { 406 struct compat_16_sys___sigaction14_args /* { 407 syscallarg(int) signum; 408 syscallarg(const struct sigaction *) nsa; 409 syscallarg(struct sigaction *) osa; 410 } */ *uap = v; 411 struct proc *p; 412 struct sigaction nsa, osa; 413 int error; 414 415 if (SCARG(uap, nsa)) { 416 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa)); 417 if (error) 418 return (error); 419 } 420 p = l->l_proc; 421 error = sigaction1(p, SCARG(uap, signum), 422 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0, 423 NULL, 0); 424 if (error) 425 return (error); 426 if (SCARG(uap, osa)) { 427 error = copyout(&osa, SCARG(uap, osa), sizeof(osa)); 428 if (error) 429 return (error); 430 } 431 return (0); 432 } 433 #endif 434 435 /* ARGSUSED */ 436 int 437 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval) 438 { 439 struct sys___sigaction_sigtramp_args /* { 440 syscallarg(int) signum; 441 syscallarg(const struct sigaction *) nsa; 442 syscallarg(struct sigaction *) osa; 443 syscallarg(void *) tramp; 444 syscallarg(int) vers; 445 } */ *uap = v; 446 struct proc *p = l->l_proc; 447 struct sigaction nsa, osa; 448 int error; 449 450 if (SCARG(uap, nsa)) { 451 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa)); 452 if (error) 453 return (error); 454 } 455 error = sigaction1(p, SCARG(uap, signum), 456 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0, 457 SCARG(uap, tramp), SCARG(uap, vers)); 458 if (error) 459 return (error); 460 if (SCARG(uap, osa)) { 461 error = copyout(&osa, SCARG(uap, osa), sizeof(osa)); 462 if (error) 463 return (error); 464 } 465 return (0); 466 } 467 468 /* 469 * Initialize signal state for process 0; 470 * set to ignore signals that are ignored by default and disable the signal 471 * stack. 472 */ 473 void 474 siginit(struct proc *p) 475 { 476 struct sigacts *ps; 477 int signum, prop; 478 479 ps = p->p_sigacts; 480 sigemptyset(&contsigmask); 481 sigemptyset(&stopsigmask); 482 sigemptyset(&sigcantmask); 483 for (signum = 1; signum < NSIG; signum++) { 484 prop = sigprop[signum]; 485 if (prop & SA_CONT) 486 sigaddset(&contsigmask, signum); 487 if (prop & SA_STOP) 488 sigaddset(&stopsigmask, signum); 489 if (prop & SA_CANTMASK) 490 sigaddset(&sigcantmask, signum); 491 if (prop & SA_IGNORE && signum != SIGCONT) 492 sigaddset(&p->p_sigctx.ps_sigignore, signum); 493 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask); 494 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART; 495 } 496 sigemptyset(&p->p_sigctx.ps_sigcatch); 497 p->p_sigctx.ps_sigwaited = NULL; 498 p->p_flag &= ~P_NOCLDSTOP; 499 500 /* 501 * Reset stack state to the user stack. 502 */ 503 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE; 504 p->p_sigctx.ps_sigstk.ss_size = 0; 505 p->p_sigctx.ps_sigstk.ss_sp = 0; 506 507 /* One reference. */ 508 ps->sa_refcnt = 1; 509 } 510 511 /* 512 * Reset signals for an exec of the specified process. 513 */ 514 void 515 execsigs(struct proc *p) 516 { 517 struct sigacts *ps; 518 int signum, prop; 519 520 sigactsunshare(p); 521 522 ps = p->p_sigacts; 523 524 /* 525 * Reset caught signals. Held signals remain held 526 * through p_sigctx.ps_sigmask (unless they were caught, 527 * and are now ignored by default). 528 */ 529 for (signum = 1; signum < NSIG; signum++) { 530 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) { 531 prop = sigprop[signum]; 532 if (prop & SA_IGNORE) { 533 if ((prop & SA_CONT) == 0) 534 sigaddset(&p->p_sigctx.ps_sigignore, 535 signum); 536 sigdelset(&p->p_sigctx.ps_siglist, signum); 537 } 538 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 539 } 540 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask); 541 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART; 542 } 543 sigemptyset(&p->p_sigctx.ps_sigcatch); 544 p->p_sigctx.ps_sigwaited = NULL; 545 546 /* 547 * Reset no zombies if child dies flag as Solaris does. 548 */ 549 p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN); 550 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 551 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 552 553 /* 554 * Reset stack state to the user stack. 555 */ 556 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE; 557 p->p_sigctx.ps_sigstk.ss_size = 0; 558 p->p_sigctx.ps_sigstk.ss_sp = 0; 559 } 560 561 int 562 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss) 563 { 564 565 if (oss) 566 *oss = p->p_sigctx.ps_sigmask; 567 568 if (nss) { 569 (void)splsched(); /* XXXSMP */ 570 switch (how) { 571 case SIG_BLOCK: 572 sigplusset(nss, &p->p_sigctx.ps_sigmask); 573 break; 574 case SIG_UNBLOCK: 575 sigminusset(nss, &p->p_sigctx.ps_sigmask); 576 CHECKSIGS(p); 577 break; 578 case SIG_SETMASK: 579 p->p_sigctx.ps_sigmask = *nss; 580 CHECKSIGS(p); 581 break; 582 default: 583 (void)spl0(); /* XXXSMP */ 584 return (EINVAL); 585 } 586 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask); 587 (void)spl0(); /* XXXSMP */ 588 } 589 590 return (0); 591 } 592 593 /* 594 * Manipulate signal mask. 595 * Note that we receive new mask, not pointer, 596 * and return old mask as return value; 597 * the library stub does the rest. 598 */ 599 int 600 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval) 601 { 602 struct sys___sigprocmask14_args /* { 603 syscallarg(int) how; 604 syscallarg(const sigset_t *) set; 605 syscallarg(sigset_t *) oset; 606 } */ *uap = v; 607 struct proc *p; 608 sigset_t nss, oss; 609 int error; 610 611 if (SCARG(uap, set)) { 612 error = copyin(SCARG(uap, set), &nss, sizeof(nss)); 613 if (error) 614 return (error); 615 } 616 p = l->l_proc; 617 error = sigprocmask1(p, SCARG(uap, how), 618 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0); 619 if (error) 620 return (error); 621 if (SCARG(uap, oset)) { 622 error = copyout(&oss, SCARG(uap, oset), sizeof(oss)); 623 if (error) 624 return (error); 625 } 626 return (0); 627 } 628 629 void 630 sigpending1(struct proc *p, sigset_t *ss) 631 { 632 633 *ss = p->p_sigctx.ps_siglist; 634 sigminusset(&p->p_sigctx.ps_sigmask, ss); 635 } 636 637 /* ARGSUSED */ 638 int 639 sys___sigpending14(struct lwp *l, void *v, register_t *retval) 640 { 641 struct sys___sigpending14_args /* { 642 syscallarg(sigset_t *) set; 643 } */ *uap = v; 644 struct proc *p; 645 sigset_t ss; 646 647 p = l->l_proc; 648 sigpending1(p, &ss); 649 return (copyout(&ss, SCARG(uap, set), sizeof(ss))); 650 } 651 652 int 653 sigsuspend1(struct proc *p, const sigset_t *ss) 654 { 655 struct sigacts *ps; 656 657 ps = p->p_sigacts; 658 if (ss) { 659 /* 660 * When returning from sigpause, we want 661 * the old mask to be restored after the 662 * signal handler has finished. Thus, we 663 * save it here and mark the sigctx structure 664 * to indicate this. 665 */ 666 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask; 667 p->p_sigctx.ps_flags |= SAS_OLDMASK; 668 (void) splsched(); /* XXXSMP */ 669 p->p_sigctx.ps_sigmask = *ss; 670 CHECKSIGS(p); 671 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask); 672 (void) spl0(); /* XXXSMP */ 673 } 674 675 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0) 676 /* void */; 677 678 /* always return EINTR rather than ERESTART... */ 679 return (EINTR); 680 } 681 682 /* 683 * Suspend process until signal, providing mask to be set 684 * in the meantime. Note nonstandard calling convention: 685 * libc stub passes mask, not pointer, to save a copyin. 686 */ 687 /* ARGSUSED */ 688 int 689 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval) 690 { 691 struct sys___sigsuspend14_args /* { 692 syscallarg(const sigset_t *) set; 693 } */ *uap = v; 694 struct proc *p; 695 sigset_t ss; 696 int error; 697 698 if (SCARG(uap, set)) { 699 error = copyin(SCARG(uap, set), &ss, sizeof(ss)); 700 if (error) 701 return (error); 702 } 703 704 p = l->l_proc; 705 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0)); 706 } 707 708 int 709 sigaltstack1(struct proc *p, const struct sigaltstack *nss, 710 struct sigaltstack *oss) 711 { 712 713 if (oss) 714 *oss = p->p_sigctx.ps_sigstk; 715 716 if (nss) { 717 if (nss->ss_flags & ~SS_ALLBITS) 718 return (EINVAL); 719 720 if (nss->ss_flags & SS_DISABLE) { 721 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) 722 return (EINVAL); 723 } else { 724 if (nss->ss_size < MINSIGSTKSZ) 725 return (ENOMEM); 726 } 727 p->p_sigctx.ps_sigstk = *nss; 728 } 729 730 return (0); 731 } 732 733 /* ARGSUSED */ 734 int 735 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval) 736 { 737 struct sys___sigaltstack14_args /* { 738 syscallarg(const struct sigaltstack *) nss; 739 syscallarg(struct sigaltstack *) oss; 740 } */ *uap = v; 741 struct proc *p; 742 struct sigaltstack nss, oss; 743 int error; 744 745 if (SCARG(uap, nss)) { 746 error = copyin(SCARG(uap, nss), &nss, sizeof(nss)); 747 if (error) 748 return (error); 749 } 750 p = l->l_proc; 751 error = sigaltstack1(p, 752 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0); 753 if (error) 754 return (error); 755 if (SCARG(uap, oss)) { 756 error = copyout(&oss, SCARG(uap, oss), sizeof(oss)); 757 if (error) 758 return (error); 759 } 760 return (0); 761 } 762 763 /* ARGSUSED */ 764 int 765 sys_kill(struct lwp *l, void *v, register_t *retval) 766 { 767 struct sys_kill_args /* { 768 syscallarg(int) pid; 769 syscallarg(int) signum; 770 } */ *uap = v; 771 struct proc *cp, *p; 772 kauth_cred_t pc; 773 ksiginfo_t ksi; 774 int signum = SCARG(uap, signum); 775 int error; 776 777 cp = l->l_proc; 778 pc = cp->p_cred; 779 if ((u_int)signum >= NSIG) 780 return (EINVAL); 781 KSI_INIT(&ksi); 782 ksi.ksi_signo = signum; 783 ksi.ksi_code = SI_USER; 784 ksi.ksi_pid = cp->p_pid; 785 ksi.ksi_uid = kauth_cred_geteuid(cp->p_cred); 786 if (SCARG(uap, pid) > 0) { 787 /* kill single process */ 788 if ((p = pfind(SCARG(uap, pid))) == NULL) 789 return (ESRCH); 790 error = kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL, p, 791 (void *)(uintptr_t)signum, NULL, NULL); 792 if (error) 793 return error; 794 if (signum) 795 kpsignal2(p, &ksi, 1); 796 return (0); 797 } 798 switch (SCARG(uap, pid)) { 799 case -1: /* broadcast signal */ 800 return (killpg1(cp, &ksi, 0, 1)); 801 case 0: /* signal own process group */ 802 return (killpg1(cp, &ksi, 0, 0)); 803 default: /* negative explicit process group */ 804 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0)); 805 } 806 /* NOTREACHED */ 807 } 808 809 /* 810 * Common code for kill process group/broadcast kill. 811 * cp is calling process. 812 */ 813 int 814 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all) 815 { 816 struct proc *p; 817 kauth_cred_t pc; 818 struct pgrp *pgrp; 819 int nfound; 820 int signum = ksi->ksi_signo; 821 822 pc = cp->p_cred; 823 nfound = 0; 824 if (all) { 825 /* 826 * broadcast 827 */ 828 proclist_lock_read(); 829 PROCLIST_FOREACH(p, &allproc) { 830 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == cp || 831 kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL, 832 p, (void *)(uintptr_t)signum, NULL, NULL) != 0) 833 continue; 834 nfound++; 835 if (signum) 836 kpsignal2(p, ksi, 1); 837 } 838 proclist_unlock_read(); 839 } else { 840 if (pgid == 0) 841 /* 842 * zero pgid means send to my process group. 843 */ 844 pgrp = cp->p_pgrp; 845 else { 846 pgrp = pgfind(pgid); 847 if (pgrp == NULL) 848 return (ESRCH); 849 } 850 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 851 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || 852 kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL, 853 p, (void *)(uintptr_t)signum, NULL, NULL) != 0) 854 continue; 855 nfound++; 856 if (signum && P_ZOMBIE(p) == 0) 857 kpsignal2(p, ksi, 1); 858 } 859 } 860 return (nfound ? 0 : ESRCH); 861 } 862 863 /* 864 * Send a signal to a process group. 865 */ 866 void 867 gsignal(int pgid, int signum) 868 { 869 ksiginfo_t ksi; 870 KSI_INIT_EMPTY(&ksi); 871 ksi.ksi_signo = signum; 872 kgsignal(pgid, &ksi, NULL); 873 } 874 875 void 876 kgsignal(int pgid, ksiginfo_t *ksi, void *data) 877 { 878 struct pgrp *pgrp; 879 880 if (pgid && (pgrp = pgfind(pgid))) 881 kpgsignal(pgrp, ksi, data, 0); 882 } 883 884 /* 885 * Send a signal to a process group. If checktty is 1, 886 * limit to members which have a controlling terminal. 887 */ 888 void 889 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 890 { 891 ksiginfo_t ksi; 892 KSI_INIT_EMPTY(&ksi); 893 ksi.ksi_signo = sig; 894 kpgsignal(pgrp, &ksi, NULL, checkctty); 895 } 896 897 void 898 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 899 { 900 struct proc *p; 901 902 if (pgrp) 903 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 904 if (checkctty == 0 || p->p_flag & P_CONTROLT) 905 kpsignal(p, ksi, data); 906 } 907 908 /* 909 * Send a signal caused by a trap to the current process. 910 * If it will be caught immediately, deliver it with correct code. 911 * Otherwise, post it normally. 912 */ 913 void 914 trapsignal(struct lwp *l, const ksiginfo_t *ksi) 915 { 916 struct proc *p; 917 struct sigacts *ps; 918 int signum = ksi->ksi_signo; 919 920 KASSERT(KSI_TRAP_P(ksi)); 921 922 p = l->l_proc; 923 ps = p->p_sigacts; 924 if ((p->p_flag & P_TRACED) == 0 && 925 sigismember(&p->p_sigctx.ps_sigcatch, signum) && 926 !sigismember(&p->p_sigctx.ps_sigmask, signum)) { 927 p->p_stats->p_ru.ru_nsignals++; 928 #ifdef KTRACE 929 if (KTRPOINT(p, KTR_PSIG)) 930 ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler, 931 &p->p_sigctx.ps_sigmask, ksi); 932 #endif 933 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask); 934 (void) splsched(); /* XXXSMP */ 935 sigplusset(&SIGACTION_PS(ps, signum).sa_mask, 936 &p->p_sigctx.ps_sigmask); 937 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) { 938 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 939 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) 940 sigaddset(&p->p_sigctx.ps_sigignore, signum); 941 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 942 } 943 (void) spl0(); /* XXXSMP */ 944 } else { 945 p->p_sigctx.ps_lwp = l->l_lid; 946 /* XXX for core dump/debugger */ 947 p->p_sigctx.ps_signo = ksi->ksi_signo; 948 p->p_sigctx.ps_code = ksi->ksi_trap; 949 kpsignal2(p, ksi, 1); 950 } 951 } 952 953 /* 954 * Fill in signal information and signal the parent for a child status change. 955 */ 956 void 957 child_psignal(struct proc *p, int dolock) 958 { 959 ksiginfo_t ksi; 960 961 KSI_INIT(&ksi); 962 ksi.ksi_signo = SIGCHLD; 963 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED; 964 ksi.ksi_pid = p->p_pid; 965 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 966 ksi.ksi_status = p->p_xstat; 967 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 968 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 969 kpsignal2(p->p_pptr, &ksi, dolock); 970 } 971 972 /* 973 * Send the signal to the process. If the signal has an action, the action 974 * is usually performed by the target process rather than the caller; we add 975 * the signal to the set of pending signals for the process. 976 * 977 * Exceptions: 978 * o When a stop signal is sent to a sleeping process that takes the 979 * default action, the process is stopped without awakening it. 980 * o SIGCONT restarts stopped processes (or puts them back to sleep) 981 * regardless of the signal action (eg, blocked or ignored). 982 * 983 * Other ignored signals are discarded immediately. 984 * 985 * XXXSMP: Invoked as psignal() or sched_psignal(). 986 */ 987 void 988 psignal1(struct proc *p, int signum, int dolock) 989 { 990 ksiginfo_t ksi; 991 992 KSI_INIT_EMPTY(&ksi); 993 ksi.ksi_signo = signum; 994 kpsignal2(p, &ksi, dolock); 995 } 996 997 void 998 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock) 999 { 1000 1001 if ((p->p_flag & P_WEXIT) == 0 && data) { 1002 size_t fd; 1003 struct filedesc *fdp = p->p_fd; 1004 1005 ksi->ksi_fd = -1; 1006 for (fd = 0; fd < fdp->fd_nfiles; fd++) { 1007 struct file *fp = fdp->fd_ofiles[fd]; 1008 /* XXX: lock? */ 1009 if (fp && fp->f_data == data) { 1010 ksi->ksi_fd = fd; 1011 break; 1012 } 1013 } 1014 } 1015 kpsignal2(p, ksi, dolock); 1016 } 1017 1018 static void 1019 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock) 1020 { 1021 struct lwp *l, *suspended = NULL; 1022 struct sadata_vp *vp; 1023 int s = 0, prop, allsusp; 1024 sig_t action; 1025 int signum = ksi->ksi_signo; 1026 1027 #ifdef DIAGNOSTIC 1028 if (signum <= 0 || signum >= NSIG) 1029 panic("psignal signal number %d", signum); 1030 1031 /* XXXSMP: works, but icky */ 1032 if (dolock) 1033 SCHED_ASSERT_UNLOCKED(); 1034 else 1035 SCHED_ASSERT_LOCKED(); 1036 #endif 1037 1038 /* 1039 * Notify any interested parties in the signal. 1040 */ 1041 KNOTE(&p->p_klist, NOTE_SIGNAL | signum); 1042 1043 prop = sigprop[signum]; 1044 1045 /* 1046 * If proc is traced, always give parent a chance. 1047 */ 1048 if (p->p_flag & P_TRACED) { 1049 action = SIG_DFL; 1050 1051 /* 1052 * If the process is being traced and the signal is being 1053 * caught, make sure to save any ksiginfo. 1054 */ 1055 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) 1056 ksiginfo_put(p, ksi); 1057 } else { 1058 /* 1059 * If the signal was the result of a trap, reset it 1060 * to default action if it's currently masked, so that it would 1061 * coredump immediatelly instead of spinning repeatedly 1062 * taking the signal. 1063 */ 1064 if (KSI_TRAP_P(ksi) 1065 && sigismember(&p->p_sigctx.ps_sigmask, signum) 1066 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) { 1067 sigdelset(&p->p_sigctx.ps_sigignore, signum); 1068 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 1069 sigdelset(&p->p_sigctx.ps_sigmask, signum); 1070 SIGACTION(p, signum).sa_handler = SIG_DFL; 1071 } 1072 1073 /* 1074 * If the signal is being ignored, 1075 * then we forget about it immediately. 1076 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore, 1077 * and if it is set to SIG_IGN, 1078 * action will be SIG_DFL here.) 1079 */ 1080 if (sigismember(&p->p_sigctx.ps_sigignore, signum)) 1081 return; 1082 if (sigismember(&p->p_sigctx.ps_sigmask, signum)) 1083 action = SIG_HOLD; 1084 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) 1085 action = SIG_CATCH; 1086 else { 1087 action = SIG_DFL; 1088 1089 if (prop & SA_KILL && p->p_nice > NZERO) 1090 p->p_nice = NZERO; 1091 1092 /* 1093 * If sending a tty stop signal to a member of an 1094 * orphaned process group, discard the signal here if 1095 * the action is default; don't stop the process below 1096 * if sleeping, and don't clear any pending SIGCONT. 1097 */ 1098 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1099 return; 1100 } 1101 } 1102 1103 if (prop & SA_CONT) 1104 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist); 1105 1106 if (prop & SA_STOP) 1107 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist); 1108 1109 /* 1110 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1111 * please!), check if anything waits on it. If yes, save the 1112 * info into provided ps_sigwaited, and wake-up the waiter. 1113 * The signal won't be processed further here. 1114 */ 1115 if ((prop & SA_CANTMASK) == 0 1116 && p->p_sigctx.ps_sigwaited 1117 && sigismember(p->p_sigctx.ps_sigwait, signum) 1118 && p->p_stat != SSTOP) { 1119 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info; 1120 p->p_sigctx.ps_sigwaited = NULL; 1121 if (dolock) 1122 wakeup_one(&p->p_sigctx.ps_sigwait); 1123 else 1124 sched_wakeup(&p->p_sigctx.ps_sigwait); 1125 return; 1126 } 1127 1128 sigaddset(&p->p_sigctx.ps_siglist, signum); 1129 1130 /* CHECKSIGS() is "inlined" here. */ 1131 p->p_sigctx.ps_sigcheck = 1; 1132 1133 /* 1134 * Defer further processing for signals which are held, 1135 * except that stopped processes must be continued by SIGCONT. 1136 */ 1137 if (action == SIG_HOLD && 1138 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) { 1139 ksiginfo_put(p, ksi); 1140 return; 1141 } 1142 /* XXXSMP: works, but icky */ 1143 if (dolock) 1144 SCHED_LOCK(s); 1145 1146 if (p->p_flag & P_SA) { 1147 allsusp = 0; 1148 l = NULL; 1149 if (p->p_stat == SACTIVE) { 1150 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1151 l = vp->savp_lwp; 1152 KDASSERT(l != NULL); 1153 if (l->l_flag & L_SA_IDLE) { 1154 /* wakeup idle LWP */ 1155 goto found; 1156 /*NOTREACHED*/ 1157 } else if (l->l_flag & L_SA_YIELD) { 1158 /* idle LWP is already waking up */ 1159 goto out; 1160 /*NOTREACHED*/ 1161 } 1162 } 1163 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1164 l = vp->savp_lwp; 1165 if (l->l_stat == LSRUN || 1166 l->l_stat == LSONPROC) { 1167 signotify(p); 1168 goto out; 1169 /*NOTREACHED*/ 1170 } 1171 if (l->l_stat == LSSLEEP && 1172 l->l_flag & L_SINTR) { 1173 /* ok to signal vp lwp */ 1174 break; 1175 } else 1176 l = NULL; 1177 } 1178 } else if (p->p_stat == SSTOP) { 1179 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1180 l = vp->savp_lwp; 1181 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0) 1182 break; 1183 l = NULL; 1184 } 1185 } 1186 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) { 1187 /* 1188 * At least one LWP is running or on a run queue. 1189 * The signal will be noticed when one of them returns 1190 * to userspace. 1191 */ 1192 signotify(p); 1193 /* 1194 * The signal will be noticed very soon. 1195 */ 1196 goto out; 1197 /*NOTREACHED*/ 1198 } else { 1199 /* 1200 * Find out if any of the sleeps are interruptable, 1201 * and if all the live LWPs remaining are suspended. 1202 */ 1203 allsusp = 1; 1204 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1205 if (l->l_stat == LSSLEEP && 1206 l->l_flag & L_SINTR) 1207 break; 1208 if (l->l_stat == LSSUSPENDED) 1209 suspended = l; 1210 else if ((l->l_stat != LSZOMB) && 1211 (l->l_stat != LSDEAD)) 1212 allsusp = 0; 1213 } 1214 } 1215 1216 found: 1217 switch (p->p_stat) { 1218 case SACTIVE: 1219 1220 if (l != NULL && (p->p_flag & P_TRACED)) 1221 goto run; 1222 1223 /* 1224 * If SIGCONT is default (or ignored) and process is 1225 * asleep, we are finished; the process should not 1226 * be awakened. 1227 */ 1228 if ((prop & SA_CONT) && action == SIG_DFL) { 1229 sigdelset(&p->p_sigctx.ps_siglist, signum); 1230 goto done; 1231 } 1232 1233 /* 1234 * When a sleeping process receives a stop 1235 * signal, process immediately if possible. 1236 */ 1237 if ((prop & SA_STOP) && action == SIG_DFL) { 1238 /* 1239 * If a child holding parent blocked, 1240 * stopping could cause deadlock. 1241 */ 1242 if (p->p_flag & P_PPWAIT) { 1243 goto out; 1244 } 1245 sigdelset(&p->p_sigctx.ps_siglist, signum); 1246 p->p_xstat = signum; 1247 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) { 1248 /* 1249 * XXXSMP: recursive call; don't lock 1250 * the second time around. 1251 */ 1252 child_psignal(p, 0); 1253 } 1254 proc_stop(p, 1); /* XXXSMP: recurse? */ 1255 goto done; 1256 } 1257 1258 if (l == NULL) { 1259 /* 1260 * Special case: SIGKILL of a process 1261 * which is entirely composed of 1262 * suspended LWPs should succeed. We 1263 * make this happen by unsuspending one of 1264 * them. 1265 */ 1266 if (allsusp && (signum == SIGKILL)) { 1267 lwp_continue(suspended); 1268 } 1269 goto done; 1270 } 1271 /* 1272 * All other (caught or default) signals 1273 * cause the process to run. 1274 */ 1275 goto runfast; 1276 /*NOTREACHED*/ 1277 case SSTOP: 1278 /* Process is stopped */ 1279 /* 1280 * If traced process is already stopped, 1281 * then no further action is necessary. 1282 */ 1283 if (p->p_flag & P_TRACED) 1284 goto done; 1285 1286 /* 1287 * Kill signal always sets processes running, 1288 * if possible. 1289 */ 1290 if (signum == SIGKILL) { 1291 l = proc_unstop(p); 1292 if (l) 1293 goto runfast; 1294 goto done; 1295 } 1296 1297 if (prop & SA_CONT) { 1298 /* 1299 * If SIGCONT is default (or ignored), 1300 * we continue the process but don't 1301 * leave the signal in ps_siglist, as 1302 * it has no further action. If 1303 * SIGCONT is held, we continue the 1304 * process and leave the signal in 1305 * ps_siglist. If the process catches 1306 * SIGCONT, let it handle the signal 1307 * itself. If it isn't waiting on an 1308 * event, then it goes back to run 1309 * state. Otherwise, process goes 1310 * back to sleep state. 1311 */ 1312 if (action == SIG_DFL) 1313 sigdelset(&p->p_sigctx.ps_siglist, 1314 signum); 1315 l = proc_unstop(p); 1316 if (l && (action == SIG_CATCH)) 1317 goto runfast; 1318 goto out; 1319 } 1320 1321 if (prop & SA_STOP) { 1322 /* 1323 * Already stopped, don't need to stop again. 1324 * (If we did the shell could get confused.) 1325 */ 1326 sigdelset(&p->p_sigctx.ps_siglist, signum); 1327 goto done; 1328 } 1329 1330 /* 1331 * If a lwp is sleeping interruptibly, then 1332 * wake it up; it will run until the kernel 1333 * boundary, where it will stop in issignal(), 1334 * since p->p_stat is still SSTOP. When the 1335 * process is continued, it will be made 1336 * runnable and can look at the signal. 1337 */ 1338 if (l) 1339 goto run; 1340 goto out; 1341 case SIDL: 1342 /* Process is being created by fork */ 1343 /* XXX: We are not ready to receive signals yet */ 1344 goto done; 1345 default: 1346 /* Else what? */ 1347 panic("psignal: Invalid process state %d.", p->p_stat); 1348 } 1349 /*NOTREACHED*/ 1350 1351 runfast: 1352 if (action == SIG_CATCH) { 1353 ksiginfo_put(p, ksi); 1354 action = SIG_HOLD; 1355 } 1356 /* 1357 * Raise priority to at least PUSER. 1358 */ 1359 if (l->l_priority > PUSER) 1360 l->l_priority = PUSER; 1361 run: 1362 if (action == SIG_CATCH) { 1363 ksiginfo_put(p, ksi); 1364 action = SIG_HOLD; 1365 } 1366 1367 setrunnable(l); /* XXXSMP: recurse? */ 1368 out: 1369 if (action == SIG_CATCH) 1370 ksiginfo_put(p, ksi); 1371 done: 1372 /* XXXSMP: works, but icky */ 1373 if (dolock) 1374 SCHED_UNLOCK(s); 1375 } 1376 1377 siginfo_t * 1378 siginfo_alloc(int flags) 1379 { 1380 1381 return pool_get(&siginfo_pool, flags); 1382 } 1383 1384 void 1385 siginfo_free(void *arg) 1386 { 1387 1388 pool_put(&siginfo_pool, arg); 1389 } 1390 1391 void 1392 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1393 { 1394 struct proc *p = l->l_proc; 1395 struct lwp *le, *li; 1396 siginfo_t *si; 1397 int f; 1398 1399 if (p->p_flag & P_SA) { 1400 1401 /* XXXUPSXXX What if not on sa_vp ? */ 1402 1403 f = l->l_flag & L_SA; 1404 l->l_flag &= ~L_SA; 1405 si = siginfo_alloc(PR_WAITOK); 1406 si->_info = ksi->ksi_info; 1407 le = li = NULL; 1408 if (KSI_TRAP_P(ksi)) 1409 le = l; 1410 else 1411 li = l; 1412 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li, 1413 sizeof(*si), si, siginfo_free) != 0) { 1414 siginfo_free(si); 1415 if (KSI_TRAP_P(ksi)) 1416 /* XXX What do we do here?? */; 1417 } 1418 l->l_flag |= f; 1419 return; 1420 } 1421 1422 (*p->p_emul->e_sendsig)(ksi, mask); 1423 } 1424 1425 static inline int firstsig(const sigset_t *); 1426 1427 static inline int 1428 firstsig(const sigset_t *ss) 1429 { 1430 int sig; 1431 1432 sig = ffs(ss->__bits[0]); 1433 if (sig != 0) 1434 return (sig); 1435 #if NSIG > 33 1436 sig = ffs(ss->__bits[1]); 1437 if (sig != 0) 1438 return (sig + 32); 1439 #endif 1440 #if NSIG > 65 1441 sig = ffs(ss->__bits[2]); 1442 if (sig != 0) 1443 return (sig + 64); 1444 #endif 1445 #if NSIG > 97 1446 sig = ffs(ss->__bits[3]); 1447 if (sig != 0) 1448 return (sig + 96); 1449 #endif 1450 return (0); 1451 } 1452 1453 /* 1454 * If the current process has received a signal (should be caught or cause 1455 * termination, should interrupt current syscall), return the signal number. 1456 * Stop signals with default action are processed immediately, then cleared; 1457 * they aren't returned. This is checked after each entry to the system for 1458 * a syscall or trap (though this can usually be done without calling issignal 1459 * by checking the pending signal masks in the CURSIG macro.) The normal call 1460 * sequence is 1461 * 1462 * while (signum = CURSIG(curlwp)) 1463 * postsig(signum); 1464 */ 1465 int 1466 issignal(struct lwp *l) 1467 { 1468 struct proc *p = l->l_proc; 1469 int s = 0, signum, prop; 1470 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock; 1471 sigset_t ss; 1472 1473 /* Bail out if we do not own the virtual processor */ 1474 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l) 1475 return 0; 1476 1477 if (p->p_stat == SSTOP) { 1478 /* 1479 * The process is stopped/stopping. Stop ourselves now that 1480 * we're on the kernel/userspace boundary. 1481 */ 1482 if (dolock) 1483 SCHED_LOCK(s); 1484 l->l_stat = LSSTOP; 1485 p->p_nrlwps--; 1486 if (p->p_flag & P_TRACED) 1487 goto sigtraceswitch; 1488 else 1489 goto sigswitch; 1490 } 1491 for (;;) { 1492 sigpending1(p, &ss); 1493 if (p->p_flag & P_PPWAIT) 1494 sigminusset(&stopsigmask, &ss); 1495 signum = firstsig(&ss); 1496 if (signum == 0) { /* no signal to send */ 1497 p->p_sigctx.ps_sigcheck = 0; 1498 if (locked && dolock) 1499 SCHED_LOCK(s); 1500 return (0); 1501 } 1502 /* take the signal! */ 1503 sigdelset(&p->p_sigctx.ps_siglist, signum); 1504 1505 /* 1506 * We should see pending but ignored signals 1507 * only if P_TRACED was on when they were posted. 1508 */ 1509 if (sigismember(&p->p_sigctx.ps_sigignore, signum) && 1510 (p->p_flag & P_TRACED) == 0) 1511 continue; 1512 1513 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) { 1514 /* 1515 * If traced, always stop, and stay 1516 * stopped until released by the debugger. 1517 */ 1518 p->p_xstat = signum; 1519 1520 /* Emulation-specific handling of signal trace */ 1521 if ((p->p_emul->e_tracesig != NULL) && 1522 ((*p->p_emul->e_tracesig)(p, signum) != 0)) 1523 goto childresumed; 1524 1525 if ((p->p_flag & P_FSTRACE) == 0) 1526 child_psignal(p, dolock); 1527 if (dolock) 1528 SCHED_LOCK(s); 1529 proc_stop(p, 1); 1530 sigtraceswitch: 1531 mi_switch(l, NULL); 1532 SCHED_ASSERT_UNLOCKED(); 1533 if (dolock) 1534 splx(s); 1535 else 1536 dolock = 1; 1537 1538 childresumed: 1539 /* 1540 * If we are no longer being traced, or the parent 1541 * didn't give us a signal, look for more signals. 1542 */ 1543 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0) 1544 continue; 1545 1546 /* 1547 * If the new signal is being masked, look for other 1548 * signals. 1549 */ 1550 signum = p->p_xstat; 1551 p->p_xstat = 0; 1552 /* 1553 * `p->p_sigctx.ps_siglist |= mask' is done 1554 * in setrunnable(). 1555 */ 1556 if (sigismember(&p->p_sigctx.ps_sigmask, signum)) 1557 continue; 1558 /* take the signal! */ 1559 sigdelset(&p->p_sigctx.ps_siglist, signum); 1560 } 1561 1562 prop = sigprop[signum]; 1563 1564 /* 1565 * Decide whether the signal should be returned. 1566 * Return the signal's number, or fall through 1567 * to clear it from the pending mask. 1568 */ 1569 switch ((long)SIGACTION(p, signum).sa_handler) { 1570 1571 case (long)SIG_DFL: 1572 /* 1573 * Don't take default actions on system processes. 1574 */ 1575 if (p->p_pid <= 1) { 1576 #ifdef DIAGNOSTIC 1577 /* 1578 * Are you sure you want to ignore SIGSEGV 1579 * in init? XXX 1580 */ 1581 printf("Process (pid %d) got signal %d\n", 1582 p->p_pid, signum); 1583 #endif 1584 break; /* == ignore */ 1585 } 1586 /* 1587 * If there is a pending stop signal to process 1588 * with default action, stop here, 1589 * then clear the signal. However, 1590 * if process is member of an orphaned 1591 * process group, ignore tty stop signals. 1592 */ 1593 if (prop & SA_STOP) { 1594 if (p->p_flag & P_TRACED || 1595 (p->p_pgrp->pg_jobc == 0 && 1596 prop & SA_TTYSTOP)) 1597 break; /* == ignore */ 1598 p->p_xstat = signum; 1599 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) 1600 child_psignal(p, dolock); 1601 if (dolock) 1602 SCHED_LOCK(s); 1603 proc_stop(p, 1); 1604 sigswitch: 1605 mi_switch(l, NULL); 1606 SCHED_ASSERT_UNLOCKED(); 1607 if (dolock) 1608 splx(s); 1609 else 1610 dolock = 1; 1611 break; 1612 } else if (prop & SA_IGNORE) { 1613 /* 1614 * Except for SIGCONT, shouldn't get here. 1615 * Default action is to ignore; drop it. 1616 */ 1617 break; /* == ignore */ 1618 } else 1619 goto keep; 1620 /*NOTREACHED*/ 1621 1622 case (long)SIG_IGN: 1623 /* 1624 * Masking above should prevent us ever trying 1625 * to take action on an ignored signal other 1626 * than SIGCONT, unless process is traced. 1627 */ 1628 #ifdef DEBUG_ISSIGNAL 1629 if ((prop & SA_CONT) == 0 && 1630 (p->p_flag & P_TRACED) == 0) 1631 printf("issignal\n"); 1632 #endif 1633 break; /* == ignore */ 1634 1635 default: 1636 /* 1637 * This signal has an action, let 1638 * postsig() process it. 1639 */ 1640 goto keep; 1641 } 1642 } 1643 /* NOTREACHED */ 1644 1645 keep: 1646 /* leave the signal for later */ 1647 sigaddset(&p->p_sigctx.ps_siglist, signum); 1648 CHECKSIGS(p); 1649 if (locked && dolock) 1650 SCHED_LOCK(s); 1651 return (signum); 1652 } 1653 1654 /* 1655 * Put the argument process into the stopped state and notify the parent 1656 * via wakeup. Signals are handled elsewhere. The process must not be 1657 * on the run queue. 1658 */ 1659 void 1660 proc_stop(struct proc *p, int dowakeup) 1661 { 1662 struct lwp *l; 1663 struct proc *parent; 1664 struct sadata_vp *vp; 1665 1666 SCHED_ASSERT_LOCKED(); 1667 1668 /* XXX lock process LWP state */ 1669 p->p_flag &= ~P_WAITED; 1670 p->p_stat = SSTOP; 1671 parent = p->p_pptr; 1672 parent->p_nstopchild++; 1673 1674 if (p->p_flag & P_SA) { 1675 /* 1676 * Only (try to) put the LWP on the VP in stopped 1677 * state. 1678 * All other LWPs will suspend in sa_setwoken() 1679 * because the VP-LWP in stopped state cannot be 1680 * repossessed. 1681 */ 1682 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1683 l = vp->savp_lwp; 1684 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) { 1685 l->l_stat = LSSTOP; 1686 p->p_nrlwps--; 1687 } else if (l->l_stat == LSRUN) { 1688 /* Remove LWP from the run queue */ 1689 remrunqueue(l); 1690 l->l_stat = LSSTOP; 1691 p->p_nrlwps--; 1692 } else if (l->l_stat == LSSLEEP && 1693 l->l_flag & L_SA_IDLE) { 1694 l->l_flag &= ~L_SA_IDLE; 1695 l->l_stat = LSSTOP; 1696 } 1697 } 1698 goto out; 1699 } 1700 1701 /* 1702 * Put as many LWP's as possible in stopped state. 1703 * Sleeping ones will notice the stopped state as they try to 1704 * return to userspace. 1705 */ 1706 1707 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1708 if (l->l_stat == LSONPROC) { 1709 /* XXX SMP this assumes that a LWP that is LSONPROC 1710 * is curlwp and hence is about to be mi_switched 1711 * away; the only callers of proc_stop() are: 1712 * - psignal 1713 * - issignal() 1714 * For the former, proc_stop() is only called when 1715 * no processes are running, so we don't worry. 1716 * For the latter, proc_stop() is called right 1717 * before mi_switch(). 1718 */ 1719 l->l_stat = LSSTOP; 1720 p->p_nrlwps--; 1721 } else if (l->l_stat == LSRUN) { 1722 /* Remove LWP from the run queue */ 1723 remrunqueue(l); 1724 l->l_stat = LSSTOP; 1725 p->p_nrlwps--; 1726 } else if ((l->l_stat == LSSLEEP) || 1727 (l->l_stat == LSSUSPENDED) || 1728 (l->l_stat == LSZOMB) || 1729 (l->l_stat == LSDEAD)) { 1730 /* 1731 * Don't do anything; let sleeping LWPs 1732 * discover the stopped state of the process 1733 * on their way out of the kernel; otherwise, 1734 * things like NFS threads that sleep with 1735 * locks will block the rest of the system 1736 * from getting any work done. 1737 * 1738 * Suspended/dead/zombie LWPs aren't going 1739 * anywhere, so we don't need to touch them. 1740 */ 1741 } 1742 #ifdef DIAGNOSTIC 1743 else { 1744 panic("proc_stop: process %d lwp %d " 1745 "in unstoppable state %d.\n", 1746 p->p_pid, l->l_lid, l->l_stat); 1747 } 1748 #endif 1749 } 1750 1751 out: 1752 /* XXX unlock process LWP state */ 1753 1754 if (dowakeup) 1755 sched_wakeup((caddr_t)p->p_pptr); 1756 } 1757 1758 /* 1759 * Given a process in state SSTOP, set the state back to SACTIVE and 1760 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 1761 * 1762 * If no LWPs ended up runnable (and therefore able to take a signal), 1763 * return a LWP that is sleeping interruptably. The caller can wake 1764 * that LWP up to take a signal. 1765 */ 1766 struct lwp * 1767 proc_unstop(struct proc *p) 1768 { 1769 struct lwp *l, *lr = NULL; 1770 struct sadata_vp *vp; 1771 int cantake = 0; 1772 1773 SCHED_ASSERT_LOCKED(); 1774 1775 /* 1776 * Our caller wants to be informed if there are only sleeping 1777 * and interruptable LWPs left after we have run so that it 1778 * can invoke setrunnable() if required - return one of the 1779 * interruptable LWPs if this is the case. 1780 */ 1781 1782 if (!(p->p_flag & P_WAITED)) 1783 p->p_pptr->p_nstopchild--; 1784 p->p_stat = SACTIVE; 1785 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1786 if (l->l_stat == LSRUN) { 1787 lr = NULL; 1788 cantake = 1; 1789 } 1790 if (l->l_stat != LSSTOP) 1791 continue; 1792 1793 if (l->l_wchan != NULL) { 1794 l->l_stat = LSSLEEP; 1795 if ((cantake == 0) && (l->l_flag & L_SINTR)) { 1796 lr = l; 1797 cantake = 1; 1798 } 1799 } else { 1800 setrunnable(l); 1801 lr = NULL; 1802 cantake = 1; 1803 } 1804 } 1805 if (p->p_flag & P_SA) { 1806 /* Only consider returning the LWP on the VP. */ 1807 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1808 lr = vp->savp_lwp; 1809 if (lr->l_stat == LSSLEEP) { 1810 if (lr->l_flag & L_SA_YIELD) { 1811 setrunnable(lr); 1812 break; 1813 } else if (lr->l_flag & L_SINTR) 1814 return lr; 1815 } 1816 } 1817 return NULL; 1818 } 1819 return lr; 1820 } 1821 1822 /* 1823 * Take the action for the specified signal 1824 * from the current set of pending signals. 1825 */ 1826 void 1827 postsig(int signum) 1828 { 1829 struct lwp *l; 1830 struct proc *p; 1831 struct sigacts *ps; 1832 sig_t action; 1833 sigset_t *returnmask; 1834 1835 l = curlwp; 1836 p = l->l_proc; 1837 ps = p->p_sigacts; 1838 #ifdef DIAGNOSTIC 1839 if (signum == 0) 1840 panic("postsig"); 1841 #endif 1842 1843 KERNEL_PROC_LOCK(l); 1844 1845 #ifdef MULTIPROCESSOR 1846 /* 1847 * On MP, issignal() can return the same signal to multiple 1848 * LWPs. The LWPs will block above waiting for the kernel 1849 * lock and the first LWP which gets through will then remove 1850 * the signal from ps_siglist. All other LWPs exit here. 1851 */ 1852 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) { 1853 KERNEL_PROC_UNLOCK(l); 1854 return; 1855 } 1856 #endif 1857 sigdelset(&p->p_sigctx.ps_siglist, signum); 1858 action = SIGACTION_PS(ps, signum).sa_handler; 1859 if (action == SIG_DFL) { 1860 #ifdef KTRACE 1861 if (KTRPOINT(p, KTR_PSIG)) 1862 ktrpsig(l, signum, action, 1863 p->p_sigctx.ps_flags & SAS_OLDMASK ? 1864 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 1865 NULL); 1866 #endif 1867 /* 1868 * Default action, where the default is to kill 1869 * the process. (Other cases were ignored above.) 1870 */ 1871 sigexit(l, signum); 1872 /* NOTREACHED */ 1873 } else { 1874 ksiginfo_t *ksi; 1875 /* 1876 * If we get here, the signal must be caught. 1877 */ 1878 #ifdef DIAGNOSTIC 1879 if (action == SIG_IGN || 1880 sigismember(&p->p_sigctx.ps_sigmask, signum)) 1881 panic("postsig action"); 1882 #endif 1883 /* 1884 * Set the new mask value and also defer further 1885 * occurrences of this signal. 1886 * 1887 * Special case: user has done a sigpause. Here the 1888 * current mask is not of interest, but rather the 1889 * mask from before the sigpause is what we want 1890 * restored after the signal processing is completed. 1891 */ 1892 if (p->p_sigctx.ps_flags & SAS_OLDMASK) { 1893 returnmask = &p->p_sigctx.ps_oldmask; 1894 p->p_sigctx.ps_flags &= ~SAS_OLDMASK; 1895 } else 1896 returnmask = &p->p_sigctx.ps_sigmask; 1897 p->p_stats->p_ru.ru_nsignals++; 1898 ksi = ksiginfo_get(p, signum); 1899 #ifdef KTRACE 1900 if (KTRPOINT(p, KTR_PSIG)) 1901 ktrpsig(l, signum, action, 1902 p->p_sigctx.ps_flags & SAS_OLDMASK ? 1903 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 1904 ksi); 1905 #endif 1906 if (ksi == NULL) { 1907 ksiginfo_t ksi1; 1908 /* 1909 * we did not save any siginfo for this, either 1910 * because the signal was not caught, or because the 1911 * user did not request SA_SIGINFO 1912 */ 1913 KSI_INIT_EMPTY(&ksi1); 1914 ksi1.ksi_signo = signum; 1915 kpsendsig(l, &ksi1, returnmask); 1916 } else { 1917 kpsendsig(l, ksi, returnmask); 1918 pool_put(&ksiginfo_pool, ksi); 1919 } 1920 p->p_sigctx.ps_lwp = 0; 1921 p->p_sigctx.ps_code = 0; 1922 p->p_sigctx.ps_signo = 0; 1923 (void) splsched(); /* XXXSMP */ 1924 sigplusset(&SIGACTION_PS(ps, signum).sa_mask, 1925 &p->p_sigctx.ps_sigmask); 1926 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) { 1927 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 1928 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) 1929 sigaddset(&p->p_sigctx.ps_sigignore, signum); 1930 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 1931 } 1932 (void) spl0(); /* XXXSMP */ 1933 } 1934 1935 KERNEL_PROC_UNLOCK(l); 1936 } 1937 1938 /* 1939 * Kill the current process for stated reason. 1940 */ 1941 void 1942 killproc(struct proc *p, const char *why) 1943 { 1944 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1945 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why); 1946 psignal(p, SIGKILL); 1947 } 1948 1949 /* 1950 * Force the current process to exit with the specified signal, dumping core 1951 * if appropriate. We bypass the normal tests for masked and caught signals, 1952 * allowing unrecoverable failures to terminate the process without changing 1953 * signal state. Mark the accounting record with the signal termination. 1954 * If dumping core, save the signal number for the debugger. Calls exit and 1955 * does not return. 1956 */ 1957 1958 #if defined(DEBUG) 1959 int kern_logsigexit = 1; /* not static to make public for sysctl */ 1960 #else 1961 int kern_logsigexit = 0; /* not static to make public for sysctl */ 1962 #endif 1963 1964 static const char logcoredump[] = 1965 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 1966 static const char lognocoredump[] = 1967 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 1968 1969 /* Wrapper function for use in p_userret */ 1970 static void 1971 lwp_coredump_hook(struct lwp *l, void *arg) 1972 { 1973 int s; 1974 1975 /* 1976 * Suspend ourselves, so that the kernel stack and therefore 1977 * the userland registers saved in the trapframe are around 1978 * for coredump() to write them out. 1979 */ 1980 KERNEL_PROC_LOCK(l); 1981 l->l_flag &= ~L_DETACHED; 1982 SCHED_LOCK(s); 1983 l->l_stat = LSSUSPENDED; 1984 l->l_proc->p_nrlwps--; 1985 /* XXX NJWLWP check if this makes sense here: */ 1986 l->l_proc->p_stats->p_ru.ru_nvcsw++; 1987 mi_switch(l, NULL); 1988 SCHED_ASSERT_UNLOCKED(); 1989 splx(s); 1990 1991 lwp_exit(l); 1992 } 1993 1994 void 1995 sigexit(struct lwp *l, int signum) 1996 { 1997 struct proc *p; 1998 #if 0 1999 struct lwp *l2; 2000 #endif 2001 int error, exitsig; 2002 2003 p = l->l_proc; 2004 2005 /* 2006 * Don't permit coredump() or exit1() multiple times 2007 * in the same process. 2008 */ 2009 if (p->p_flag & P_WEXIT) { 2010 KERNEL_PROC_UNLOCK(l); 2011 (*p->p_userret)(l, p->p_userret_arg); 2012 } 2013 p->p_flag |= P_WEXIT; 2014 /* We don't want to switch away from exiting. */ 2015 /* XXX multiprocessor: stop LWPs on other processors. */ 2016 #if 0 2017 if (p->p_flag & P_SA) { 2018 LIST_FOREACH(l2, &p->p_lwps, l_sibling) 2019 l2->l_flag &= ~L_SA; 2020 p->p_flag &= ~P_SA; 2021 } 2022 #endif 2023 2024 /* Make other LWPs stick around long enough to be dumped */ 2025 p->p_userret = lwp_coredump_hook; 2026 p->p_userret_arg = NULL; 2027 2028 exitsig = signum; 2029 p->p_acflag |= AXSIG; 2030 if (sigprop[signum] & SA_CORE) { 2031 p->p_sigctx.ps_signo = signum; 2032 if ((error = coredump(l, NULL)) == 0) 2033 exitsig |= WCOREFLAG; 2034 2035 if (kern_logsigexit) { 2036 /* XXX What if we ever have really large UIDs? */ 2037 int uid = p->p_cred && p->p_cred ? 2038 (int) kauth_cred_geteuid(p->p_cred) : -1; 2039 2040 if (error) 2041 log(LOG_INFO, lognocoredump, p->p_pid, 2042 p->p_comm, uid, signum, error); 2043 else 2044 log(LOG_INFO, logcoredump, p->p_pid, 2045 p->p_comm, uid, signum); 2046 } 2047 2048 } 2049 2050 exit1(l, W_EXITCODE(0, exitsig)); 2051 /* NOTREACHED */ 2052 } 2053 2054 struct coredump_iostate { 2055 struct lwp *io_lwp; 2056 struct vnode *io_vp; 2057 kauth_cred_t io_cred; 2058 off_t io_offset; 2059 }; 2060 2061 int 2062 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len) 2063 { 2064 struct coredump_iostate *io = cookie; 2065 int error; 2066 2067 error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len, 2068 io->io_offset, segflg, 2069 IO_NODELOCKED|IO_UNIT, io->io_cred, NULL, 2070 segflg == UIO_USERSPACE ? io->io_lwp : NULL); 2071 if (error) { 2072 printf("pid %d (%s): %s write of %zu@%p at %lld failed: %d\n", 2073 io->io_lwp->l_proc->p_pid, io->io_lwp->l_proc->p_comm, 2074 segflg == UIO_USERSPACE ? "user" : "system", 2075 len, data, (long long) io->io_offset, error); 2076 return (error); 2077 } 2078 2079 io->io_offset += len; 2080 return (0); 2081 } 2082 2083 /* 2084 * Dump core, into a file named "progname.core" or "core" (depending on the 2085 * value of shortcorename), unless the process was setuid/setgid. 2086 */ 2087 int 2088 coredump(struct lwp *l, const char *pattern) 2089 { 2090 struct vnode *vp; 2091 struct proc *p; 2092 struct vmspace *vm; 2093 kauth_cred_t cred; 2094 struct nameidata nd; 2095 struct vattr vattr; 2096 struct mount *mp; 2097 struct coredump_iostate io; 2098 int error, error1; 2099 char *name = NULL; 2100 2101 p = l->l_proc; 2102 vm = p->p_vmspace; 2103 cred = p->p_cred; 2104 2105 /* 2106 * Make sure the process has not set-id, to prevent data leaks, 2107 * unless it was specifically requested to allow set-id coredumps. 2108 */ 2109 if ((p->p_flag & P_SUGID) && !security_setidcore_dump) 2110 return EPERM; 2111 2112 /* 2113 * Refuse to core if the data + stack + user size is larger than 2114 * the core dump limit. XXX THIS IS WRONG, because of mapped 2115 * data. 2116 */ 2117 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >= 2118 p->p_rlimit[RLIMIT_CORE].rlim_cur) 2119 return EFBIG; /* better error code? */ 2120 2121 restart: 2122 /* 2123 * The core dump will go in the current working directory. Make 2124 * sure that the directory is still there and that the mount flags 2125 * allow us to write core dumps there. 2126 */ 2127 vp = p->p_cwdi->cwdi_cdir; 2128 if (vp->v_mount == NULL || 2129 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) { 2130 error = EPERM; 2131 goto done; 2132 } 2133 2134 if ((p->p_flag & P_SUGID) && security_setidcore_dump) 2135 pattern = security_setidcore_path; 2136 2137 if (pattern == NULL) 2138 pattern = p->p_limit->pl_corename; 2139 if (name == NULL) { 2140 name = PNBUF_GET(); 2141 } 2142 if ((error = build_corename(p, name, pattern, MAXPATHLEN)) != 0) 2143 goto done; 2144 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l); 2145 if ((error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, 2146 S_IRUSR | S_IWUSR)) != 0) 2147 goto done; 2148 vp = nd.ni_vp; 2149 2150 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2151 VOP_UNLOCK(vp, 0); 2152 if ((error = vn_close(vp, FWRITE, cred, l)) != 0) 2153 goto done; 2154 if ((error = vn_start_write(NULL, &mp, 2155 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0) 2156 goto done; 2157 goto restart; 2158 } 2159 2160 /* Don't dump to non-regular files or files with links. */ 2161 if (vp->v_type != VREG || 2162 VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) { 2163 error = EINVAL; 2164 goto out; 2165 } 2166 VATTR_NULL(&vattr); 2167 vattr.va_size = 0; 2168 2169 if ((p->p_flag & P_SUGID) && security_setidcore_dump) { 2170 vattr.va_uid = security_setidcore_owner; 2171 vattr.va_gid = security_setidcore_group; 2172 vattr.va_mode = security_setidcore_mode; 2173 } 2174 2175 VOP_LEASE(vp, l, cred, LEASE_WRITE); 2176 VOP_SETATTR(vp, &vattr, cred, l); 2177 p->p_acflag |= ACORE; 2178 2179 io.io_lwp = l; 2180 io.io_vp = vp; 2181 io.io_cred = cred; 2182 io.io_offset = 0; 2183 2184 /* Now dump the actual core file. */ 2185 error = (*p->p_execsw->es_coredump)(l, &io); 2186 out: 2187 VOP_UNLOCK(vp, 0); 2188 vn_finished_write(mp, 0); 2189 error1 = vn_close(vp, FWRITE, cred, l); 2190 if (error == 0) 2191 error = error1; 2192 done: 2193 if (name != NULL) 2194 PNBUF_PUT(name); 2195 return error; 2196 } 2197 2198 /* 2199 * Nonexistent system call-- signal process (may want to handle it). 2200 * Flag error in case process won't see signal immediately (blocked or ignored). 2201 */ 2202 /* ARGSUSED */ 2203 int 2204 sys_nosys(struct lwp *l, void *v, register_t *retval) 2205 { 2206 struct proc *p; 2207 2208 p = l->l_proc; 2209 psignal(p, SIGSYS); 2210 return (ENOSYS); 2211 } 2212 2213 static int 2214 build_corename(struct proc *p, char *dst, const char *src, size_t len) 2215 { 2216 const char *s; 2217 char *d, *end; 2218 int i; 2219 2220 for (s = src, d = dst, end = d + len; *s != '\0'; s++) { 2221 if (*s == '%') { 2222 switch (*(s + 1)) { 2223 case 'n': 2224 i = snprintf(d, end - d, "%s", p->p_comm); 2225 break; 2226 case 'p': 2227 i = snprintf(d, end - d, "%d", p->p_pid); 2228 break; 2229 case 'u': 2230 i = snprintf(d, end - d, "%.*s", 2231 (int)sizeof p->p_pgrp->pg_session->s_login, 2232 p->p_pgrp->pg_session->s_login); 2233 break; 2234 case 't': 2235 i = snprintf(d, end - d, "%ld", 2236 p->p_stats->p_start.tv_sec); 2237 break; 2238 default: 2239 goto copy; 2240 } 2241 d += i; 2242 s++; 2243 } else { 2244 copy: *d = *s; 2245 d++; 2246 } 2247 if (d >= end) 2248 return (ENAMETOOLONG); 2249 } 2250 *d = '\0'; 2251 return 0; 2252 } 2253 2254 void 2255 getucontext(struct lwp *l, ucontext_t *ucp) 2256 { 2257 struct proc *p; 2258 2259 p = l->l_proc; 2260 2261 ucp->uc_flags = 0; 2262 ucp->uc_link = l->l_ctxlink; 2263 2264 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask); 2265 ucp->uc_flags |= _UC_SIGMASK; 2266 2267 /* 2268 * The (unsupplied) definition of the `current execution stack' 2269 * in the System V Interface Definition appears to allow returning 2270 * the main context stack. 2271 */ 2272 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) { 2273 ucp->uc_stack.ss_sp = (void *)USRSTACK; 2274 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize); 2275 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 2276 } else { 2277 /* Simply copy alternate signal execution stack. */ 2278 ucp->uc_stack = p->p_sigctx.ps_sigstk; 2279 } 2280 ucp->uc_flags |= _UC_STACK; 2281 2282 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 2283 } 2284 2285 /* ARGSUSED */ 2286 int 2287 sys_getcontext(struct lwp *l, void *v, register_t *retval) 2288 { 2289 struct sys_getcontext_args /* { 2290 syscallarg(struct __ucontext *) ucp; 2291 } */ *uap = v; 2292 ucontext_t uc; 2293 2294 getucontext(l, &uc); 2295 2296 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp)))); 2297 } 2298 2299 int 2300 setucontext(struct lwp *l, const ucontext_t *ucp) 2301 { 2302 struct proc *p; 2303 int error; 2304 2305 p = l->l_proc; 2306 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0) 2307 return (error); 2308 l->l_ctxlink = ucp->uc_link; 2309 2310 if ((ucp->uc_flags & _UC_SIGMASK) != 0) 2311 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL); 2312 2313 /* 2314 * If there was stack information, update whether or not we are 2315 * still running on an alternate signal stack. 2316 */ 2317 if ((ucp->uc_flags & _UC_STACK) != 0) { 2318 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 2319 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK; 2320 else 2321 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK; 2322 } 2323 2324 return 0; 2325 } 2326 2327 /* ARGSUSED */ 2328 int 2329 sys_setcontext(struct lwp *l, void *v, register_t *retval) 2330 { 2331 struct sys_setcontext_args /* { 2332 syscallarg(const ucontext_t *) ucp; 2333 } */ *uap = v; 2334 ucontext_t uc; 2335 int error; 2336 2337 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */ 2338 exit1(l, W_EXITCODE(0, 0)); 2339 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 || 2340 (error = setucontext(l, &uc)) != 0) 2341 return (error); 2342 2343 return (EJUSTRETURN); 2344 } 2345 2346 /* 2347 * sigtimedwait(2) system call, used also for implementation 2348 * of sigwaitinfo() and sigwait(). 2349 * 2350 * This only handles single LWP in signal wait. libpthread provides 2351 * it's own sigtimedwait() wrapper to DTRT WRT individual threads. 2352 */ 2353 int 2354 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval) 2355 { 2356 return __sigtimedwait1(l, v, retval, copyout, copyin, copyout); 2357 } 2358 2359 int 2360 __sigtimedwait1(struct lwp *l, void *v, register_t *retval, 2361 copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout) 2362 { 2363 struct sys___sigtimedwait_args /* { 2364 syscallarg(const sigset_t *) set; 2365 syscallarg(siginfo_t *) info; 2366 syscallarg(struct timespec *) timeout; 2367 } */ *uap = v; 2368 sigset_t *waitset, twaitset; 2369 struct proc *p = l->l_proc; 2370 int error, signum; 2371 int timo = 0; 2372 struct timespec ts, tsstart; 2373 ksiginfo_t *ksi; 2374 2375 memset(&tsstart, 0, sizeof tsstart); /* XXX gcc */ 2376 2377 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK); 2378 2379 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) { 2380 FREE(waitset, M_TEMP); 2381 return (error); 2382 } 2383 2384 /* 2385 * Silently ignore SA_CANTMASK signals. psignal1() would 2386 * ignore SA_CANTMASK signals in waitset, we do this 2387 * only for the below siglist check. 2388 */ 2389 sigminusset(&sigcantmask, waitset); 2390 2391 /* 2392 * First scan siglist and check if there is signal from 2393 * our waitset already pending. 2394 */ 2395 twaitset = *waitset; 2396 __sigandset(&p->p_sigctx.ps_siglist, &twaitset); 2397 if ((signum = firstsig(&twaitset))) { 2398 /* found pending signal */ 2399 sigdelset(&p->p_sigctx.ps_siglist, signum); 2400 ksi = ksiginfo_get(p, signum); 2401 if (!ksi) { 2402 /* No queued siginfo, manufacture one */ 2403 ksi = pool_get(&ksiginfo_pool, PR_WAITOK); 2404 KSI_INIT(ksi); 2405 ksi->ksi_info._signo = signum; 2406 ksi->ksi_info._code = SI_USER; 2407 } 2408 2409 goto sig; 2410 } 2411 2412 /* 2413 * Calculate timeout, if it was specified. 2414 */ 2415 if (SCARG(uap, timeout)) { 2416 uint64_t ms; 2417 2418 if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts)))) 2419 return (error); 2420 2421 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000); 2422 timo = mstohz(ms); 2423 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0) 2424 timo = 1; 2425 if (timo <= 0) 2426 return (EAGAIN); 2427 2428 /* 2429 * Remember current uptime, it would be used in 2430 * ECANCELED/ERESTART case. 2431 */ 2432 getnanouptime(&tsstart); 2433 } 2434 2435 /* 2436 * Setup ps_sigwait list. Pass pointer to malloced memory 2437 * here; it's not possible to pass pointer to a structure 2438 * on current process's stack, the current process might 2439 * be swapped out at the time the signal would get delivered. 2440 */ 2441 ksi = pool_get(&ksiginfo_pool, PR_WAITOK); 2442 p->p_sigctx.ps_sigwaited = ksi; 2443 p->p_sigctx.ps_sigwait = waitset; 2444 2445 /* 2446 * Wait for signal to arrive. We can either be woken up or 2447 * time out. 2448 */ 2449 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo); 2450 2451 /* 2452 * Need to find out if we woke as a result of lwp_wakeup() 2453 * or a signal outside our wait set. 2454 */ 2455 if (error == EINTR && p->p_sigctx.ps_sigwaited 2456 && !firstsig(&p->p_sigctx.ps_siglist)) { 2457 /* wakeup via _lwp_wakeup() */ 2458 error = ECANCELED; 2459 } else if (!error && p->p_sigctx.ps_sigwaited) { 2460 /* spurious wakeup - arrange for syscall restart */ 2461 error = ERESTART; 2462 goto fail; 2463 } 2464 2465 /* 2466 * On error, clear sigwait indication. psignal1() clears it 2467 * in !error case. 2468 */ 2469 if (error) { 2470 p->p_sigctx.ps_sigwaited = NULL; 2471 2472 /* 2473 * If the sleep was interrupted (either by signal or wakeup), 2474 * update the timeout and copyout new value back. 2475 * It would be used when the syscall would be restarted 2476 * or called again. 2477 */ 2478 if (timo && (error == ERESTART || error == ECANCELED)) { 2479 struct timespec tsnow; 2480 int err; 2481 2482 /* XXX double check the following change */ 2483 getnanouptime(&tsnow); 2484 2485 /* compute how much time has passed since start */ 2486 timespecsub(&tsnow, &tsstart, &tsnow); 2487 /* substract passed time from timeout */ 2488 timespecsub(&ts, &tsnow, &ts); 2489 2490 if (ts.tv_sec < 0) { 2491 error = EAGAIN; 2492 goto fail; 2493 } 2494 /* XXX double check the previous change */ 2495 2496 /* copy updated timeout to userland */ 2497 if ((err = (*put_timeout)(&ts, SCARG(uap, timeout), 2498 sizeof(ts)))) { 2499 error = err; 2500 goto fail; 2501 } 2502 } 2503 2504 goto fail; 2505 } 2506 2507 /* 2508 * If a signal from the wait set arrived, copy it to userland. 2509 * Copy only the used part of siginfo, the padding part is 2510 * left unchanged (userland is not supposed to touch it anyway). 2511 */ 2512 sig: 2513 return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info)); 2514 2515 fail: 2516 FREE(waitset, M_TEMP); 2517 pool_put(&ksiginfo_pool, ksi); 2518 p->p_sigctx.ps_sigwait = NULL; 2519 2520 return (error); 2521 } 2522 2523 /* 2524 * Returns true if signal is ignored or masked for passed process. 2525 */ 2526 int 2527 sigismasked(struct proc *p, int sig) 2528 { 2529 2530 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 2531 sigismember(&p->p_sigctx.ps_sigmask, sig)); 2532 } 2533 2534 static int 2535 filt_sigattach(struct knote *kn) 2536 { 2537 struct proc *p = curproc; 2538 2539 kn->kn_ptr.p_proc = p; 2540 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2541 2542 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2543 2544 return (0); 2545 } 2546 2547 static void 2548 filt_sigdetach(struct knote *kn) 2549 { 2550 struct proc *p = kn->kn_ptr.p_proc; 2551 2552 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2553 } 2554 2555 /* 2556 * signal knotes are shared with proc knotes, so we apply a mask to 2557 * the hint in order to differentiate them from process hints. This 2558 * could be avoided by using a signal-specific knote list, but probably 2559 * isn't worth the trouble. 2560 */ 2561 static int 2562 filt_signal(struct knote *kn, long hint) 2563 { 2564 2565 if (hint & NOTE_SIGNAL) { 2566 hint &= ~NOTE_SIGNAL; 2567 2568 if (kn->kn_id == hint) 2569 kn->kn_data++; 2570 } 2571 return (kn->kn_data != 0); 2572 } 2573 2574 const struct filterops sig_filtops = { 2575 0, filt_sigattach, filt_sigdetach, filt_signal 2576 }; 2577